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Abstract 

 

Controlling for spatial effects in micro-economic studies of consumer and producer behavior 

necessitates a range of analytical modifications ranging from modest changes in data collection 

and the definition of variables to dramatic changes in the modeling of consumer and producer 

decision-making.  This paper discusses conceptual, empirical, and data issues involved in 

modeling the spatial aspects of economic behavior in data rich environments.   

 

Attention is given to established and emerging agricultural economic applications of spatial data 

and spatial econometric methods at the micro-scale.  Recent applications of individual and 

household data are featured, including models of land-use change at the urban-rural interface, 

agricultural land values, and technological change and technology adoption.   

 

JEL Classifications: C21, Q10, Q12, Q15, Q56 

 



1.  Introduction 

 Spurred by recent advances in data and software, as well as in economic theory and 

econometric methods, spatial economic analysis is on the rise (for reviews see Anselin, Florax, 

and Rey 2004 and Florax and van der Vlist 2003).  Anselin, Florax, and Rey (2004) attribute this 

increase to the following five factors: a renewed interest in the role of space and spatial 

interactions in social science theory; the increased availability of large socio-economic datasets 

with geo-referenced observations; the existence of low cost geographic information systems to 

manipulate spatial data; heightened activity in terms of methodological research; and increased 

availability of software to implement empirical spatial economic methods (e.g., MATLAB (Pace 

and Lesage spatial statistics toolbox and Lesage spatial econometrics toolbox, R (R-geo)), S-

Plus, Stata, Geoda, and Space-Stat).  Recent research of agricultural, natural resource, and 

environmental economists reflects the escalating prominence of spatial interactions and provides 

support for the significance of these five factors in changing analytical research methods 

(Anselin 2001a, Anselin 2002, Bateman et al. 2002, Bateman et al. 2006).  Since the 2002 

special volume of Agricultural Economics (Nelson 2002), which provided an introduction to 

spatial analytical approaches, agricultural, resource, and environmental economists have 

increasingly been open to spatial analysis.  In what follows, we bring attention to a subset of 

these recent efforts, giving emphasis to applications involving micro- level spatial data.   

 Controlling for spatial effects in micro-economic studies of consumer and producer behavior 

necessitates a range of analytical modifications ranging from modest changes in data collection 

and the definition of variables to dramatic changes in the modeling of consumer and producer 

decision-making.  Modest changes evolve from improved and readily available spatial data and 

result in spatial analysis that supplements conventional economic research.  The ability to 

overlay multiple layers of spatial data using geographic information systems (GIS) gives 

researchers tremendous power and flexibility to describe the spatial aspects of economic 

problems.  For example, parcel- level models of land-use change commonly now rely on the use 

of spatial data and modeling software that permit rich descriptions of parcels’ locations (e.g., 

proximity to numerous features; viewscapes, road network access and congestion), land features 

(e.g., soil, slope, vegetation, water), and surrounding neighborhoods (e.g., neighboring land uses, 

demographics, school quality, crime rates) as well as relevant public policies (e.g., zoning laws, 

habitat regulations, or agricultural easements) (Irwin et al. 2003).  In addition, the employment of 
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a spatial perspective affords researchers tremendous benefits in terms of conceptualizing spatial 

effects or patterns.  Examining the spatial distribution of one of more variables may suggest 

spatial heterogeneity or spatial dependence.  For example, studies of technology adoption that 

employ mapping may reveal struc tural breaks in terms of decision-making or evidence of 

knowledge spillovers (Zhang et al. 2002).  Likewise, basic maps showing the temporal and 

spatial distribution of invasive pests, infectious diseases, and wildfires provide valuable 

measures of the spatial heterogeneity in risk and damage surfaces (Holmes et al. 2006; Beck et 

al. 2002; and Schmidt et al. 2002).  Similarly, visualizing the results of policy analyses in map 

form may offer valuable information about the distributional impacts of specific policies or the 

potential cost savings from geographical targeting (e.g., Irwin et al. 2003, Yang et al. 2005, 

Newburn et al. 2006).  Overall, these changes in data collection, variable definition, and 

communication of results have proved quite complementary to standard, empirical economic 

research methods. 

 More dramatic changes are evolving from the adoption of spatial econometric models and 

estimation approaches (Anselin 1988; Anselin, Florax, and Rey 2004; LeSage 1999; LeSage and 

Pace 2004).  In some cases, these changes coincide with modifications to traditional regression 

models.  For example, the spatial error and spatial lag models popularized by Anselin’s spatial 

econometrics research and software (Anselin 1988; Anselin 2001b, Anselin 2002) are 

progressively more common in the applied economics literature.  These models respectively 

incorporate spatial correlation among regression disturbance terms and dependent variable 

observations.  In addition, test statistics related to these two models are now an expected 

component of empirical research.  In other instances, these changes are inspiring fundamentally 

different models and empirical methods such as agent-based (Berger 2001), Bayesian (Holloway 

et al. 2002), and geographically weighted regression models (Lesage 2004).  Spatial and 

spatiotemporal econometric methods modify the representation of consumer and producer 

decision-making by bringing attention to spatial interactions among these decision-makers.  

Using spatial GIS data, the strength of interaction between two agents is typically modeled as a 

function of physical distance or a measure of physical proximity.  It is important to note, 

however, that these modeling frameworks support a variety of non-physical distance measures, 

such as economic or market distances. 
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 This paper discusses conceptual, empirical, and data issues involved in modeling the spatial 

aspects of economic behavior in data rich environments - environments that support a rich 

description of decision-makers and natural resources and often permit the unit of analysis to 

correspond with that of the relevant decision-maker.  Particular attention is given to recent 

applications of individual and household data, including models of land-use change at the urban-

rural interface, agricultural land values, technological change and technology adoption.  

Together, this mix of studies illustrates how spatial economic analysis can improve our 

understanding of economic behavior and regulatory and management approaches.  The 

remainder of the paper is organized into 3 sections.  Section 2 provides an overview of micro-

scale spatial economic analysis.  Section 3 summarizes recent applications of spatial analysis.  

Lastly, Section 4 offers concluding remarks and points to directions for future research. 

 

2.  Spatial Economic Analysis using Micro-Scale Data 

 Because our review of applications focuses on data rich environments, some of the 

discussion is most applicable to the United States and other developed countries in which local 

and national governments are significant providers and managers of spatial data.  In these 

countries, parcel- level land, road network, and street address data are electronically recorded and 

managed using Geographic Information System (GIS) software.  In addition, designated spatial 

areas are standard units of analysis and data collection by government agencies and researchers 

(e.g., US Census geography).  These resources facilitate integration of databases, such as the 

merging of tax assessment records with land parcel boundary files or demographic data with 

place or area boundary files, and the conversion of non-spatial to spatial databases via geocoding 

or address-matching.  In addition, government oversight of core data collection and management 

has also resulted in data quality and metadata standards and data review processes.  

 The boundaries of micro-scale spatial analysis are expanding to include developing countries, 

as spatial datasets are made available because of technical advances in global positioning system 

(GPS) and remotely-sensed data collection and infrastructural enhancements at established 

research sites.  While not as many high resolution spatial datasets may be available for these 

countries, the returns to creating such datasets appear high.  For example, Vance and Geoghegan 

(2002) integrate satellite imagery land cover data with data collected from farm households 

whose agricultural plots were geo-referenced using a global positioning system (GPS) to 
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examine forest clearing in an agricultural frontier of southern Mexico.  Similarly, Caviglia-Harris 

and Sills (2006) geo-referenced household lots using a global positioning system (GPS) in their 

study of the dynamic relationship between cattle intensification and forest clearing in Rondonia, 

Brazil.  Both of these studies make use of the knowledge of ownership boundaries in examining 

land use dynamics and cleverly combine micro- and macro-scale spatial datasets. 

 

2.1 Micro-scale 

 For the purposes of this paper, micro-scale data are defined as data describing individual 

units such as firms, farms, households, or land parcels.  There are advantages and disadvantages 

to working with spatial data at a micro- level scale.  These were reviewed at length in Bell and 

Irwin (2002) and are summarized again here briefly.  The primary advantage extends from using 

data at a scale that corresponds to the economic decision of interest.  In addition, micro- level 

models that can spatially aggregate up individual- level decisions to other relevant scales (e.g., 

city; labor or agricultural market; village) provide a unique means to assess the consequences of 

individual decisions.  For example, Bell and Irwin (2002) emphasize the utility of spatially 

articulated models of individual land use conversion that provide a means to transition from 

individual- level behaviors to aggregate- level outcomes.  Because micro-scale approaches link 

predicted outcomes with the underlying behavior of individual actors, they can also directly 

incorporate policies and improve predictions for policy analysis  (Irwin et al. 2003; Bockstael 

1996).  Lastly, because the unit of observation corresponds directly with the scale at which the 

underlying spatial process takes place, data measurement problems are minimized, which 

reduces a source of spatial error autocorrelation (e.g., spatial mismatch). 

 Despite these advantages, there are clear challenges to developing spatial, micro- level 

models in a data-rich environment.  Datasets may be massive in size, necessitating extensive data 

management and computer resources.  In addition, as datasets grow in size, the challenges of 

modeling correspondingly increase, as researchers strive to assess possible interactions among a 

growing set of decision-makers and must manipulate larger spatial weight matrices (e.g., Bell 

and Bockstael, 2000).   
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2.2 Empirical Micro-Scale Models 

 The diverse interests in spatial microeconomic theory exhibited by agricultural and resource 

economists mirror those expressed by other social science researchers (Anselin 2002) 1 .  

Agricultural and resource economists study a diverse set of decision-makers, giving rise to 

myriad forms of spatial interactions.  A unifying theme among these studies is the emphasis 

given to how individual consumers and producers interact with a host of natural resources.  

Spatial interactions, in turn, are driven both by relationships among decision-makers as well as 

the spatial heterogeneity of natural resources. 

 Our discussion of spatial models focuses on two basic models: the spatial lag and spatial 

error models (Anselin 1988; Anselin 2001b).  Both models are adaptations of a standard linear 

regression model.  The former addresses spatial interactions among choices of decision-makers 

or agents, capturing substantive spatial dependence by allowing for relationships among 

observations of the dependent variable.  The latter addresses correlation of the regression 

disturbance terms over space or nuisance spatial dependence.  Together, these two models 

account for the majority of recent spatial economic applications by agricultural and resource 

economists.   

 From a theoretical perspective, the spatial lag model is intriguing because it relaxes the 

assumption of independent decision-making and necessitates consideration of spatial 

interactions.  Explaining how and why these interactions occur is of utmost importance when 

employing this framework.  Anselin (2002) and Brueckner (2003) present two distinct 

microeconomic theoretical models that are consistent with the spatial lag model.  Brueckner 

discusses these models in the context of spatial interaction in public economics (Brueckner 

2003).  Anselin (2002) extends Brueckner’s intuition to agricultural and resource economic 

problems.  Following their intuition and notation closely, we summarize the spillover and 

resource flow models in the context of a consumer utility maximization problem.  The same 

intuition can be used to motivate these models in the context of a profit maximization or cost 

minimization problem.  Using their terminology, a spillover model is one in which an agent i 

chooses the level of a decision variable, yi, but the values of the y chosen by other agents (y-i) 

                                                                 
1 For example, the significance of individual agent behavior and the relationships among these agents are emphasized in social 
network theory and agent-based modeling research (Dietz 2002; Conley and Topa 2002; Brock and Durlauf 2002).  Space is also 
central to the literature related to the new economic geography (Fujita and Krugman 2004).   
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affects the agent’s objective as well.  Therefore, the utility function of an agent includes her 

choice and the choices of all other agents: 

 

),;,( '
iii xyyU −  

 

where xi’ is a vector of exogenous characteristics of agent i, which are associated with variation 

in agent preferences.  In a spatial context, the spillover model may be used to motivate spatial 

dependence as the product of direct interactions with neighboring agents.  In addition, the extent 

of interaction among agents may be differentiated as a function of proximity.  Interactions take 

on some form of strategic interaction manifested as competition, copy-cat behavior, or diffusion 

of knowledge.  For example, some studies of technological adoption examine the influence of 

past adoptions by neighboring decision-makers on current adoption rates.  In contrast, a resource 

flow model arises not from direction interaction as in the case of the spillover model but rather as 

a function of a shared resource.  Spatial interaction arises from the distribution of the shared 

resource across all agents, si, which is a function (H) of the exogenous characteristics of the 

agents, xi, and the consumption of the resource by all agents (yi and y-i).  Using this modeling 

framework, the utility function of an agent includes her choice and the stock of resource 

available to her, which is a function of the choices of all other agents.  The utility function of and 

resource available to an agent are expressed as follows: 
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where H is a function describing the stock of resource available to agent i. 

 As demonstrated by Brueckner (2003) and Anselin (2002), when embedded in a utility 

maximization problem, the spillover model and the resource flow model both generate the same 

reaction function to describe the maximization solution2.  This reaction function can broadly be 

thought of as: ).,( '
iii xyRy −=   This general reaction function, which stresses the 

interdependence of an agent’s choice and the choices of other agents, may be used to motivate 
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the spatial lag model.  The spatial lag model extends a standard linear regression model by 

adding a spatial lag term (Wy), 

 

,εβρ ++= XWyy  

 

where y is an n by 1 vector of the dependent variable, W is a n by n spatial weights matrix 

representing the structure of the spatial interaction among agents, X is an by n by k matrix of 

exogenous explanatory variables, ρ is the spatial autoregressive parameter to be estimated, β  is a 

k by 1 vector of parameters to be estimated, and ε is a n by 1 vector of random disturbance terms.  

The spatial lag term (Wy) and its estimated parameter, ρ, describe the spatial dependence among 

agents or decision makers.  Specifically, it assumes a linear function form for R and limits 

interactions among agents using W.   

 The spatial lag term is an endogenous variable.  Because ordinary least squares estimation of 

this model ignores this endogeneity, its estimates will be biased and inconsistent.  Maximum 

likelihood and generalized method of moments are the most common methods used to estimate 

the lag model.  A variety of statistical tests have been developed to examine the appropriateness 

of the spatial lag model (e.g., Moran’s I, Keleijian-Robinson, and Lagrange Multiplier).  In 

practice, the standard linear regression model is estimated first by OLS and these test statistics 

build from the results of this regression and a designated spatial weight matrix.  Applications of 

spatial lag models include descriptions of patterns among sales prices of land and housing, 

expenditures and policies of local governments, and technology adoption.  In practice, the spatial 

lag model is employed as an alternative to a standard linear regression model or to adapt a 

discrete choice model by modifying the specification of a latent variable.   

 The second, most common application of spatial economic analysis arises from data 

measurement issues rather than a modified theoretical model.  Spatially correlated residuals, 

which may be caused by spatial correlation of omitted variables or spatial mismatch in data 

measurement, violate the standard assumptions of the linear regression model.  Specifically, the 

he assumption of independent, homoskedastic residuals must be relaxed.  An autoregressive 

representation of this correlation alters the standard linear regression as follows: 

                                                                                                                                                                                                                 
2Anselin (2002) discusses the issues associated with this result in the context of the classic inverse problem.  In 
short, it is unclear what economic process or mechanism supports the spatial lag model. 
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where y is an n by 1 vector of the dependent variable, W is a n by n spatial weights matrix 

representing the structure of the spatial interaction among residual terms, X is an by n by k 

matrix of exogenous explanatory variables, ρ is the spatial autoregressive parameter to be 

estimated, β  is a k by 1 vector of parameters to be estimated, ε is a n by 1 vector of random 

disturbance terms, and u is a n by 1 vector of random, iid disturbance terms.  This modification 

assumes an autoregressive structure for the error terms.  Alternative error structures are also 

possible, including moving average and error components.  Similar to the case of the spatial lag 

model, a variety of statistical tests have been developed to examine the appropriateness of the 

spatial error model.  These test statistics are calculated using OLS results and rely on the 

specification of a spatial weight matrix.  If this form of correlation is present and ignored, 

ordinary least squares estimates will be unbiased but inefficient.  Within agricultural and 

resource economics, the most common application of the spatial error model is in hedonic  

property value studies.  In these studies, the spatial correlation of residuals is often explained as 

the result of omitted variables that are spatially correlated.  In practice, researchers often struggle 

trying to sort out both types of dependence (spatial lag and spatial error ) and heteroskedasticity 

problems.  

 When estimating the spatial lag and spatial error models using micro-scale data, a major 

issue for researchers is the specification of the spatial weight matrix, W.  Spatial weight matrices 

are central to spatial error and lag models, imposing a great deal of structure on spatial 

interactions.  Careful consideration is required in micro-data environments.  In contrast to macro 

scale studies, where units are broad geographic areas such as countries, states, or villages, micro 

observations are often scattered throughout a landscape and agents do not share borders that 

crisply define neighbors.  Instead, researchers are often forced to specify weights as a function of 

distance.  Key questions that must be resolved in any microanalysis include: how should the 

weights be defined; should the weight matrix be row-standardized (e.g., asymmetry); and should 

some observations be allowed to have 0 neighbors (e.g., islands).  Economic theory and 

knowledge of the data generation process may help with the specification of W, but there is 

typically considerable uncertainty about the appropriate form of W.  Very little guidance is 

offered to researchers when specifying W (Anselin 2002), and, in some cases, the lack of 
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justification of W can detract from a study3.  As a result, sensitivity analyses showing variation 

in parameter estimates across alternate weight matrices are commonly completed (e.g., Bell and 

Bockstael 2000).    

 In their review of the economics literature, Anselin, Florax, and Rey (2004) noted the bulk of 

spatial economic applications since 2001 still involve linear regression (spatial error and lag) 

models.  This is perhaps not surprising, as these models are most similar to conventional models, 

are relatively easy to estimate, and are incorporated into statistical software packages.  In the 

future, it is likely that common applications will include panel data models (Baltagi and Li 2004) 

and discrete choice models (Fleming 2004).  However, to date, these latter models may not be 

estimated using readily available statistical software packages. 

 

3.  Applications  

 In this section, we summarize recent spatial economic analysis applications in three areas: 

land-use change at the rural-urban interface; hedonic models of agricultural and residential land 

values; and technological change and technology adoption.  The review is intended to wet 

researchers’ appetites for learning more about spatial economic analysis in data-rich 

environments.  Curious readers are encouraged to refer to the original works cited in this section 

for the full details of their analysis.  It is our hope that this review will raise awareness of recent 

advances and illustrate the novelty and breadth of data rich environments for spatial economic 

analysis.  There are other examples we have omitted due to brevity. 

 

3.1 Land-use change at the Rural-Urban Interface 

 Studies of land-use change have long stressed the significance of space.  von Thunen’s 

nineteenth century writings, which emphasize the role of distance to a central market, have 

shaped generations of land-use models (see Plantinga and Irwin (2006) for a recent review).  A 

variety of empirical models have been employed by agricultural and resource economists to 

describe land-use change.  A recent change in the literature, resulting from the rise of spatial data 

and GIS modeling tools, is an increased emphasis of spatial heterogeneity in theoretical 

(Segerson, Irwin, and Plantinga 2006) and empirical models of land-use change (Plantinga and 

                                                                 
3 A notable shortcoming arises from having these models accessible in readily available software packages.  In short, 
some researchers opt to estimate models using default specifications (e.g., inverse distance) with little consideration 
for the uniqueness of their research problem, sample, or data properties.  
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Irwin 2006).  Specifically, there is less reliance on a single measure to capture spatial 

heterogeneity, such as distance to the central business district.  In addition, GIS and other 

database advances have facilitated the use of parcel- level data.  Prior to these advances, most 

economic models of land-use change used aggregate data on land-use, such as US Census tracts, 

county acreage estimates, or county land-use shares data. 

 Land-use change models utilizing parcel- level data are excellent examples of micro-scale 

models featuring spatial heterogeneity.  To date, these models have been applied to explain land 

conversion in rapidly developing areas of the U.S. ( see Plantinga and Irwin (2006) and Bell and 

Irwin (2002) for recent reviews).  The majority of these applications are designed to address the 

conversion of undeveloped lands to developed lands at the rural-urban interface.  These 

conversions are significant from a policy perspective because of potential external costs ranging 

from changes in environmental quality and rural character to changes in public service costs.   

 Data rich environments supporting such studies tend to be in areas with higher resources 

devoted to land-use planning.  These environments afford researchers a unique setting in which 

to study land-use change, as GIS data management and organization has facilitated unparalleled 

detailed data on land parcels.  Such data include spatially-articulated tax and assessment records 

describing the parcel’s physical, structural, financial, and use history; zoning and other land 

management ordinances; natural resource characteristics including slope, soil type, vegetation, 

water resources; access to public services and other relevant networks such as transportation 

corridors; and proximity to relevant amenities and disamenities.  From a researcher’s 

perspective, there is great value in knowing both the absolute value of these features for a given 

land parcel and the relative values of these features among neighboring land parcels.   

 The benefits of a data-rich environment are perhaps best illustrated by the recent land-use 

research efforts centered at University of Maryland and spearheaded by Professor Nancy 

Bockstael.  Parcel- level land-use data and other GIS and electronic data available in the State of 

Maryland have been scrutinized by a team of researchers to explore the utility of alternative 

modeling approaches and support public decision-making.  Early work from this team of 

researchers raised awareness of micro-level spatial data, spatial econometric issues, and spatial 

interaction (e.g., Bockstael 1996).  Subsequent efforts have focused on a range of issues arising 

in the estimation of micro land-use change models, including, among other issues, spatial 
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dependence, sample selection, and identification issues (Irwin et al. 2003; Irwin and Bockstael 

2004a; Irwin and Bockstael 2004b; Towe et al. 2005a; and Towe et al. 2005b).   

 Parcel-scale models of land-use change have primarily taken advantage of improved spatial 

data and the alignment of the decision unit and observed unit of analysis.  Contemporaneous 

spatial dependence (e.g., spatial lag) is rarely accounted for and may be due to the relative 

difficulty of adapting discrete choice rather than linear regression models.  Instead, interactions 

are examined by modeling the impact of the land use of surrounding parcels on the likelihood of 

a particular land-use change.   

 Many recent models underscore the importance of understanding the dynamics of land-use 

change and employ duration modeling techniques.  These same models also illustrate the utility 

of integrating spatially-explicit policy data into land-use change models.  This latter advance 

enables much improved assessments of the effectiveness of policies and their influence on the 

spatial pattern of development patterns.  Irwin et al. 2003 estimate a proportional hazards model 

to explain residential development in Calvert County, Maryland.  Numerous GIS-derived 

variables are used in this analysis to distinguish the influences of development costs, locational 

features, neighboring land-use variables, public services, zoning regulations, and smart growth 

policies.  A simulation-based analysis of potential policy changes finds that spatially-based 

policies such as priority funding (targeted growth) areas have a significant influence on 

conversion decisions.  In addition, the results suggest open space and agricultural land protection 

programs may be more effective when coupled with targeted growth area policies.  Hite et al. 

2003 employ a parametric accelerated failure time survival model to examine land-use change in 

Delaware County, Ohio.  Again, numerous GIS-derived variables are used to explore the impacts 

of taxes on the rate and timing of conversions of agricultural land to industrial, commercial, and 

residential use.  Emphasis is given to the role of proximity to a variety of features, including 

roads, utility lines, water resources, and the city center as well as to the spatial variation in 

property tax rates used to fund schooling and infrastructure.  Their results indicate higher 

property tax rates do delay conversion of agricultural lands to residential use, with infrastructure 

taxes having a greater negative influence than school taxes.  In addition, their findings suggest 

commercial development follows residential development and densely residential areas repel 

industrial development.   
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 Other studies focus on spillover effects of past land-use conversion decisions on future 

decisions.  Irwin and Bockstael (2004a) refine the approaches of the previously discussed work 

by emphasizing the potential for statistical identification problems when estimating land-use 

change models.  Their findings raise concerns with previous findings on the impacts of 

neighboring land uses on land conversion decisions.  Unobserved heterogeneity associated with 

land parcels is likely to be strongly correlated in space and to complicate the identification of 

endogenous interaction effects.  If omitted variables are invariant over time and spatially 

correlated over space, then it will be difficult to distinguish between the influence of such 

unobserved spatial effects and those of true spatial externalities from surrounding land uses.  

They pose an identification strategy, estimate a proportional hazards model of land conversion in 

Calvert County, Maryland, and conduct simulations to explore.  Results demonstrate support for 

land-use change models that incorporate exogenous explanatory variables and the endogenous 

interaction effects of neighboring land uses.  Findings also indicate the relevancy of these 

interaction effects to the design of policies intended to curb sprawling or scattered development 

patterns.  This latter point is featured in a second paper (Irwin and Bockstael 2004b), where 

estimates from a proportional hazards model provide additional empirical evidence of 

interdependencies among neighboring land uses.  Results indicate that parcels with greater 

amounts of preserved open space nearby are more likely to be converted to residential use in the 

future.  In contrast, neighboring commercial and industrial development has a depressing effect 

on the likelihood of conversion.  The findings with respect to open space suggest clustered 

development policies may have the potential to exacerbate scattered development patterns. 

 Econometric and other statistical issues are the focus of other recent studies.  Carrion-Flores 

and Irwin (2004) stress the potential for spatially correlated residuals (the spatial error model) in 

their analysis of land-use change in Medina County, Ohio.  A test for spatially correlated 

residuals in a probit model framework is conducted and a spatial sampling routine is 

implemented to address the spatial correlation.  Newburn and Berck (2006) estimate a parcel-

scale model of land-use change in Sonoma County, California using a random-parameter logit 

model.  This analysis emphasizes the potential for heterogeneous responses to zoning regulations 

among areas with different development densities.  Findings indicate potential problems  with 

models of land-use change that bundle all forms (densities) of residential development into a 

single class and provide support for increased consideration of the heterogeneity among 
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development density classes.  Lastly, Towe et al. (2005a and 2005b) emphasize the potential for 

applying real options theory to the study of land-conversion.  Towe et al. (2005b) employs a 

durations model to explore real options in the context of land-use change, including whether 

price uncertainty measured as the variance in returns to development impacts decisions to 

convert farmland to developed uses and whether the presence of an option to preserve farmland 

in a purchasable development right program delays development decisions.  Results demonstrate 

significant empirical evidence that variance in returns (price uncertainty) and having the option 

to sell a purchasable development right easement delays the conversion of farmland land to 

developed uses.  Towe et al. (2005a) extends this real options theory research to examine the 

significance of spatial interaction effects among land-owner decisions.  Interaction effects are 

examined using both a hazard regression model and a quasi-controlled experiment (using 

propensity score matching) approach.  Statistically significant evidence of a positive interaction 

effect between neighboring preserved land and the likelihood of development of neighboring 

parcels is found using both empirical approaches.  These findings raise further concern about the 

unintended policy consequences of open space and other land preservation policies. 

  

3.2 Hedonic Property Models of Agricultural  Land Values 

 Hedonic property value studies have also benefited from recent advances in spatial data and 

modeling tools.  Of note is the tremendous flexibility and power afforded to researchers by GIS 

data and software when conducting a hedonic property value analysis.  The return to this 

flexibility is evident when reviewing recent studies of agricultural and residential land values 

(Patton and McErlean 2003, Ready and Abdalla 2005, Boxall et al. 2005, Beron et al. 2004, 

Geoghegan et al. 2003, Irwin 2002, Paterson and Boyle 2002, Gayatri and Lewis 2001, Leggett 

and Bockstael 2000, Bell and Bockstael 2000).  The bulk of such studies not only incorporate a 

range of GIS-derived spatial explanatory variables but also complete testing for spatial 

dependence and implement spatial econometric techniques, as necessary.  

 Recent studies of agricultural land values stress heterogeneity over space, effects from 

urbanization pressures, and impacts of public programs such as farmland preservation programs. 

Patton and McErlean (2003) estimate spatial lag models that jointly address substantive spatial 

dependence and spatial heterogeneity (e.g., spatial regimes or submarkets) to explain variation in 

farmland prices in Northern Ireland.  The spatial lag model is attributed with the circular 
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influence of appraisals on land prices, notably the use of neighboring land parcels as 

comparables.  Their findings illustrate the potential bias in parameter estimates when these 

spatial econometric issues are ignored.  Considerable differences in parameter estimates emerge, 

including a reversal in sign for parcel size from negative to positive in some sub-markets.  

Cavailhes and Wavresky (2003) examine the variation in transaction prices of farmland parcels 

in Dijon France using a random effects model, where the random effect is intended to capture, 

among other things, the spatial heterogeneity among communes (e.g., suburban or exurban 

areas).  Evidence of inter- and intra-commune level spatial autocorrelation between disturbances 

is found.  Findings illustrate the mixed role of agricultural factors and expectations of future 

returns from development.  The impact of urbanization is examined from multiple perspectives, 

including the premium of subdivision effects and barriers to entry for non-farm investors and the 

decline in urban premium with distance from the city.  Recently, the effect of urban pressure on 

farmland values was decomposed into the net returns to agriculture, non-farm opportunity costs 

and a speculative component equation (related to conversion risk) in a 3SLS framework 

corrected for spatial autorcorrelation (Livanis et al. 2005). The results largely called to question 

the valuation of farmland based solely upon the net present value of productive capacity and 

offered a tripartite explanation of land values: changes in net agricultural returns, non-farm 

opportunities and land speculation.  These findings are especially relevant for areas that have 

large population growth or are located close to metropolitan areas.   

 Nickerson and Lynch (2001) explore the effects of agricultural purchasable development 

right programs on farmland values using parcel-scale data from three Maryland counties.  A 

sample selection model is used to account for the potential sample selection bias of parcels 

enrolled in purchasable development right programs.  An hedonic property value model is 

estimated as the second stage, explaining price as a function of parcel size, soil characteristics, 

proximity to streams, urban areas, and the nearest farm enrolled in the program, the extent of 

forest land cover, and county effects.  Contrary to expectations, the results reveal little statistical 

evidence that purchasable development right programs decrease farmland prices.   

 Increased attention given to spatial data and dependence is also evident in the related 

literature examining variation in residential land values.  Studies of the impacts of open space 

(Irwin 2002; Geoghegan et al. 2003) and the effects of rural disamenities such as livestock 

operations (Ready and Abdalla 2005; Bayoh, Irwin, and Roe 2004) and oil and natural gas 
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facilities (Boxall et al. 2005) on residential property values employ GIS-derived explanatory 

variables and test and correct for spatially correlated residuals.  Additional studies making using 

of spatial data and spatial econometric methods continue to refine our knowledge of the impacts 

of environmental quality on residential property values (Paterson and Boyle 2002; Leggett and 

Bockstael 2000; Beron et al. 2004). 

 

3.3 Technology Adoption and Agricultural Production 

Spatially explicit data has been used in several areas of applied agricultural production 

economics including information acquisition on technologies and agricultural practices, new 

technology adoption, explanation of diffusion patterns, agricultural land pricing, strategic 

behavior of agribusinesses as well as linking agricultural production to resource usage and 

environmental services.  Studies have employed, plot- household- and village-level data as well 

as spatially explicit regional data. 

Information acquisition and sharing as well as technology adoption and diffusion are 

areas that have rapidly incorporated physical and social distances into non-spatially explicit 

modeling by necessity of social and economic exchange. One early application examined 

regional-scale data over 25 years to derive neighborhood effects on the path and speed of the 

adoption of high yielding varieties in India (Zhang, Fan and Cai 2002).  Using a land allocation 

model, the asymmetric influence of successful and unsuccessful adopters on followers was 

identified.  Adoption decisions have also been modeled at the individual decision making level 

using a Bayesian spatial Probit model (Holloway, Shankar and Rahman 2002) or in individual 

land allocation models (Langyintuo and Merkuria 2005).  In the former, accessible iterative 

procedures are used to identify the spatial influence of neighbors and the error associated with 

ignoring spatial dependencies.  In the later case a spatial lag model was applied in a Tobit 

framework to household- level data and found significant neighborhood effects on land allocation 

decisions. 

Technology adoption and diffusion models now regularly integrate GIS-derived variables 

in order to disaggregate neighborhood effects between the inertia generated by proximity to, or 

the mass of,  previous adopters (Abdulai and Huffman 2005).  Secondly, the ease of access to 

data on controlling environmental factors and the influence of heterogeneous production features 

that condition adoption decisions can be joined with behavioral factors to enrich adoption models 
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(Moreno and Sundig 2005).  Sarmiento and Wilson (2005) developed a game theoretic 

framework to explain inter- firm rivalry and the spatial correlation of the payoff matrix between 

neighbors and neighbors’ adoption decisions of new grain handling technology.  To do so, a 

spatially lagged dependent variable (the adoption decision) was modeled in a logistic framework 

and empirically estimated with an algorithm that concentrated inter- firm correlation coefficients 

in the likelihood function.  Results indicate that strategic and market expansion is dependent 

upon competitors’ adoption but that the influence declines with distance. 

 Market participation decisions have been examined in terms of distance to markets, as 

well as in terms of neighborhood effects, in a manner similar to adoption and diffusion.  Staal et 

al (2002) provided an example of georeferenced farm units and linked their market participation 

behavior to a set of location-specific attributes.  From these models, public policy interventions 

related to road infrastructure were investigated to determine their relationship to transaction costs 

and ultimately technology adoption.  Inertia and neighbor’s participation decisions were 

identified using a spatial autoregressive function in a Bayesian Probit framework in order to 

identify the human determinants of market participation in addition to physical transaction costs 

and barriers (Lapar, Halloway and Ehui, 2004).  Market distance functions also were used to 

capture demand-side characteristics influencing livestock adoption decisions and ultimately the 

individual decision on market participation (Abdulai and Huffman 2005). 

Technology adoption and market participation studies have largely pointed to the flow of 

information through proxy measures and not the information itself.  In studies of knowledge 

intensive technologies, such as integrated pest management, whether (or not) the study accounts 

for neighborhood effects can have dramatic effects upon performance outcome and the 

evaluation of information dissemination programs (see Feder, Murgai and Quizon 2004 and 

Yamazaki and Resosudarmo 2006 for contrasting results).  One natural counterpart to geographic 

space and proximity is the role of ethnicity or other social boundaries that define information 

sharing networks.  Social boundaries are examined jointly with geographic measures of 

communities to generate a “social proximity” measure and explain access to extension and other 

sources of  information (Romani 2005). 

 Technology adoption, diffusion and information sharing require that the technology 

under scrutiny provide some aspect that is superior to the existing technology.  The profitability 

of site-specific nitrogen application, and the attendant investment in variable rate technology and 
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yield monitors, was evaluated in frameworks that controlled landscape position with spatial 

error, spatial lag and non-spatial regression models (Anselin, Bongiovani, and Lowenberg-

Deboer 2004).  Profitability assessment of the technology was dependent on whether yield 

response functions were modeled as spatially autoregressive or not.   

Beyond technology adoption, spatial economic models have emerged in the measurement 

of technical and allocative efficiency and in explaining the linkage between environmental 

services and agricultural production.  In the former, technical and allocative efficiency of dairy 

firms was examined to determine whether performance among firms was spatially dependent and 

whether the patterns suggested localization or urbanization economies and Marshall-Arrow-

Romer or Jacobs’ externalities (Bragg, 2005; Bragg and Dalton, 2006).  Failing to adjust for 

spatial dependence and omitting exogenous variables from the frontier estimation process 

resulted in biased efficiency estimates. 

The spatial dependence between forest ecosystem services, and the effect these service 

have upon agricultural production and attendant welfare, was recently modeled using spatial lag, 

error and lag and error models and then compared to non-spatially explicit models (Pattanayak 

and Butry, 2005).  Ignoring the spatial dependence related to economic interactions and 

ecological systems undervalues forests to downstream agricultural producers.  By contrast, 

Swinton (2002) was able to model spatial dependencies between production and natural resource 

degradation using a random effects regression as opposed to a spatial lag or error model.  The 

spatial dependency between agricultural systems and environmental performance has also been 

modeled in mathematical programming systems integrating GIS and plot- level land allocation 

information to evaluate the impact of green payments and the elimination of commodity support 

programs on farm welfare (Cobourn 2004, Antle et al 2003). 

 

4.  Conclusions  

 Our review of the literature since the 2002 special volume of Agricultural Economics 

(Nelson 2002) demonstrates increasing interest in the use of spatial data and spatial analysis 

tools.  However, as noted previously, there appears to be a lag in terms of methodological 

advances and applications but several very recent advances  Current applications of spatial 

econometric methods tend to be linear regression models, such as the spatial lag and error 

models.  Applications of panel data models (Baltagi and Li 2004), models of limited dependent 
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variables (Fleming 2004), and hazard or durations models that address spatial dependence are not 

commonly found in the literature.  It will be interesting to see if the increased analytical and 

programming requirements of such applications delay their widespread use by agricultural 

economists.  But, in addition, if analyses continue to demonstrate that research without spatial 

factors suffer omitted variable bias, we expect to see greater incorporation of these tools into the 

applied analyst’s toolbox. 

 A second observation is the advancement of thinking in terms of understanding spatial 

interactions.  The structure of spatial dependencies is central to any spatial economic analysis of 

consumer or producer behavior.  While causality, dependency, exogeneity or endogeneity are 

regularly stressed in applied economic training, thinking “spatially” or in terms of other natural 

groupings that are not captured by simple dichotomous dummy variables, needs emphasis to 

advance social learning.  Further refinement is necessary in this area. 

 Lastly, technological advances are closing the gap between micro and macro spatial data.  It 

will be interesting to track the expansion of micro-spatial data availability.  We are already 

exposed to spatial- temporal models, but scale-differentiated models that provide more 

information for sub-groups is developing.  Currently, applications often study individual micro-

level behavioral issues conditioned upon village, country or other “superstructure.”  We could 

evaluate the impact of micro-, meso-, or macro-level variation (instead of dichotomous controls) 

and incorporate these factors into identifying social behavior in a more refined manner. 
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