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Optimal producer behavior is examined in the production of 
products which may be regarded as growing inventories. Any one 
of several types of livestock produced by farm firms provides an 
example of such a product. This study focuses on the broiler pro­
ducing firm. 

W eight·feed relations, derived from underlying weight and feed 
"growth functions," are regarded as deterministic. Broiler firms 
are assumed to be confronted with probabilistic prices with 
known probability distribution. Optimal policy takes the form 
of a set of cutoff prices, a cutoff price for each marketing age of 
the broiler over a relevant price range. If price at a given age 
(week) is above the cutoff price, the producer sells; if below, he 
keeps his fiock for at least one more week. 

Most of the results are derived for the homogeneous case (that 
is, the probability distribution of prices is assumed to be the same 
in each week), but this assumption is subsequently relaxed to de· 
rive one form of an interseasonal decision model. Optimal poli· 
des are derived under two alternative assumptions regarding the 
form of the probability distribution of prices-the normal and 
the uniform. The sensitivity of the homogeneous model to chang· 
ing variance of prices is also examined. 
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Eithan Hochman and Ivan M. Lee 

OPTIMAL DECISION IN THE BROILER 

PRODUCING FIRM: A PROBLEM OF 


GROWING INVENTORY1 


INTRODUCTION 

PRODUCTION DECISION models involving 
growing inventories have long been dis­
cussed by economists. The problem of 
time and timing has roots in early eco­
nomic thinking, and kernels of it can be 
found in the discussion between D. 
Ricardo (1895) and one of his disciples, 
J. R. McCulloch. McCulloch claimed 
that time by itself does not bear any 
"fruits." As an example, he considers 
two barrels of wine: the first contains 
"unfinished" wine, though the treading 
process is finished, and the second "fin­
ished" wine which will not be improved 
by additional time. After one year, the 
first barrel will have increased its value, 
but the second will have not, though 
time "operated" equally on both bar­
rels! His conclusion: time itself cannot 
produce any effect. He strengthens this 
argument by another example from 
plantations. In growing trees, even 
though all factors of production were 
implemented, the production is not fin­
ished-additional time is needed. And 
he explains this phenomenon in an illus­
trative way. There is a "machine" in 
the tree that needs time to operate. Ap­
plying this to the wine example, the un­
finished wine is like a machine for pro­
ducing wine. Ricardo refutes McCul­
loch' s argument by raising the question: 
How come the same machine in the tree 
produces different results under differ­
ent interest rates? 

In a sense, several facets of the prob­
lems discussed in the present paper ap­
pear in a heuristic form within this early 
debate. It is the process of "growing 
inventory" that serves as the focus of 
this discussion. But whereas McCulloch 
was indicating the growth process over 
time,. whether through quantitative 
changes in volume or weight (the grow­
ing tree) or through qualitative changes 
(the vintage of wine), Ricardo (1895) 
was concerned with the opportunity 
costs of holding inventory over time, 
manifesting themselves through the in­
terest rate. 

Growth relations in broiler 
production 

One of the most important problems 
the production economist faces in. in­
vestigating the production of livestock 
is how to incorporate the complexity of 
a biological process into the concept of a 
production function. The classification 
concept of a production function means 
a transformation of a set of inputs con­
trolled by the producer into a given 
output. Heady and Dillon (1961, pp. 
323-30) suggest introducing the growth 
process through selection of the appro­
priate algebraic form to express the in­
put-output transformation. 

The main criticism of this approach 
is that it confuses concepts of growth 

1 Submitted for publication October 7, 1971. 

[ 1] 
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and production functions. The. typical 
growth relationships, such as the sig­
moid curve, are relations between weight 
of bird and age. The assumption that 
the production function has the same 
shape as the growth curve calls for some 
theoretical justification. Because both 
weight and feed consumption bear a 
high correlation with age of bird, the 
correlation between weight and feed 
will be strong. 

The prqblem is presented by Baum 
and Walkup (1953) and Brown and 
Arscott (1958). The approach most 
closely related to that adopted here is 
that of Hoepner and Freund (1964) who 
suggest a model constructed of two 
parts: 

Static: 

W = b + b1 F + b2 F2 where W refers 
to body weight in grams and F refers 
to total feed consumed. 

Nonstatic: 

The reasoning behind this model is that 
both weight and feed are functions of 
age. This idea has been used in our own 
formulations here. 

Decision rules ' 
The conventional framework of a de­

cision model for broiler production 
adopts as ~he objective maximization of 
profit per Year considering one limiting 
resource-floor capacity. This amounts 
to maximizing average profit per unit of 
capacity. 

For formulations within this frame­
work, see Brown and Arscott (1958) and 
Hoepner and Freund (1964). Faris (1960) 

suggests a simple formula for an opti­
mal replacement policy in the case of a 
short production period with revenue 
being realized by the sale of the asset: 

" ... the present lot should be carried 
only to the point where marginal net 
revenue from it equals maximum av­
erage net revenue anticipated from 
the subsequent lot. To carry the 
present lot beyond this point would 
yield additions to net revenue less 
than the maximum average antici­
pated in the future." 

The Faris results link the simple 
theory of replacement with the dynamic 
approach to the problem. 

Sequential stochastic decision models 
have not been applied directly to prob­
lems here under consideration. How­
ever, attention has been given to the 
concepts of dynamic programming and 
Markov processes in the theory of in­
ventory and waiting lines in general, of 
which the replacement problem is a 
special simple case. 

A general mathematical framework 
accommodating most types of replace­
ment decisions is provided by the dy­
namic programming model. In the dis­
crete stochastic case, Howard (1960) has 
suggested a solution for the replacement 
problem. 

The Howardian model is based on the 
integration of (1) transition probability 
matrices defining complete Markov 
chains, which are determined exoge­
nously by forces not controlled by the 
producer-for example, the matrix of 
chance failure or loss-and (2) alterna­
tive return functions attached to each 
of the exogenous transition probabili­
ties. 

Burt (1965) analyzes the problem of 
optimal replacement under risk in a 
special case of the Howard model, for 
which an analytic solution is derived. 
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This is a model for economic analysis of 
asset life under conditions of chance 
failure or loss. The solution suggested 
by Burt may be summarized as follows: 
Define the conditional expected value of 
net revenue during a time interval for 
an asset of age t (excluding cost of 
planned replacement) as 

where 

Pe = probability that an asset of age 
t will reach age t + 1 with nor­
mal productivity 

Hi = net revenue associated with an 
asset of age t in the absence of 
replacement due to random 
causes 

and 

De = cost of replacement caused by 
random factors. 

The criterion function is 

1V(T) = 

where 

We =the (discounted) probability 
that an as'set reaches age t 

Ct 	 voluntary replacement cost 
(cost of a new asset minus termi­
nal value of the used one) 

T = planned replacement age 

June, 1972 

and 

(3 	 1/(1 + i), whereiistherelevant 
interest rate for discounting. 

This criterion is simply the capitaliza­
tion of a weighted average of expected 
net revenues into perpetuity. The opti­
mal policy is one which maximizes V(T) 
with respect to T. Several straightfor­
ward methods of solution can be applied 
as pointed out by Burt. One of them 
puts marginal conditions for optimal re­
placement in the form of two inequali­
ties: 

V(T) 2 V(T + 1) 

V(T) 2 V(T- 1). 

Simple elementary operations supply 
us with the optimal T. The replacement 
process can be formulated as a finite 
Markov chain defined for each choice of 
replacement age T. Given the replace­
ment age T, the transition probability 
matrix is determined completely by the 
probability of forced replacement dur­
ing the period, which is (1 - Pt) for an 
asset of age t. 

Burt's model is restricted to the case 
where the evolution of the system from 
one state to another is determined by 
forces exogenous to the system. The 
decision made by the producer is with 
respect only to planned replacement at 
age (T). This model may be sufficient 
for a fixed asset, where long-run con­
siderations are dominant. But, in the 
case of a growing inventory, there are 
additional problems of relations between 
stocks and flows; and situations arise 
where current decisions influence transi­
tion of the system from one state to an­
other. Hence, additional modifications, 
where the transition probabilities turn 
out to be endogenous in the .model, are 
necessary. 
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GROWING INVENTORY MODELS 


Some problems faced by the broiler 
producer extend to a broader class of 
agricultural commodities. The class of 
"growing inventory" commodities in­
cludes livestock raised for marketing, 
stocks of wine going through a process of 
quality improvement, and growing tim­
ber. However, we shall concentrate on 
the specific case of the broiler producer, 
keeping in mind the more general frame­
work of the problem; and narrow most of 
the examples to the Israeli broiler pro­
ducer. From studying the Israeli case, 
meaningful generalizations can be re­
vealed that may be applied to completely 
different environmental and institutional 
situations. 

In selecting the appropriate models, 
several essential characteristics of broiler 
production should be taken into ac­
count: 

1. 	 The period of production per flock 
is short. 

2. 	By defining the production func­
tion per flock, we abandon the 
classical approach which considers 
the production relation for some 
prespecified unit of time (month, 
year, etc.). 

3. 	The weight-feed relation is the 
most important factor in broiler 
production. 

j 4. The weight of the bird is subject 

to a physiological growth pattern 
over its life period. 

5. The feed consumption pattern over 
the bird's life period is governed by 
factors like feed maintenance re­
quirements, stomach capacity, and 
the weight-growth pattern. 

6. 	 The producer is given a recom­
mended feed composition, to be 
fed ad libitum. 

7. 	 Quality of the carcass can be con­
sidered as a function of age. In the 
term "quality" we include all quali­
tative factors influencing the pref­
erences of the consumers. 

8. 	The time element should be put in 
its proper perspective-at the level 
of an individual flock production 
function. It is here that time should 
be introduced into the broader as­
pects of the continuing production 
process by the firm. 

9. 	 The firm operates under conditions 
only part of which are under con­
trol, while others introduce ele­
ments of uncertainty into the de­
cision process. 

The last two features are best dealt with 
in the framework of the stochastic model 
presented on pages 19-28. In the follow­
ing section we shall demonstrate how 
the element of time can be introduced in 
a simple deterministic case. 

A Deterministic Formulation 

The growth functions 

In the following discussion, we use 
specific forms of algebraic functions hav­
ing certain desirable mathematical prop­
erties. We regard the empirical results 
based on these functional forms (see 
pages 31-35) as "acceptable," but our 

empirical examination of alternative 
functional forms has not been suffici­
ently exhaustive to support a claim that 
the specific forms chosen are in some 
sense "best." Other forms may be more 
appropriate, but the specific form of 
function is considered not to be of pri­
mary importance here. 
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Production relations for a simple 
growth process. - We observe that 
both weight (W) and feed (F) are func­
tions of age of bird (x). This defines the 
following two functions: 

(1) 

(2) 

But from an economic point of view, we 
are interested in the following function: 

W = g(F) = [f21(F)]. 

There are various specific functional 
forms which might be adopted to repre­
sent these relations. We select the fol­
lowing: 

w = e"o-a1(l/x) Cl!1 > 0 (4) 

F = ePo-th<rtxJ f3i > o. (5) 

Equations (4) and (5) imply asymptotic 
levels of weight and feed consumption 
as age increases, and they allow for 
varying marginal growth rates. 

Marginal rates of growth and inflec­
tion points may be derived 

dW W-d = a1 2 > O; 
x x 

(6) 

d
2
W =(a~_ 2a1) W 

x4 x3dx2 • 

The point of inflection is at x = a1/2 
corresponding to d2W/dx2 = 0. Similar 
results are derivable for equation (5), 
substituting f31 and F for a1 and W, 
respectively. 

Equations (4) and (5) supply impor­
tant information about the relation be­
tween weight and feed and establish a 
unique functional relation. From equa­
tions (4) and (5) we derive: 

June, 1972 

W =AF6 (7) 

where o= arf{31 and A = antilog (ao ­
of3o). 

Though this relation has the familiar 
Cobb-Douglas production function form, 
this is not the classical production func­
tion but a derived relation between 
weight and feed. Time enters through 
the growth curves and not through fix­
ing the unit of time on which we observe 
production. 

The above describes a simple weight­
feed relation for a given flock. To allow 
for different growth Ltes for different 
flocks, we may write: 

W; = e"o-a1;<1txl (8) 

F; = ef!o-f31;<1txl (9) 

(10) 

where 

i = an index for flock 
o; = ar;/f3i; 

and 

A;= antilog (ao - o;{30). 

We assume that the asymptotic levels 
for F and W are the same for all flocks, 
but the growth coefficients a1 and f31 

may vary over flocks. It seems plausible 
to assume: 

and 

where the variables Y and Z refer to 
factors such as breed, quality of feed, 
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management, seasonality, etc.2 

But the above represents results of a 
special case. Because the quantity of 
feed input is not controlled (the bird 
determines the quantity consumed ad 
libitum), a one-to-one correspondence 
exists between feed and weight. And, as 
a result, time vanishes from the produc­
tion relations in equations (7) and (10). 
The picture changes as we consider addi­
tional facets through which time mani­
fests itself. 

Maintenance feed requirements. 
-Maintenance feed requirements repre­
sent an element of cost which does not 
contribute directly to an increase in pro­
duction. But maintenance feed is plausi­
bly regarded as a function of age of bird. 
Therefore, feed used for maintenance 
should be introduced into the production 
relation in a time-consuming production 
process. Accordingly, the simple weight­
feed relation is replaced by new ones, 
with two dimensions to the role of time: 
(1) through the growth process and (2) 
through the feed maintenance require­
ments. 

Introducing the relation Cx-r to repre­
sent feed maintenance requirements, 
equation (5) is replaced by: 

F = Cx-r e-f:lic11xl (5.1) 

and, allowing for flock effect in· the 
growth coefficient, equation (9) becomes 

Fi = Cx-r e-f:li;<llxl (9.1) 

where 0 :::;; 'Y < 1 is the maintenance 
coefficient and 0 :::;; {J1, l'H < co are feed 
growth coefficients.3 Equations (4) and 
(8) remain unchanged. 

It is important to distinguish between 
maintenance and growth coefficients be­
cause growth feed follows the usual 
growth cycles, while maintenance feed 
can be assumed to have a constant elas­
ticity. As discussed later, one can com­
pare the growth coefficient {j1 with the 
growth coefficient a1 and might hypothe­
size equality of the two coefficients. 

Investigating the mathematical prop­
erties of equation (5.1) helps in examin­
ing decision rules. The first derivative of 
equation (5.1) is: 

dF = ~ (~ +'Y). (ll) 

Under the assumptions of the revised 
feed equation, there is no maximum or 
asymptotic level because both l'1 > 0 
and 'Y > 0. 

To obtain more information about 

2 The assumption that the asymptotic levels for F and W are the same for all flocks is open 
to question because certain factors (for example, breed) specified as affecting the growth co­
efficients 011; and fJH might reasonably be expected to affect also the asymptotic levels. Given 
s'1itable data, the hypothesis of uniform asymptotic levels over flocks could be tested; and, 
if rejected, the analysis could be easily extended to accommodate asymptotic levels varying 
over flocks. 

Data available for the present study were not adequate for estimating relations allowing for 
varying asymptotic levels nor were data adequate to permit inclusion of separate Y and Z 
factors in estimating the growth coefficients. Therefore, a single dummy variable is introduced 
to represent "flock effect" in each relation. Then, defining 

C<Ii = ao + a1 Y li 

fJ1; = bo + b1 zli 
our growth relations become 

W; eao-ao(I/x)-a,Y1;(llx) 

F; = e/io-bo{llx)-b!Zu(ll•) 

Empirical results based on this formulation are summarized in table 2, page 33. 
3 The boundaries 0 ~ 'Y < 1 assume that the maintenance feed consumption increases at a 

decreasing rate (based on Brody, 1964). 
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the feed relation, consider the second 
derivative: 

Setting this expression equal to zero and 
cancelling and multiplying by -x2, we 
obtain: 

(13) 
'Y (1 - 'Y) X2+ 2,81 (1 - 'Y) x - .ar = 0. 

We can solve equation (13) for the in­
flection point x*: 

x* = -.Bi (1 - 'Y) + .81 ~- (14) 
'Y (1 - 'Y) 

The negative sign in front of the root is 
omitted because we exclude the possi­
bility of negative values of age (x). 
With rearrangement of terms and simple 
algebraic manipulation, equation (14) 
is brought to the following simple form: 

It is of interest to compare equation 
(15) with the inflection point obtained 
from equation (5). Evaluate </J('Y) in 
equation (15) as 'Y approaches zero. 
This can be done through the applica­
tion of L' Hopital's rule to </J('Y): 

(16) 

1 1 = 2 (1 - 'Y)-3/2--? 2' for')'---? 0. 

For 'Y = 0, equation (5.1) becomes 
simply equation (5). 

Considerable attention has been given 
to possible achievements in the field of 
broiler breeding. Hence, it is of interest 
to investigate the influence of a change 
in the coefficients of the feed equation 
on the inflection point x*. Through con­
trolling the inflection point, the breeder 
can influence the profitability of broiler 
production in general and at given ages 
in particular. 

The inflection point is determined by 
two factors-,81and </J( 'Y). Coi1sider first, 
for given ,81 the behavior of <P('Y) as 'Y 
increases between 0 and 1. This can be 
determined by considering the sign of 
the derivative d<P('Y)/d'Y. To simplify the 

expression <P('Y) = ~ (v/-; - 1), let 

us use the following binomial expansion 
1 

for v1 - ;: 
(1 - )-1/2 - 1 + ! + _3_ 2 +'Y - 2 'Y (4)(2!) 'Y ..• 

+ (3) (5) ... (2n - 1) n + O< < l 
(2)n(n !) 'Y · · · 'Y · 

Substituting into </J('Y) we obtain: 

1 3 
<P('Y) = 2+ (2)2(2!) 'Y + ... 

(3)(5) ... (2n - 1) n-l ++ (2)n(n!) 'Y · · • 

In our case 0 :::; 'Y < 1. Therefore, it 
is obvious that 1/2 is a lower bound for 
<P('Y). From this expansion, it can be 
verified that d<P( 'Y) /d'Y > 0 because all 
coefficients of 'Y are positive. The em­
pirical meaning of this result is that an 
increase of the maintenance feed coeffi­
cient ('Y) through the range 0 to 1 will 
shift the inflection point x* to the right. 

For given values of the maintenance 
feed coefficient, the inflection point is a 
linear function of .81: 
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The production relations can be de­
rived, as in equation (10), from equa­
tions (4) and (5.1) to yield: 

(17 .1) 

(17.2) 

where 

i = 1, 2, ... , N flocks 
Ai = antilog (ao - (aH/f3i;) log C) 

and 

Bi; = aii/f3Ii > 0; 
82i = - (a1i/f31i) 'Y < 0. 

Age of flock appears explicitly in this 
case as a result of the maintenance re­
quirements. The coefficient 82i is nega­
tive and can be explained intuitively in 
the following way: For a given feed 
quota, holding the flock for a longer 
time requires drawing on the reserves of 
accumulated "fatness" in order to main­
tain the bird. 

,It may be assumed that the "net" 
growth coefficients of weight and feed 
are equal, that is, ai = f31. Note that 

' aF ff aF x2 
,.- = f31-=> f31 = - -::- = µ'i/xX 

x2ax ax F 

where F = F/x-r. Both a1 and {31 are 
"rates" of growth referring to the same 
time units, do not depend on the units 
of weight or feed, and describe closely 
related growth processes. Hence, it is 
reasonable to assume that these coeffi­
cients are equal. 

Equality of the two growth coeffi­
cients justifies the following expression: 

F - = Box-r (18)w 

where equation (18) is derived from 
equation (17) with 81i = 1 and Bo = 
1/A0• Equation (18) focuses attention 
on pertinent information needed by the 
producer, namely, the feed-weight con­
version ratio. It is of major importance 
in evaluating the profitability of pro­
duction because of the relative impor­
tance of feed in the cost of production. 

As pointed out on page 6, some ex­
planation of the reasoning behind the 
distinction between the growth coeffi­

. cient and the maintenance-feed coeffi­
cient is called for. We interpret the 
growth coefficient as the rate of net 
growth of weight or feed consumption 
in relation to age of bird. Because both 
of: the growth coefficients, ai and (31, 
describe the same growth process-one 
of them through the weight £:unction and ·, 
the other through the feed function­
and because both are expressed in terms 
of rates, we postulated equality between 
the two. We interpret the maintenance 
feed coefficient as measuring the elas­
ticity of feed consumption with respect 
to age, given the weight of the bird­
that is, the feed consumption at each 
age needed for maintaining the bird at a 
given weight. We do not pretend to in­
vestigate the nature of the physiological 
process; but this conceptual qifferen­
tiation between the two processes is rele­
vant to the economic decision process. 
The problem is how to incorporate in 
one framework of analysis both the intra­
temporal and the intertemporal rela­
tions of weight and feed with respect to 
age of bird. In this example, we do it 
through assuming that the growth rate 
represents an "instantaneous" conver­
sion of feed into increments of weight, 
and, hence, this represents an "intra­
temporal" relation. On the other hand, 
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TABLE 1 

EXPENDITURES FOR CHICKEN MEAT 
BY URBAN FAMILIES 


SOUTHERN UNITED STATES, 1954 


Income 

Expend­
iture 

per week 

(V) 

Quantity 
purchased 

(q) 

Price 

(P) 

dollars dollars pounds cents 
per pound 

Under 2,000 ..... 1.11 2.22 50.0 
2,000-2,2999 ....... 1.42 2. 76 51.4 
3,000-3,999 .. ..... 1.39 2.59 53. 7 
4,000-4,999 ..... 1.05 2.05 51.2 
5,000-5,999 .. ...... 1.29 2.54 50.8 
6,000-7,999 .... .... 1.31 2.42 54 .1 
8,000-9,999 .... ... 1.51 2.68 56.3 

10,000 and above ... 1.99 3 .35 59.4 

Source: U. S. Department of Agriculture, "Household 
Food Consumption Survey, 1955," Food Consumption of 
Households in the South, Report 4, Table 10, p. 29. 

the maintenance coefficient represents 
the cost, measured in feed, involved in 
the "intertemporal" relation. In the 
special case where only growth coeffi­
cients are specified (as above), age 
vanishes from the weight-feed relation. 

The quality function.-The concept 
of quality has been introduced into the 
theory of consumer demand and some 
aspects of it into the theory of the firm 
in the last two decades (Dorfman and 
Steiner, 1954). First attention was drawn 
in empirical research to the importance 
of quality variations in consumer de­
mand, especially in relation to income 
(Prais and Houthakker, 1955). 

Let V. = P; qi be family expenditure 
on commodity i and M be family in­
come. Then 

oV. M oq; M oPi M 
Mv;/M = oM v. = oM q;+ oM pi 

(19) 
= llf•;IM + MP;/M· 

Here, the elasticity of expenditure on 
commodity i is decomposed into two 
parts: The first term (M •'IM) is the elas­

ticity of quantity of commodity i with 
respect to income; and the second term 
(MP;tM) is the elasticity of quality with 
respect to income. 

Table 1 summarizes some relevant 
data on expenditure for chicken meat 
by urban families in the southern United 
States. The upward drift in prices (col­
umn 4) may be attributable to differ­
ences in quality of meat bought by 
higher income families. As Houthakker 
(1952-53) points out the classical theory 
of consumption (as in the writings of 
Hicks, Samuelson, and others) ignores 
qualities altogether because varieties, if 
any, of any item of consumption are 
treated as different commodities (see 
Theil, 1952-53). 

"Since the consumer appears as a 
buyer, these quantities cannot be neg­
ative; indeed, they must be positive, 
for the more interesting conclusions 
from the theory, such as the Slutsky 
equation, the negativity of the own­
price substitution effect and the 
theorem on group demand (Hicks, 
1939, pp. 311 and 312) hold only 
when quantities may change in either 
direction, so that they cannot be 
zero. This implies that a commodity 
... has to be very narrowly specified" 
(Houthakker, 1952-53, p. 555). 

Both Theil and Houthakker have sug­
gested introducing quality changes into 
the theory of demand through changes 
in price of the commodity. This creates 
several conceptual difficulties. Among 
others, it· ignores the supply side. Ac­
cordingly, an attempt is made here to 
recognize quality explicitly in the formu­
lation of production decisions. 

In the case of broiler production, we 
assume that quality is related to age of 
bird. For our purpose, we use the term 
quality to include both qualitative fac­
tors-such .as flavor, taste, color, and 
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others-and quantitative factors-such 
as size of bird-that influence the scale 
of consumers' preferences. This group of 
factors is introduced as a trend, hypoth­
esizing a rapid rate of quality growth 
at early ages, followed by a slowly de­
creasing rate of growth. The quality 
function is, in fact, an index used to de­
flate the weight of the bird so that the 
resulting product is a homogeneous com­
modity expressed in terms of weight­
quality units. This homogeneous com­
modity has a unique price per weight~ 
quality unit. 

We adopt as a description of the 
quality trend a function corresponding 
to the gamma distribution. The function 
is adjusted so that its maximum value 
is one. 

q(x) = dxeI-x/'I! (20) 

where d is l/'¥ and 'JI is a parameter. 
For q(x) maximum, 

aq(x) q(x) q(x) 
---ax=-x--~ 

(21) 

= G- ~) q(x) = o. 

Hence, for q(x) = maximum, x = '¥. 
This may suggest an estimate of 'JI 

J>ased on extraneous information. For 
example, industry and food technology 
researchers claim that the age preferred 
by the consumer is nine weeks.4 At this 
age the broiler is considered to be at the 
best size and quality for broiling. This 
corresponds to a 'JI of63, measuring age 
in days. 

To confirm that this is a maximum 
point, consider the second derivative: 

a2q(x) 	 2
q(x)--+ (1---1) q(x)
x2ax2 	 x 'JI 

(22) 

= (~2 - x!) q(x) < 0. 

As x < 2'¥ ==? a2q(x)/ax2 < 0, we have a 
maximum at x = '¥. 

Thus, quality has been introduced 
through adjusting the quantity. For 
function (8), substitute 

W* = f1;(x) q(x). (8.1) 

This simple device allows us to consider 
the output of meat (W*) as a homo­
geneous commodity. 

Decision rules 

The conventional assumption of per­
fect competition is adopted where the · · 
producer is a price-taker, and equilib­
rium is established through the profit­
maximization motive. 

The individual flock, fixed-product 
price.-In our derivations we benefit 
from the fact that each of the relevant 
production variables is a function of age 
of bird. Since a flock of a given capacity 
is considered, maximization of profit per 
bird is equivalent to maximization of 
profit per flock. Define 

where 

7r; = net revenue realized from flock i 

c/>1; = 	 weight as a function of age, 
where the weight function may 
take the form (8) or the form 
(8.1) 

4 This was suggested in meetings with California industry representatives at Petaluma and 
staff mei:nbers from the Department of Food Technology, University of California, Berkeley. 
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</>2;, = feed as a function of age, where 
the feed function may take the 
form (9) or the form (9.1) 

P w = broiler price5 assumed to be in­
variant between the flocks 

P1 = feed price assumed to be m­
variant between the flocks 

Ri = gross revenue from the sale of 
flock i 

and 

C; cost incurred in raising flock i. 

Attention is focused on the feed­
weight relation, which is the critical re­
lation in practical management deci­
sions in the broiler industry. 

In the form of function here employed, 
it is common procedure to express the 
equilibrium conditions in terms of the 
ratios of costs of given factors of pro­
duction to value of output. These con­
ditions are summarized in equations 
(24), considering the several versions 
previously discussed successively. The 
reason for following this procedure is, 
first, methodological, that is, to show 
the impact of adding dimensions to the 
description of the growth process and, 
second, to allow the reader to inspect 
results for those cases where some of the 
factors are not considered by the pro­
ducer to be relevant or important. 

Define S; = C;fR;,. Then, from the 
first-order conditions we obtain 

Si = e;, based on equations (24.1) ;li 
li (8) and (9) 

S; = , based on equations 
'YX (8) and (9.1) (24.2a) 

1S;, ---, situation (24.2a) under 
1 + 1'.x the hypothesis (24.2b)

g; 
ali = f31i gi 

1 - :'.
1 'Ji"s... = --+--'based on (24.3) 

1 + 1'. x 'Y + fli equations 
g·' x (8.1) and (9.1). 

Condition (24.1) is derived assuming 
special relations implying one-to-one 
correspondence between weight and age 
and between feed and age, discussed on 
page 5. In this model a decision about 
the optimal feed input is identical with 
a decision about the optimal age of mar.:. 
keting and vice versa. The result is that 
age (representing the time element) van­
ishes from the decision criterion. As 
more dimensions are added to the growth 
process, the time element enters ex­
plicitly into the decision criterion 
through the age variable (x). 

In the Israeli economy, breeding is an 
enterprise carried on by major producers 
in the broiler industry. It is reasonable to 
consider these producers (which are the 
collective Israeli villages called "kib­
butzim") as integrated "firms." Hence, 
it is plausible to assume that manage­
ment of the broiler industry in a kibbutz 
might adopt a long-run view where its 
production coefficients are partially un­
der its control as a result of breeding 
policy. 

The following results may be verified 
under the assumption ali = f31;, = g;: 

1. 	 Reducing g results in marketing 
the flock at an earlier age and 
thereby profiting from the fact 
that the feed-weight conversion ra­
tio for a given age is not influenced 
by the growth rate. 

5 Because the quality factor is introduced through the growth process, prices received do not 
change with age. ' 
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2. Reduction in 'Y will result in mar­
keting at a later age since it re­
duces the total feed consumption 
for a given age and, hence, in­
creases profitability. 

3. An increase in the maximum qual­
ity age, '11, results in an increase in 
the optimal age of marketing. 

The firm, fixed-product price.­
Up to this stage, opportunity costs of 
time have been ignored. Recognition of 
these costs becomes necessary as focus 
of attention is transferred from the in­
dividual flock to the producing firm. 
This can be done in the previous context 
simply by redefining 'Ir; in equation (23) 
to include the net revenue obtained 
from all flocks raised by a given pro­
ducer in a given time period. 

Consider first the case where all flocks 
are produced under identical conditions 
with respect to technical production co­
efficients, market conditions, and prices. 
Consider the following simple decision 
model: 

(23.1) 

= (R - C)Ko 
x 

where 'Ir, R, and C are defined as in 
equation (23) and K 0 is number of days 
ip the given time period. The index i for 
ffock is omitted because all flocks are 
identical for a given producer. 

The first-order condition is: 

d'lr = (dR - dC) Ko - (R - C) Ko = 0 
x2dx dx dxx • 

Thus, 

dR dC R - C 
(25)dx - dx = -x--· 

For an optimal solution, the marginal 
increment in net revenue per flock with 
respect to x is equal to the average in­
crement in net revenue per flock per 
day. Hence, even in a short period when 
the effect of interest rate can be neg­
lected, there is an internal rate measur­
ing the opportunity cost of holding the 
flock an additional day. In this simple 
case the internal rate is measured by the 
term on the right of equation (25). 

In conclusion, disregarding the prob­
lem of financial maturity-that is, dis­
regarding the interest rate-we have 
brought out the relevance of waiting as 
a factor that has rewards and costs, 
even in this simple deterministic deci­
sion model. Conventional concepts of 
production input-output relations are 
not sufficient in this context, as the time 
element has to be introduced explicitly. 
Consider now a somewhat more realistic 
situation where the deterministic de- · · 
cision model is extended to include a 
firm facing varying prices. Our purpose 
here is to construct a framework within 
which the weight-feed relation bears the 
main influence on the behavior of the 
producer. This is the case with the non­
integrated firm that exists in institu­
tional conditions similar to those of the 
Israeli economy. However, one may con­
tend that the problem remains relevant 
in the modern integrated firm, such as in 
California, where the producer is re­
duced essentially to a contractual ar­
rangement with a large feed company. 
In this case the center of decision moves 
upward, but its nature remains the 
same. It becomes a suboptimization 
problem in the general optimization 
problem of the integrated firm. 

The period of analysis is considered 
short enough to assume capacity to be 
fixed; and, hence, the factors of produc­
tion involved in determining capacity 
may be considered as having negligible 
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opportunity costs. Note that one can 
allow for inputs other than feed by ap­
propriate deduction from the price of 
the broiler. 

We adopt here the general approach 
of Samuelson (1963, pp. 21-36). The 
fundamental assumption is that the firm 
tries to maximize its net revenue, and 
from this the internal conditions of 
equilibrium are deduced. Additional as­
sumptions are the following: 

1. 	 The only endogenous variable is 
. age of flock. All other variables are 
connected in one-to-one corre­
spondence with age of flock. Since 
both output and input variables 
are tied to the same age variable, 
maximization is derived directly 
with respect to age. 

2. 	 Maximization is with respect to a 
given period, say a year, and, 
hence, is subject to the constraint: 

N 

L X; = Ko, where N is number of 
i=l 

flocks and Ko refers to total avail­
able days. Treating the number of 
flocks (N) as exogenous is justified 
since orders for renewal flocks are 
typically placed for annual time 
intervals. If one wants to allow for 
intervals between flocks, this can 
be done by adding a fixed number 
of days to Ko. Note that one can 
alter at will the number of days 
available (K0 ) for a given number 
of flocks (N). 

From equation (23) we have net re­
turns per flock i, and total net returns 
are: 

N 

7r = L [Pw.<f>1;(x) - P1.<f>2;(x)] (26)
i=l i I 

cPw1 <t>f~ - P,1 <Pm 
0 (Pw 2 

-1 

where terms are explained in equation 
(23). The producer maximizes 7r subject 
to the constraint: 

N 

K 0 - LX; = 0. (27) 
i=l 

The Lagrangian to be maximized is: 

N 

L = L [Pw.<f>1;(x) - P1.<f>2;(x)]
i=l I I 

(28) 

+ A (K0 - ~X;) . 

The first-order conditions are: 

i = 1, 2, ... , N 

(29) 
N 

Ko - Lx; = 0 
i=l 

where <f>f; = 8¢1;/8x; and ¢~; = 8¢2;/8x;. 
There are (N + 1) equations and 

(N + 1) unknowns including N optimal 
terminal ages and X. A solution for the 
system exists, given explicit forms for 
<f>i;(x), though one may have to resort to 
iterative solutions. Comparison with 
the individual flock case, where no time 
restrictions were introduced, shows that 
flocks will be marketed at an earlier age 
when time restrictions are introduced. 
When the individual flock was con­
sidered per se, the marginal increment 
in net revenue was equated to zero. 
Here, the marginal increment in net 
revenue of each flock is equated to the 
opportunity cost of time (X). This also 
equates the marginal increment in net 
revenue between all flocks. Of course1 

for L to have a relative maximum, it is 
necessary that 

o -1 

<f>f~ - P12 If>~~) -1 > 0 


-1 0 
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(Pw1 ef>ii - P11 ef>ii.) 0 0 -1 

0 (Pw1 ef>i~ - P12 ef>~~) 0 -1 

0 0 (Pw3 ef>i~ P1aef>m -1 <0 (30) 

-1 1 1 0 

(Pw1 ef>ii -

0 

P1i q,m o 
(Pw2 q:.g - P12 ef>~D 

0 

0 

-1 

1 

l)N >O 

0 

-1 

0 

-1 

(PwNef>i'zv - P1Nef>~'zv) 

1 

-1 

0 

where ef>i~ = aq,{./axi and ¢~~ aq,~./axi. 
2, ... , N), and d:.\ = L 

m 

(a:.\/aZ;) dZ;.
Displacelllent of equilihriulll.­ i=l 

The set of equations (29) yields an ex­ To obtain this, take the total differ­
plicit solution for our unknown equilib­ ential of each of the (N + 1) implicit 
rium values in terms of the exogenous functions of the first-order conditions: 
variables and parameters (for example, 
prices and production coefficients). 

i 1, 2, .. . ,N 

Q N+1 (z· Z")X = g i, ••• , m 

where z:, ... ' z;;. are the exogenous i = 1, 2, ... , N 
variables. and (31) 

Additional information is gained from N 

examining the effects of changes in the d(Ko - Lx;) 
exogenous variables. Assume that a firm i=l 

-dx1 - dx2 . .. -dxN + dKo 0 
at an initial equilibrium point, that is, a 
set x: and :.\

0 

of the N 1 endogenous where the ( ) • subscript denotes the .fact 
iariables, is confronted with small that we start from an initial equilibrium 
changes in the exogenous variables. point. We assume no change in the re­
Here, we shall consider changes only in maining parameters, that is, dP1, = 
the price of broilers (Pw) and the total dg; =... 0.dZ1 
time available (K0 ); but similar analyses 
could be conducted with respect to the 
price of feed (P1,) or with respect to the 
growth coefficients (g;, 1', 'ili). The re­
sponse of the producer is derived then 
by solving for the slopes ax./aZ1 in the 

equation dxi = f (fJx;/aZ1) dZi (i = 1, 
i=l 
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Equation (31) may be written in matrix form: 

(Pwi.Pii - P11 .Pfi 0 0 -1 

-10 (Pw2 .Pif - P!2 cpff) 	 0 

+ 

0 0 

-1 -1 -1 0 d"A 
(32) 

.Pen), o 0 

0 .P(12) 0 0 

0 0 Olj dPwN 
0 0 0 dKo 

or in partitioned matrix form: 

(33) 
- L' I 0 d A 0 : 1 dKo 0 
-~- ~ -~~] [~X~] + [~~)~l~] [~!:_w~] = [~][

I 	 I 

where From equation (33) we obtain 

H = (N x N) matrix 

(N x N) matrix.P(1), = 	 [:J~ [~,-:-~T 
L = 	an N dimensional column vec­ (34) 

tor 

dxi = an N dimensional column vec­ [~~~:;~;] [~~J

tor (j = 1, 2, ... , N) 

dPw; = an N dimensional column vec­ Denote 
tor (j = 1, 2, ... , N) 

dX =scalar 

and 

dKo =scalar. 	 Then, for A to have an inverse, IA I~ 0. 
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We note that IAI is the Nth bordered 
Hessian, which assures that there exists 
a unique solution for the maximization 
problem different from zero. Intuitively, 
it is obvious that this condition is closely 
connected with inter- and intraseasonal 

a1 O· · · ·O -1 
0 a2 • • ·O -1 

price variation. As it turns out A - 1 (the 
inverse of A) is of relatively simple and 
consistent pattern, and it is possible to 
derive a general form for the case of N 
flocks. 

Denote: 

A-1t"t" d f l [B : b Jd .·an m par i 1one orm, = ----- · (35) 
b' : c 

0 aN -1 
-1 ..... -1 0 

A 

The general formula for & can be shown and the scalar c is 
to be: 

N c 
(39)

d= IAI L ai1 a;2 •• • aiN-1 (36) 
i--1 

where the summation is over all N com­ Now, equation (34) may be written 
binations of (N - 1) out of l1, 2, ... , in the form: 
N}. Alternatively, 

Xpw,:xk]•a;) -----­
[ AP :xk 

W I o
(36.1) 

J_ [~-~</>h)o :-b-] (40) 
d b' / I- </>(l)• 1-C 

I 

where the left-hand side is a matrix of (a1 a2 ... aN) = - (g ak) (~ ~)· 
rates of change of the endogenous varia­
bles (x1, ... , XN, A) with respect to the

B = { b;; l is a symmetrical matrix of 
exogenous variables (Pw11 ••• , PwN, Ko).order N with: 

Consider, first, the special case of two 
flocks (N = 2). Define 

Then the bordered Hessian is: 

b is a column of order N whose ith ele­
ment is 

0 
(38) 

1 -1 0 
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And the relevant slopes 

In particular 

(43) 

since from equation ( 41), - (ai az) > 
0, and the marginal growth with respect 
to age (c/>i;) is always positive. 

An increase in the price of flock i 
postpones the .date of marketing the 
flock while reducing by an equivalent 
amount the days remaining for the 
other flock. Hence, the rate of substitu­
tion between X1 and X2 for dPW1 = dPw2 = 
dKo = 0 is 

ax1 ax1 

dx1 
dx2 ax2 

aPw2 
=--= ax2 -1 . (44) 

aPw1 aPw2 

The rates of change of x; with respect 
to an increase in the time constraint Ko 
are 

-c/>(12) 0 

(42)c/>(11) 0 

(45) 

Hence, a necessary and sufficient con­
dition for iJx;/aK. > 0 is that for flock 
i', a;' < 0, i' ¢= i, and i, i' = 1, 2. 

In the case where the quality factor is 
ignored, we have, in the relevant range 
of the weight and feed functions, 

c/>i~ < 0 and <1>£! < O. Therefore, a;' < 0 
implies that 

(46) 

Under the hypothesis ali = (3;; (J;, the 
inflection point of weight with respect to 
age will be reached before the inflection 
point of feed with respect to age (see 
page 5). This implies that condition 
(46) will hold. 

Under the same assumptions we ob­
tain: 

at.. ax; , 
0aPw· = aK. c/>(li)o > 

i 

and (47) 

For a given number of flocks per period 
K., changing K 0 will determine the num­
ber of flocks per year. Attaching the 
conventional interpretation to A., that 
is, a shadow price for the constaint K., 
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note that 1 is positively related to Pw, the set of equations (40) the following 
and negatively to Ko. expressions for the corresponding rates 

The case of two flocks is a special ex­ of change in the endogenous variables 
ample introduced for simplicity. For the with respect to small changes in the cor­
general case of N flocks, we obtain from responding exogenous variables: 

(48) 

(49) 

OXi bi 1 
(50)-if=aKo N 

a.2: 1 
aii~l 

b; cj.iCli) o 
(51)

A 
= --'--'=--· 

These results are of use only if some­
thing can be learned from them about 
the direction and boundaries of the rates 
of change. It can be established that 
axi/aPw, > 0. To verify this, note that 
~i = Al;c-the bordered Hessian of or­
der N (excluding flock i)-will always 
be of opposite sign to A, which is of 
order N + 1. Hence, - b;,i/ A > 0 and 
q.,(iiJ• > 0 ~ axi/aPw, > 0. 

This result implies that a seasonal 
rise in price (at a certain month, say, 
December) results in a reduction in the 
supply of broiler meat to the market. 
This, in turn, increases the excess of de­
mand over supply in the market and, 
hence, causes a further increase in the 

(52) 


price of broilers. This, together with the 
lag for hatching additional flocks, could 
account for the short-run price insta­
bility typical of the broiler industry. 

To evaluate the slopes defined by 
equations (49) to (52) impose the con­
dition (46) for all i (i = 1, 2, ... , N)­
that is, all a,; < 0. As a direct result, it 
can be verified that 

a>.. 
> O; 8Pw. > O;

• 
~ < O; OXi < 0 aKo OXj 

which conforms to the results obtained 
for the case N 2. For ax;jaK. we can 
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also establish an upper bound. From 
equations ( 48) and (50) we obtain: 

.(i - OXi).
a; aK. 

Since a; < 0, it follows that 

OXi 
O < aK. < 1. 

From this analysis it appears that, 

under relatively few and reasonable as­
sumptions, important information may 
be revealed about optimal producer be­
havior. This qualitative information can 
be transformed into quantitative infor­
mation by introducing explicit produc­
tion relations. The investigation might 
also be extended to derive rates of change 
with respect to parameters that can be 
influenced directly by the policy-maker 
or breeder-in particular, the price of 
feed and the production coefficients. 

A Sequential Stochastic Decision Model 

In the previous section growth func­
tions relating weight, feed, and quality 
to age of the flock were developed. Then, 
decision rules were applied in a determi­
nistic context to a firm confronted with 
such a set of growth functions. The solu­
tions required searching for the optimal 
marketing age for a commodity under­
going a growth process. The case of a 
single flock and cases of N flocks under 
constant and varying prices were con­
sidered. In this approach the time ele­
ment was incorporated in the produc­
tion process by expressing each of the 
production variables as a function of 
age. One must recognize, however, that, 
by staying within a deterministic analyt­
ical framework, important aspects of 
the decision problem are ignored. Hence, 
the analysis is extended in this section 
to a sequential stochastic decision frame­
work. 

The producer enters the period, say, 
a given week, with a stock of a "living" 
commodity (which could be livest-0ck, 
timber, field crops, wine, etc.), given 
the current price and a probability dis­
tribution of prices for the following 
week. He must decide whether to sell 
his inventory this week and buy a stock 

of a younger vintage or to keep the 
existing stock until the next week. 

The features characterizing the prob­
lem are: 

1. 	 The time element enters at two 
levels: (a) The stock in hand is 
undergoing a growth process and 
(b) the decision process itself is 
executed over time. The previous 
section only recognizes explicitly 
the first level. 

2. 	 Because the decision concerns ac­
tivities in future time and the de­
cision process is implemented at 
specified future time intervals, 
there is risk involved. Even as­
suming that the physical growth 
process can be controlled by the 
producer, risk remains because the 
individual firm cannot control 
prices. 

3. 	The decision at each stage de­
termines whether transition to the 
next period will be with the old 
stock or with a new one. This 
property of the problem prevents 
us from accepting the transition 
probability matrix as exogenous. 

Several authors have applied this ap­
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proach to the problem of replacement in 
the specific framework of a Howardian 
model (Howard, 1960; Giaever, 1966; 
and Ward, 1964). The Howardian model 
is based on the Markov process as a 
system model and uses dynamic pro­
gramming as its method of optimiza­
tion. In this general framework, the 
Howardian model specifies for each ac­
tion a transition probability matrix 
where the transition bears a given re­
ward. Howard's automobile replace­
ment model is a relevant example. The 
model is characterized by an exogenous 
transition probability, measuring the 
probability that a car of age i will sur­
vive to age i + 1 without incurring a 
prohibitively expensive repair. 

As noted on page 2, Burt (1965) 
uses the Howardian model in a special 
case for which an analytic solution is 
possible. The problem solved by Burt 
gives the optimal age of replacement of 
an asset under conditions of chance 
failure or loss. Hence, the endogenous 
decision variable, whose value is to be 
determined, is optimal age, while the 
transition probabilities are exogenous 
to the economic model. The Howardian 
model does not suffice for the problem 
under consideration in this section. 
Nevertheless, our model, like the How­
ardian model, is based on a Markovian 
process. Similarities and dissimilarities 
with the Howardian model are noted 
~ubsequently. 

Our development is with specific refer­
ence to the broiler producer in Israel. 
The nature of the operation was de­
scribed in the previous section. The fol­
lowing initial assumptions are adopted: 

1. 	Replacement of the flock by a new 

one is instantaneous. Usually, one 
has to allow a few days for prepa­
ration, which can be easily allowed 
for. However, the nature of the 
solution can be presented in this 
simplified form. Later, the effect of 
relaxing this simplifying assump­
tion is examined. 

2. 	Age of the new flock (replacing the 
flock sold) is to be always at six 
weeks. This is the typical age at 
which broilers are transferred from 
nursery to barn.6 

3. 	The producer operates at a given 
capacity. Therefore, maximization 
can be placed on a per-bird basis. 

4. 	 The major factors. in production 
are those recognized in the pre­
vious section (weight, feed, and 
quality). As was pointed out, the 
importance of these factors re­
mains under different· institutional 
conditions, even though the de-': 
cision center may move from the 
individual producer upward to an 
integrated company. 

The solution entails a search for the 
optimal decision-making rules that will 
give the vector of cutoff prices (the 
critical values) which determines (all 
other things equal) at what current 
prices the producer will keep the grow­
ing inventory until the next period or 
will sell and replace with new stock. 
This solution differs from the one sought 
by Burt (1965) and Giaever (1966), 
which is for the optimal age of replacing 
a fixed asset bearing an annual net re­
turn. 

Two methods of solution are con­
sidered in the case of the homogeneous 
model:7 

.6 The problem can be modified to include the case of replacement by one-day-old chicks; we 
shall discuss this modification later in this section. 

7 In the homogeneous model the probability distribution of prices is assumed to be the same 
in all weeks. 
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1. 	The functional equation method 
developed by Bellman (Bellman 
and Dreyfus, 1962). 

2. 	The analytic solution. 

The functional equation solution 

Solution of the optimization problem 
consists of solving for (X - 7) cutoff 
prices (P*(7), P*(8), ... , P*(X - 1)). 
Thus, the optimal policy consists of 
finding a unique vector of critical values 
of prices that will determine, for each 
age, the price below which the pro­
ducer will keep the flock for another 
week and above which he will sell the 
flock during the current week. (To sim­
plify, it is assumed that all transactions 
take place at the beginning of the week, 
say, Monday.) 

The method of solution suggested 
here employs dynamic programming 
techniques (Bellman and Dreyfus, 1962). 
The state of the system is defined by age 
of flock. That is, growth functions relate 
weight, quality, and feed consumption 
to age. Because of technologic'al achieve­
ments in the broiler industry, it is as­
sumed that the producer can accurately 
predict, within the boundaries of eco­
nomic significance, the empirical growth 
functions from one week to another. 

Prediction of market price of broilers 
is subject to wider margins of error. 
Though current market prices are known, 
prices next week are not known; and 
important information is lost by intro­
ducing prices for next week in a de­

terministic way. Accordingly, broiler 
prices are assumed to be a random vari­
able having, in the homogeneous. model, 
the same distribution h(P) over all 
weeks. These prices are independent of 
age of broiler since weight is "corrected" 
for quality changes through the quality 
function. P,. is the current market price 
from the density function h(P). Price of 
feed is assumed to be given, which is the 
case in Israel, where feed price is con­
trolled. 

Define now a gross return function for 
each current price Pn, R(x, Pn) = 
W(x) Pn, which measures gross returns 
per bird at age x and price P n· Define 
further the cost function, C(x) = Co + 
P1F(x), where Co measures fixed costs 
and replacement costs, while P1 F(x) 
measures cost of feed per bird up to 
age x.8 Thus, the immediate net income 
for a flock at a given age and a current 
market price can be defined as R(x, Pn) 
- C(x). 

The formal solution may be described 
briefly as follows: Given a set of states, 
S = s(x), and a set of actions, A = 
{K R},9 map S A, where D is the 
decision rule used in mapping S on A­
that is, A D(S). Let fn(x) represent 
the maximum expected return for the 
last n periods if the producer b~gins at 
stage n10 with a flock at age x. Then, 

f,.(x) =max 
P*(x) (53) 

{f00 

r(Pn, P!(x), x) h(P) dP} 

8 The cost of money could also be taken into account through a discounting factor [:J = 1/1 + r, 
where r is the interest rate per week. Because broiler production is a short-cycle operation, 
[:J will be close to I-that is, rwill be small. For example, the discount factor per week is {3 = .9925 
for an interest rate of 12 per cent per year. Nevertheless, the introduction of a discount rate 
might be justified if one were looking into an infinite horizon for an operation which commits a 
considerable amount of working capital that could be invested elsewhere. 

9 K means keep the flock for another week and R denotes sell and replace with a new flock. 
10 Stage n denotes the nth.period from·the end of the horizon. 
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where 

r(Pn, P!(x), x) 

fn-1(x + 1) if P,,, < P!(x)
{ R(x,Pn)-C(x) +fn-1(7)ifPn ~I'!(x) 

for x = 7, 8, ... , X - 1 

X 	 termination age at which the 
flock will be sold, whatever the 
price 

and 

P! (x) 	 cutoff price at age x for the 
nth stage. 

Substituting for r(Pn, P!(x), x), (53) 
may be written :11 

fn(x) max {n,,J,,,_1(x + 1) (1 - H:rJ 
Hz 

(54) 

h(P)[J:00 

R(x,Pn)- dPH 
P*~) 1 x 

C(x) + fn-1(7) ]} 

where H. = JP*(•l h(P) dP, for x = 7, 
8, ... 'x. 0 

Each strategy chosen by the producer 
determines simultaneously the cutoff 
Jprice P*(x), the transition probabilities 
Hx and (1 - H,), and the immediate 
reward. Moreover, because H,,, is con­
nected in one-to-one correspondence 
with the cutoff price, at each age one and 
only one decision variable determines 
th,e strategy taken. 

The t.ransition probability matrix has 
the following form: 

1-H1 H1 O· · · ·O 

1 Hs 0 Hs · ·O 

T= (55) 

1 ­ Hx-1 0 O· · · ·Hx-1 

1 0 O· · · ·O 

T is a transition probability matrix de­
scribing a completely ergodic Markov 
chain (Howard, 1960).12 An important 
property of this model is that the transi­
tion matrix is endogenous. This is not 
the case in the Markovian dynamic 
models of Howard (1960) and Burt 
(1965) (see page 2). Hence, methods of 
solving for the optimal policy in the case 
of an exogenous Markov transition prob­
ability matrix can be used here only 
through the use of approximations. 

To obtain a numerical solution for 
(54), the continuous prices are approxi­
mated by a discrete array. A convenient:: 
way is to break h(P) into a histogram of 
K equal probability rectangles. This re­
sults in an array of K prices and an as­
sociated set of discrete probabilities. 
Empirical results are presented in the 
section beginning on page 31. The proc­
ess converges rapidly on the optimal 
vector of cutoff prices (Howard, 1960). 
The approximative nature of the solu­
tion should not be considered a serious 
limitation to the usefulness of the nu­
merical solution. Nevertheless, one does 
lose insight into the analytic structure of 
the model that provides important links 
to the economics of the firm. On the 
other hand, as noted more fully later, 
relaxing some of the simplifying as­
sumptions underlying the homogeneous 
model may make the numerical solution 
of the approximative functional equa­
tion approach more attractive. 

11 To simplify notation, the subscript n is omitted from P:(x) and Hnx· 
12 "We shall designate as a completely ergodic process any process whose limiting state 

probability distribution is independent of starting conditions" (Howard, 1960, p. 6). 
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The analytic nature of the solution, 
its existence, convergence, and eco­
nomic meaning are considered subse­
quently. However, before diverting at­
tention in this direction, we shall in­
vestigate the properties of the Mark­
ovian decision process-especially the 
properties of the equilibrium state prob­
abilities. In doing so we use results ob­
tained for the Howard model (Burt, 
1965) because it is at this point that the 
two models meet. 

The solution for the optimal policy 
defines a unique transition probability 
T*. Regarding T* as a transition prob­

ability matrix for an ergodic chain, the 
vector of steady state probabilities can 
be derived from the set of equations. 

q 	 qT* (56) 

subject to 

x 
2: q., = 1, qx ::::: 0 for all x (57) 
X=7 

where q is the vector of steady state 
probabilities. 

It can be shown that solution of (56) 
subject to constraint (57) gives 

1 	 1 
q1 = -___,=--=-=-----=c=-=--=-- = D ; 

(58) 

_ H1Hs ... Hx-1 _ H 
qx - D - x-1 qx-1. 

The vector q measures the equilibrium 
probabilities of a flock being at age x, if 
the system is allowed to approach an 
infinite number of stages. 

Now, the average return of the system 
as it operates for a long period may be 
defined as a weighted average net rev­
enue over all possible ages of the flock, 
using the steady state probabilities of 
being at these ages as weights. Accord­
ingly, 

x 
7r = 	 2: [m(P*(x), x) 

Z=l (59) 
x 

- (1 Hx) C(x)] q., 2: E(x) q., 
X=l 

where 

m(P*(x), x) = fro R(x, P) h(P) dP. 
JP*(z) 

These results provide a method of 
computing values of state probabilities 
or expected returns corresponding to the 
equilibrium toward which the system 
will progress in the future. 13 However, 
these results, although shedding addi­
tional light on the statistical properties 
of the decision process, depend upon 
having a prior solution for the critical 
set H.,. The next section is devoted to 
deriving an analytic framework for the 
solution of H .,, based on application of 
the decision rules indicated above. 

The analytic solution 

The general idea of the analytic solu­
tion can be presented in the following 
way: From equation (54) it can be seen 
that at each age a decision is made 
either to sell this week or to keep until 

13 In its essence, the equilibrium is still one of a short-run nature because the factors operating 
in the system remain of a short-run nature even though the economic horizon is infinite. 
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next week. In general, the following set 
of equations describe the optimal de­
cision rules for the corresponding age 
groups: 

V(x) =max {P(x) W(x) - c(x), 

where 

V(X) 

W(x) 

P(x) 

C(x) 

and 

(60)

"' 
V(x 1) h(P) dP - 11"}iP(z+l) 

for x = X 1, ... , 7 

W(X) f: P h(P) dP C(X), 
since Hx 0 

= weight of flock at age x14 

cutoff price at age x 

cost of keeping the flock un­
til age x 

11" = expected returns of one week, 
as the system operates for a 
long period and each age 
group has a certain prob­
ability to appear. 

11" must be deducted because this meas­
ures the average opportunity costs of 
postponing sale of the flock for another 
week. 
lThe set of equations (60) describes 

rational behavior on the part of a pro-

E(X) = W(X) f"' P h(P) dP ­

ducer motivated by profit maximization 
who decides at each age whether to sell 
the flock at age x or to keep it. The 
producer will sell the flock if the im­
mediate realized net return (PnW,, - C,,) 
is greater than the expected net return 
over the remaining period (from age 
x to X). He will keep the flock if im­
mediate returns are smaller than ex­
pected returns. The recursive nature of 
the decision process means that, starting 
from the termination age X, the pro­
ducer is concerned at each stage only 
with ages greater than the age under 
consideration. The reason is intuitively 
obvious because at age x0 the decision to 
keep would have already been made for 
any x < x•.15 Equations (60) are useful 
in describing the solution procedure for 
the decision process. But, before turning 
to the properties of the system (that is, 
convergence), let us remain for the 
moment in the context of equilibrium 
and state the optimal policy derivable 
from the decision process described in 
(60). 

The optimal policy will define a unique 
vector of cutoff prices (P*(7), P*(8), 
... , P*(X - 1)) such that 

P*(x) W(x) C(x) 
= E(x + 1) - 11" 

+ Hx+l (E(x + 2) 7r) . • • (61) 
H*1 H,,+2 ... Hx-1 (E(X) - 7r) 

for x = X - 1, X - 2, ... , 8, 7 

where, using (60), 

C(X), given Hx = 0. 
(62) 

i
P*{z) 

E(x) = W(x) ["' P h(P) dP (1 - H,,) C(x), givenH,, h(p) dP 
JP*(;ic) 0 

for x = X - 1, X - 2, ... , 8, 7. 

14 Weight is measured in "modified" units to include both quantitative and qualitative growth. 
15 This intuitive result is based on the concavity properties of the profit function in the deter­

ministic case. 
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Substituting (62) in (61) forms a sys­ needed to make the system self-con­
tem of (X - 7) equations with (X - 6) tained. The additional equation is that 
unknowns. An additional equation is defining the expected return :per week: 

7r = E(7) + H1 E(8) + H1Hs E(9) + ... + H1HsH9 . .. Hx-1 E(X) ( ) 
(l -H1) +2(l -Hs)H1+3 (l -H9)HsH1+ ... + (X -7)Hx-1Hx-2 ... HsH1 

where the numerator measures the ex­
pected return per flock up to age X, and 
the denominator measures the expected 
life of the flock. After simple algebraic 
manipulation, the denominator may be 
written 

D = 1 + H1 + H1Hs + ... 
+ H1HsH9 ... Hx-1. (64) 

Hence, ·· equation (63) is identical to 
equation (59) where the q's are as de­
fined in (58) and the E's are as defined 
both in (59) and in (62). 

The optimal policy (defined by the 
vector of cutoff prices P*(7), P*(8), ... , 
P*(X - 1)) and the corresponding ex­
pected net returns per week, 'Ir*, are de­
termined simultaneously by the set of 
equations (61) and equation (63), using 
the definitions in (62). 

The same solution can be derived 
from a different angle, giving more in­
sight into the problem. It was noted 
above that, given the transition prob­
ability matrix T (expression 56), one 
can derive the steady state probabili­
ties (qx) and from there define 7r (equa­
tion 59). The main difficulty in deriv­
ing the solution using the transition 
probability matrix as a basis (the How­
ard model) is that in our case the matrix 
Tis endogenous. The H's are the deci­
sion variables, being tied to the cutoff 
prices in a one-to-one correspondence. 
However, one can derive the analytic 
solution starting from the assumption 
that the system is in the steady state, 
that is, assuming that equation (59) 
holds. What is involved, then, is to 

maximize 7r with respect to H1, Hs, ... , 
H x-1.. This is the same as maximizing 7r 

with respect to P* (7), P* (8), ... , 
P*(X - 1). 

The first-order conditions for maxi­
mizing 7r in equation (59) are: 

a'Ir x aqx 
aH. = f; E(x) aH. + C(11) q, 

(65) 
am(P*(11), 11) a P*(11) = O+ a P*(11) aH. q, 

for 11 = 7, 8, ... , X - 1. Upon expan­
sion and rearranging terms, (65) be­
comes: 

(66) 
x 

P*(11) W(11) - C(11) = L [E(j) - 7r] _!jj_ 
i=•+l qv+l 

for 11 = 7, 8, ... , X - 1. 
The left-hand side of (66) measures 

the opportunity cost of a decision to keep 
the flock at age 11, evaluated at the cor:­
responding cutoff price. The right-hand 
side measures the conditional expected 
increment in net return given that the 
decision is to keep the stock at age 11. 

The set of equations (66) can be re­
duced to the following set of difference 
equations: 

P*(11) W(11) - C(11) = E(11 + 1) - 7r 

+ Hv+l [P*(11 + 1) W(11 + 1) (67) 
- C(11 + 1)] 

for 11 = 7, 8, ... , X - 1. 
A negative relation between cutoff 

prices and age of flock would be expected 
intuitively based on the following argu­
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ment: In the deterministic case con­
sidered earlier, the optimal age of mar­
keting is determined uniquely. One of 
the results obtained there was th~ an 
increase in output price, other things 
equal, implies a reduction in tlie optimal 
age of marketing. From this result one 
may deduce that, in the stochastic case, 
if at age x the producer's decision is to 
sell the flock at any price equal to or 
greater than P*(x), this range of prices 
would be expected to remain in the "sell 
domain" at age (x + 1). And because 
the profit function in the deterministic 
case has the property of diminishing 
marginal profit in the neighborhood of 
the optimal marketing age, the sell 
domain will, in general, be an increasing 
function of age. This means that P*(x) 
is a decreasing function of age. 

From equations (61)16 and (63), an 
iterative solution can be derived rela­
tively easily using a desk calculator. 
Assume that, as a first approximation, 
all cutoff prices are set at the average 
price (Po(x) = f o"" P h(P) dP, for all x). 
Assuming either a normal or a uniform 
distribution of prices, the corresponding 
H,, is 1/2 for all x. This furnishes an ini­
tial 7r0 for computing a corresponding 
new set of H1,, (or equivalently, P1(x)). 
This, in turn, results in 7r1, which is the 
basis for the next approximation, etc. 

An empirical solution is derived in the 
s1ction starting on page 31. It is shown 
tnere that convergence is fast, and the 
results are identical to those of Bell­
man's method. The computations might 
be reduced by assigning initial cutoff 
prices corresponding more closely to be­
havior in the real world. For example, 
higher cutoff prices might be assigned to 
early ages and lower cutoff prices to 
later ages. It remains to be shown that 
following this procedure always con­

verges to the optimal policy and the 
optimal 7f. 

The system of equations (61) and (63) 
defines a unique solution 7r(P*(x)) since 
it satisfies the first-order conditions in 
(66). Nevertheless, the optimal 7r(P*(x)) 
cannot be solved for directly and, hence, 
one has to start from a suboptimal 
policy corresponding to a suboptimal 7f. 
In this context, convergence of the sys­
tem becomes crucial. 

In showing convergence of the system, 
the following properties of the model are 
used: 

1. 	Dichotomy of the System. The opti­
mal policy P*(x) is defined by the 
set of equations (61), given 7f*; 
while 7f* is defined by equation 
(63), given P*(x). This is a direct 
result of the ergodic properties of 
the Markovian decision process. 

2. 	 Recursiveness of the System. As de­
scribed by (61), the policy depends 
only ,on decisions based on current 
and older ages but not on earlier 
ages of the flock. 

Assume that the desired policy is 
Po(x), each element of Po(x) being equal 
to the expected price. The corresponding 
7f is obtained from (63), and ~ is used 
as an initial value in the search for an 
optimal policy. Obviously, 7r0 ~ 7r*, since 
7f* is the maximum that can be achieved 
from all possible policies. For a given 
7f0 = 7f* - E, (c 2::: O) apply decision rule 
(61) which generates a new vector of cut­
off prices P1(x). The new vector P 1(x) 
defines a new 7f1• By the same reasoning 
as above, 7f1 ~ 7f*. But in this case there 
is also a lower bound defined by the in­
equality 7f1 ~ ~- This can be verified 
from (61). Cutoff prices are determined 
recursively that equate realized profit at 
the cutoff points to the corresponding 

16 Equation (67) may be substituted for (61) because it is more convenient for computation. 
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expected returns normalized for given 
tr°. But since 'll"o < 'll"*, following the opti­
mal decision rule, actual profit at the 
end of the cycle will be greater than 1!"0• 

The new 'll"
1 is used to derive a new set 

1P2(x) that defines 'll"2 i 'll" ::::; 1!"2 ::::; 'I!"*. Iter­
ation continues until 'll"n-1 'll"" = 'll"*. 

Extensions of the homogeneous 
model 

In the following some of the simplify­
ing assumptions are relaxed. 

Starting with one-day-old chicks. 
-The homogeneous model assumes two 
stages in production: The flock is kept 
at the nursery up to an age of six weeks 
and then transferred into the barn. The 
decision model is applied to the produc­
tion process in the barn, always assum­
ing instantaneous transition to new flocks 
at age six. In the real production proc­
ess, a few days should be allowed for 

preparing the barn for a new flock. 
Moreover, it is common practice at a 
large number of firms in Israel (and in 
the United States) to place new flocks in 
the barn at an age of one day, supplying 
nursery services at the barn. Through 
this procedure, the stress of transferring 
the flock at six weeks is avoided. These 
modifications can be easily introduced 
into the model. 

Assume that the process starts with a 
one-day-old flock, but the earliest age 
of sale remains at seven weeks. This 
change is accommodated by modifying 
the term D in equation (64). Write the 
new D term as: 

Di = 7 + H1 + H1Hs + . . . (68) 
+ H1Hs ... Hx-1, 

which incorporates the constraint H1 
H2 = ... = H 6 = 1. Then, 

E1 + H1E(8) + ... + H1Hs ... Hx-1 E(X) 
~= 

The denominat-0r is the same as in equa­
tion (63) except that Di > D, since 
Di D = 6. Hence, 1!"1 < 'll". This, in 
turn, will raise the equilibrium cutoff 
prices at all ages (7 to X - 1). 

The D term is adjusted in a similar 
way to allow for the two weeks needed 
for preparing the barn. In this case, 3 
would replace 7 as the first right-hand 
term in equation (68). 
lnterseasonal model.-The influence 
of seasonality can be introduced in a 
fairly simple way. As Bellman and Drey­
fus (1962, pp. 118-23) show in a differ­
ent context, the return functions in this 
case will depend on calendar date of the 
stage as well as on age of flock. To ac­
commodate this, rewrite (53) as follows: 
fn(X, t) = max 

P*(x,t) (70) 

{f00 

r(Pn, P*(x, t), x, t) h(P)1 dP} 

. (69)
Dr 

where 

r(Pn, P*(x, t), x, t) = 
fn-i(X 1, t l) if Pn < P*(x, t) 

{ R(x, t, Pn) C(x, t) + fn-1(7, t l) 

if Pn ;?: P*(x, t) 

for x = 7, 8, ... , X - 1; t = 1, 2, ... , 
52 weeks. 

The most important seasonal factor 
would seem to be seasonal variation in 
product price. While in the homogeneous 
model the same h(P) is assumed over 
all stages, here dependence of h(P)t on 
calendar date is allowed for. Seasonal 
variation in cost or in quality could also 
be introduced if important. 

The Markov chains of the transition 
probability matrix are no longer com­
pletely ergodic and, hence, the steady 
state probabilities depend upon the ini­
tial state. In general, the producer en­
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tering the current week with a given 
flock will face a dilemma he did not face 
before: (1) to sell the flock before the 
new season and start a new flock (if it is 
fairly early in the season, the original 
framework of the homogeneous model 
may apply) or (2) to keep the flock un­
.til the new season. In the latter case the 
producer carries· a fairly old flock into 
the new season since, if prices are higher 
in the new season, it could result in a 
one-time profit. 

An empirical solution for an inter­
seasonal model is derived in the em­
pirical results section. 

Introduction of intraseasonal 
price variation. - The homogeneous 
model assumes the distribution of prices 
to be independent of past prices. It may 
be reasonable to assume that price at the 
nth week depends on price at week 
(n - 1). In this event, prices within the 
season might be described by a simple 
lag model, where current price is a func­
tion of price last week. Such dependence 
of prices over weeks could be described 
in the continuous case by a stochastic 
process, such as the Markov process, and 
in the discrete case by a Markov chain. 

In the discrete case the main reason 
for introducing probabilistic prices is to 
allow the decision-maker to make use of 
this additional information about price 
behavior. To incorporate this price de­
pepdence, (60) might be modified as 
foflows: 

00 

V(X) = W(X) i P(X)h(Px/Px-1)dPx 

C(X), sinceHx = 0. 

(71) 

V(x/P,) =max {P,, W(x) - C(x), 

fro V(x l/P,,+1) h(Pz+1/P.,)dP,,+1 
JPz+l 

for x = X - 1, X - 2, ... , 7. 
The following differences from the 

original homogeneous model are noted: 
(1) In the homogeneous model, the rele­
vant parameters of h(P) were the mean 
and the variance. In this formulation 
h(P) is replaced by h(P;/Pi-1); an addi­
tional parameter is introduced which is 
the rate of change in prices during the 
expected life of the flock; and (2) 1r(Pn) 
replaces 1r in the homogeneous model 

and 

where f (Pn) are the steady state proba­
bilities of price transitions. 

The solution has not been worked out 
in detail, but the problem would seem 
to be solvable by either of the two 
methods suggested for the homogeneous 
model. Of course, the dimensions of the 
problem are increased considerably. 

Stochastic Decision Criteria: The Case of Continuous Growth 

The model considered in the preceding However, to assume that decisions are 
section is a discrete dynamic decision made only at given arbitrary ages is un­
model. To assume that the decision realistic, especially when considering the 
process followed by an individual pro­ operation of a system containing a large 
ducer is discrete would seem reasonable. number of producers. 
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The analytic solution obtained in the 
previous section used a continuous price 
density but did not introduce continuous 
growth functions explicitly into the de­
cision process. This will be done in the 
present section. 

Again, the assumption is that the 
system operates for a relatively long 
time so that it reaches a steady state 
equilibrium. The decision-making proc­
ess is Markovian, as described in the 
previous section, so the steady state 
probabilities can be obtained from the 
recursive set of equations (see (58)): 

x (72) 
qx = Hx-1 qx-1, subject to L qx = 1. 

X=7 

Assume a giv·en number of producers 
(say, a thousand). Let the system oper­
ate until equilibrium is reached and then 
take a cross-section, the fraction of 
flocks at age x (identical to the fraction 
of producers with flocks at age x) ob­
tained at this point of time will be equal 
to qx (the steady state probability). 
Hence, the optimal path over time can 
be projected onto a cross-section taken 
at a given moment. (This is a direct re­
sult of the steady state conditions.) 
This alternative formulation transforms 
the problem into one of a continuous 
growing inventory. 

The derivation of the continuous case 
may be presented as follows: Let 

Kx = 1 - Hx, the probability of 
selling at age x 

qx+!J,x = (1 - Kx Llx) qx 

and 

lim qx+tix - qx = dqx 
tix-+a Llx dx 

= -Kxqx = -(1 - Hx) qx. 

Hence, 

~; -(1 - Hx) qx (73) 

where -dqx/dx measures the proportion 
of flocks sold at each age. 

Define the profit function over a 
period from to = x0, (say, age of seven 
weeks) to T = X (say, age of 12 weeks): 

7r = [T [Rt - Ct] (I - Ht) qt dt (74) 
Jto 

where, as in expression (60), 

Ct= 	cost of keeping the flock up to 
age t = x 

Rt = Wt ["' P h(P) dP 

JPt I-Ht 


Wt = weight at age t = x 

["' P h(PH) dP = conditional ex-
JPt* 1 - t 

pected price given the condition sell 

and 

P = broiler price. 

In the case of the uniform distribu­
tion, the computations are quite simple: 
Define 

- * 
(1 - H) = P_ - Pt 

t 	 P-.E 
and 

[P * 2

J~- P h(P) dP = p 
-2 

-=- (Pt ) ; 
P(t) 2(P -E) 

then, 

and equation (75) may now be re­
written:17 

7r =I: [Ct qt - Wt (75) 

(~: p ; E + qtl5 )] dt. 

17 A dot denotes differentiation with respect to t. 
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The maximization problem . may be is obtained by applying the Pontryagin 
formulated as a simple optimal control Maximization Principle (Arrow and 
problem with q1 as the state variable and Kurz, 1970). 
qt as the control variable. The solution Let the objective function be: 

max1: [Ct qt - Wt(~ p ~ E + qtP)] dt =max1:g (q1, q1, t) dt18 (76) 

subject to the constraint 

(77)qt= Ut. 

Then, the Hamilton-Jacobi equation 
is 

3C = g(q1, Ut, t) + At Ut (78) 

where A1 is the auxiliary variable as­
sociated with the constraint (77) and :JC 
is the current value Hamiltonian. 

The maximum principle instructs us 
to maximize equation (78) with respect 
to Ut. We obtain, therefore, 

iJ:JC ­=Ci - (P 
(79) 

At= 0. 

Hence, 

where Zt = (d/dt) (log qt) q1/q1. Note 
tbat At is the marginal contribution of 
the state variable qt to the return func­
tion g (q1, U1, t), and, therefore, is a 
"price" in an economic sense (see Arrow 
and Kurz, 1970). 

In our case 

and equation (80) becomes 

(81) 

The marginal contribution of qt to the 
current return function is current profit 
measured at the cutoff price P7. 

It can be shown that the rate of 
change in Ai may be obtained from: 

(See Arrow and Kurz, 1970.) In our 
case 

21 
(P 

-
- p) Wt Zi.

2 (82) 

Now, differentiating (80) with respect 
tot and equating to (82), we obtain the 
following differential equation for Z: 

No simple analytic solution exists for 
this quadratic differential equation. 
However, for a given side condition, a 
solution can be obtained through nu­
merical analysis. Consider the following 
two border cases: 

18 The problem can be solved equivalently by calculus of variations, which is a special case 
of the Pontryagin maximization method. This more general presentation is adopted because it 
lends itself more conveniently to direct .economic interpretation. 
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1. 	 Let the cutoff price Pt be equal to 
P everywhere. Note that Pt = 
P => Zt = 0, that is, keep the flock 
at all prices. Equation (83) reduces 
to the familiar form: P Wt = Ct. 
The flock is kept up to the age 
where value of marginal growth in 
output is equal to value of margi­
nal growth in input. This boundary 
condition can be interpreted in the 
following way: It is equal to zero 
until sending the flock to market, 
then suddenly drops to - ro • This, 
in fact, is the case in the determi­

nistic world where P = !! P. 
2. 	 Let the cutoff price P1* equal f 

everywhere. Hence, 

which implies 

Zt is constant with an absolute 
unit value. 

SOME EMPIRICAL RESULTS 


The main objective of this section is 
to present and examine some empirical 
results based on formulations in the last 
section. Data in all cases refer to Israeli 
broiler producing firms. 

Broiler production in Israel is carried 
out by nonintegrated farms, where the 
marketing decisions are also rnade.19 

The typical poultry producer raises both 
layers and broilers, but specific equip­

ment is used for the separate broiler and 
layer enterprises. The smallest unit of 
production is the flock, and, because 
interest here is in a flock operation at a 
given capacity, production and decision 
variables are defined on a per-bird basis. 
Certain relevant empirical functions are 
derived first. Then, some numerical re­
sults are generated for the sequential 
stochastic decision model. 

The Empirical Functions 

The weight-feed relations 

Two sets of data collected in Israel 
are available for analysis :20 

Data Set I: This set includes data 

collected in a 1961 survey 

of 22 flocks of broilers. 

\Veekly observations are 

available from the day 

the chickens hatched to 

the day they were sent 


to the district slaughter­
houses. The survey was 
not designed to give a 
representative sample of 
broiler producers in Israel 
(most of the data were 
collected in the regional 
district of Shaar Hane­
gov). We shall refer to 
this set of data as "field 
data." 

19 The concept of an individual producer may apply both to a farm in a cooperative village 
"moshav" or a broiler production industry in a collective village "kibbutz." 

20 The data were collected for different purposes as part of a comprehensive project. See 
Mundlak (1964). 
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Data Set I I: The results of two broiler 
random tests conducted 
in Israel (1959-60) at the 
Experiment Station at 
Aco. We shall refer to 
this set of data as "Aco 
data." 

It seems advantageous to use first the 
Aco data. In the randomized experi­
ments generating the data, all flocks 
were under the same management, re­
ceiving the same treatment, and thereby 
reducing differences between flocks. 21 

Therefore, it would appear reasonable 
to estimate average relations as de­
scribed in equations (4), (5.1) and 
(17.1). 

The parameters of equation (4), ao 

and a 1, were estimated from the log­
reciprocal transformation :22 

1
log. W = 8.5467 - 12.356 - (84)

x 
R2(29.34) = .869. 

Direct estimation of the parameters 
1' and (31 in equation (5.1) yields 

log. F = 5.07 + 1.477 log. x 
(1.75) 

(85)
1 

- 2.959­
x 

R2(.38) = 	 .921. 

The' coefficients in (85) are not plausible, 
and t values are low. This may well be 
due to multicolinearity as the correla­
tion between x and 1/x is - .99851. 
However, indirect estimates of the pa­
rameters are possible from equation 
(17.1): 

log. W = .568 + .911 log. F 
(29.9) 

(86) 
-	 .306 log.x 

R2(5.39) = .984. 

From equation (17.1), 01 = a1/f31 and 
02 = -01 ,Y. Accordingly, 

A ~ ­
1' = - Ti = .3365 and f31 = 13.569. 

If the hypothesis a1 = f31 = g is accept­
able, one may estimate 1' from: 

log.(;) = .206 + .466 log. x. (87) 
R2(28.12) = .859. 

. The estimate :Y = .466 is adopted and 
imposed on the feed equation giving: 

(log. F - .466 log. x) 
(88) '· 

= 8.341 - 12.364 ! 
x 

R2(28.94) = .866. 

Hence, under the assumption of equality 
between the growth rates, a1 = f31, g= 

12.4. 
Because our sample included 33 flocks, 

different growth rates can be allowed in 
the method suggested in equations (8) 
and (9), where the Y's and the Z's are 
dummy variables allowing for a flock 
effect on the growth rate. The results 
allowing for flock effect are given in 
table 2. 

The agreement between the estimated 
coefficients in equations (84) and (88) 
provides some support for the claim that 
our assumptions hold. One may question 
whether this is an appropriate test be­
cause all estimates are based on the 

21 These differences amount mainly to source of supply or breed. 
22 Figures in parentheses under the coefficients are ratios of coefficients to their standard 

errors. 
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TABLE 2 

ESTIMATES OF 31 AND fJ't 

ALLOWING FOR FLOCK EFFECT 


,.
Flock ~li {311 

~ ~ 
<XH-/311 

1. ........... 13.247 13 .430 -.183 

2.'' ... ..... 13.253 13.262 .009 
3............ 12.201 12.388* -.187 
4............ 12.417* 12.566 -.149 

5..... ' ... ''' 12.844 12.918 .075 
6... ,, .. , .. 11.669 11.704 -.035 
7............ 12.685 12.aza .011 
8 ............ 12.016 12 .301 • -.285 
9............ 11.291 11.434 -.142 

10 .. ......... 12.311* 12.665 -.354 
11 ............ 12. 708 12. 766 .058 
12 .... '' .. ' ... 12.346• 12 .442 .096 
13 .. ,, ...... , 12 .404• 12.529 -.125 
14 ............. 12.457* 12.728 -.271 
15.' .. ' .. '' .. ' 12.412* 12. 720 -.308 
16 ..... ,, ... 12.627 12.349* .277 
17. ......... , 12.111 11.838 .273 
18............ 12.577* 12.508 .068 
19.... ... , .. , 11.646 11.319 .327 
20..... ..... 12.134 12.056 .078 
21. ......... 12.437* 12.267* .170 
22 ........ ' ... 12.897 12 .647 .251 
23 ............ 12.501* 12.294* .207 
24 .. ......... 12.086 12 .021 .065 
25 ............ 12.438 13.135 .303 
26 .. ' .. '' ... '. 12. 699 12.692 .007 
27 ..... ...... 12.049 11.987 .063 
28 ............ 12.528* 12. 637 -.109 
29 .. ......... 12.592 12.441 .041 
30............ 12.370* 12.492 -.122 
31. .. " .. .... 11.277 11.173 .104 
32........ ' ... 11.115 11.131 -.016 
33 ............ 12.409 12 .323 .086 

R•............ .981 .985 

•The ratio of the flock coefficient to its standard devia­
tion is less than one. 

Source; The coefficients were estimated from the rela­
tions defined in footnote 2, page 6. 

Log W1 =a.- a,!_ aiY!i!,p, 13,-·b,I_-b1Z1iI_ 
x x x x 

where 
Y!i = dummy variable allowing for flock effect 
2l.i.< = dummy variable allowing for flock effect 
Fi= (Log F1 - .4666 Log, x) 
au=11-0+a1Y1i 

and 
{fa =b, +b.Z1;. 

The coefficients were computed relative to the 33rd flock. 

same set of data, and the circularity 
argument cannot be disregarded. Equal­
ity was imposed and then found to be 
true. Nevertheless, the two methods of 
estimation of g-one through estimating 
&1 and the other through estimating S1­
are not computationally identical. 

A more rigorous test is to test our 

23 Where age of flock is measured in days. 

hypothesis on a different set of data. 
Accordingly, the same procedure was 
applied to the set of field data, giving 
practically the same estimates of 'Y and 
g. After imposing the hypothesis, the 
estimate of 'Y is :Y = .461 and the esti­
mate of g is g 83.2. Note that for 
comparison with Aco data g must be 
divided by 7 since x is measured in 
weeks in the Aco data and in days in the 
field data. Adjusting accordingly, g/7 
11.9 compared to g= 12.4 from Aco 
data. 

In the numerical results summarized 
subsequently in the next section, a basic 
model is assumed as a point of de­
parture in which the parameters of the 
weight-feed relation take the values. 

g a1 = S1 = 86.5, 23 

-:y .466, 
e'«o 8.547, 
e'P0 7.410 

and the empirical cost function is: 

C(x) Co+ P,F(x) 
= .859 + .26 F(x) (89) 

The quality function 

As previously indicated, quality is 
regarded here as related to age of flock. 
Equation (20), assumed to represent 
this relation, is repeated here for con­
venience. 

Q = 	~ e1-x/'I! (20)
"iJ! 

where x is age of· flock in days. The 
parameter "iJ! determines the age at 
which Q reaches its maximum. In the 
"basic model," maximum quality is as­
sumed to be reached at 63 days. Accord­
ingly, for the empirical analysis, ij)- = 63. 
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The price density function h(P) 

Monthly data on broiler prices24 in 
Israel for the years 1960-61 were used in 
deriving empirical density functions. 
These prices were as follows: 

1960 

January 1.281 
February 1.245 
March 1.461 
April 1.539 
May 1.679 
June 1.754 
July 1.740 
August 1.819 
September 1.887 
October 1.779 
November 1.519 
December 1.456 

1961 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

1.386 
1.250 
1.320 
1.599 
1.901 
2.172 
2.030 
1.691 
2.002 
1.401 
1.473 
1.529 

Two seasons are distinguished :25 

Season 1: October-March 
Season 2: April-September. 

Empirical distributions were derived 
corresponding to two underlying distri­
butions of prices: the normal distribu­
tion and the uniform distribution. 

For the normal distribution, maxi­
mum likelihood estimates of means and 
the variances were computed :26 

Iii = 1.425 a-i = .0861 
fi2 = 1.818 a-~= .1255. 

The arrays of prices P~ were then de­
rived from: 

Twenty intervals (k = 1, 2, ... , 20) 
were selected such that the rectangles of 
the histogram each have the same area, 
equal to .05. The derived price array for 
each of the two seasons is given in Ap­
pendix table A-1. 

Use of the normal distribution can 
perhaps be more easily defended on the 
basis of the central limit theorem. On 
the other hand, the uniform distribu­
tion is convenient for computational 
purposes. And though it may not de­
scribe reality as well as does the normal 
distribution, it is useful in demonstrat­
ing the working of the system. 

For the uniform distribution, 

1 
=---- P<P<P

h(P) P - .I' - - ­
{ 

= 0 elsewhere 

24 Prices are in Israeli pounds (IL). Approximate conversion rate: three IL = $1.00. 
25 This break into seasons was adopted so that interseasonal price variation was greater than 

intraseasonal price variation. 
2)Because the original data, which are monthly averages, do not suit our purpose, weekly 

distribution parameters were derived, assuming that quantities of broilers sold during the 
month were spread equally over weeks. Therefore, the average price per month may be regarded 
as an unbiased estimate of expected price per week. To derive an estimate of the variance of 
prices on a weekly basis, it can be shown that, for equally distributed weekly quantities sold, 
the variance estimates may be obtained from: 

uJ = 4u;;. 
' 

where 

j = season;j = 1, 2 

u~. = variance of the original monthly averages


J 

and 

u~ = variance on weekly basis. 
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=0 P<J: 

P-PH(P) P 5'P 5'P= P- ­

1 P<P 

where P is the upper extreme price and 
E is the lower extreme price. Similar 
adjustments were made to transform 
the monthly data to a weekly basis.27 

The corresponding maximum likeli­
hood estimates are: 

E p 
Season 1: .978 2.046 
Season 2: 1.223 2.488 

The arrays of prices p{ are then de­
rived from: 

where H(P") = .025, .075, .125, ... , .975. 
The derived price arrays for the two 

seasons are given in Appendix table A-1. 

Discrete Sequential Decision Models 

In this discussion of empirical results 
attention focuses on optimal policies for 
the system (and convergence of solution 
to optimal), sensitivity of the optimal 
solution to changes in parameters of the 
model, comparison between the analytic 
and the functional equation solution, 
and extension of the homogeneous model 
to an interseasonal model. In generating 

the numerical results, use is made of the 
empirical functions presented above. 

The functional equation 

It is first necessary to write the basic 
functional equation (46) in a form 
manageable for computational purposes. 
Accordingly, continuous prices assumed 

27 Again, assuming the same average, we have the following two equations from which to 
solve for P and J:: 

where 

Y 

Y 

.:f 
P = 

and 

(i) 

monthly price averages 
monthly upper price extreme 
monthly lower price extreme 
weekly upper price extreme. 

J: = weekly lower price extreme. 

(Y - Y) 2 
= 12 ­

2 • • 
u'}, and agam assummg equally 

(ii) distributed weekly quantities sold, 

2 

2 up; 2 (Y - .:f) 2 (P - l')z 
<TP. 9 44 = <Ti 12 = 12 .

' 
From (ii) we have 

(iii) {Y - Y) 2 = P p. 
Equations (i) and (iii) are solved for the two unknowns, P and F. 
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TABLE 3 

OPTIMAL POLICIES 


N orlnll.l distribution Uniform distribution 

Season 

1. ......... 
2.....•...• 

7 

.~I.55 

8 

Age (weeks) 

9 10 

IOP (Hx) 

.70 .60 .50 

.50 .45 .40 

11 

.35 

.30 

Number of 
iterations 

9 
7 

7 

.75 

.55 

Age (weeks) 

10 l8 9 11 

IOP (H.) 

.65 .55 
.50 l .40 

.50 .45 .40 .35 

Number of 
iterations 

8 
7 

in (46) are approximated by a discrete prices and an associated set of discrete 

array. A convenient way is to break h(P) probabilities. 

into a histogram of K equal probability This approximation allows us to re­

rectangles. This results in an array of K write equation ( 46) as: 


S: W(x) Pk C(x) + Ep(gn-1 (7))]gn ( ) x =max 
[ K: Ep(gn-l (x + 1)) 

for k = 1, 2, ... , 20 and x = 7, 8, ... , 11. 

1 20 (90)
20 Egn-i(x) 

for x 7, 8, ... , 11. 

1 20 JEp(gn (12)) = W(12) [ EPk C(l2) + Ep(g,,_1 (7)).
20 

Optimal policies 

Solutions are presented for the basic 
model under four different assumptions 
al:J)ut the distribution of prices:28 

Model 1.1: 	for season 1 assuming a 
normal distribution of 
prices. 

Model 1.fJ: 	for season 1 assuming a 
uniform distribution of 
prices. 

Model 2 .1: 	for season 2 assuming a 
normal distribution of 
prices. 

Model 2.2: 	for season 2 assuming a 
uniform distribution of 
prices. 

Results are presented in table 3 and 
figure 1. For a given season the differ­
ence between assuming a normal or a 
uniform distribution of prices is not con­
siderable. The dispersion of cutoff prices 
is less with the uniform than with the 
normal distribution. Nevertheless, the 
differences are minor. This may suggest 
use of the uniform distribution, espe­
cially where computational considera­
tions are important. 

28 For the numerical values of the basic growth and quality parameters, see page 33. 
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II. Season 2 
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Fig. 1. Convergence to optimal policy-homogeneous models. (Prices corresponding to the index 
of cutoff prices for each season for both the normal and uniform distribution are tabulated 
fa Appendix Table A-1. N denotes order of iteration.) 
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TABLE 4 


EFFECTS OF CHANGES IN THE VARIANCE OF PRICES 


I 
V(Pl = .0215 

p = 1.779 
E = 1.245 

E(P) = 1.512 

II 
V(P) = .0861 

P=2.046 
E = .978 

E(P) = 1.512 

III 
V(P) = .1935 

p = 2.313 
f:.=.711 

E(P) = 1.512 

H, 
1- H, 

q 

P*(x) 
E(x) 

H, 
1 - 11, 

q 

P*(x) 
E(x) 

11, 

1 - 11, 


q 


P*(x) 

E(x) 


Age (weeks) 

7 

.9 

.1 

.3331 
1. 7256 

.0191 

I 8 
I 9 I 10 

.65 .55 .45 

.35 .34 .55 

.2998 .1949 .1072 
1.5921 1.5387 1.4853 

.1339 .2496 .3661 
Number of iterations 9, .,. = 

I 11 

.35 

.65 

.0482 
1.4319 

.4645 
.1667 IL 

I 12 

0 
1 

.0168 
1.245 

.5879 

.7 

.3 

.3980 
1. 726 

.0908 

.65 

.35 

.4159 
1. 7523 

.1508 

.6 .55 .45 

.4 .45 .5 

.2786 .1671 .0919 
1.619 1.565 1.512 

.2168 .3366 .4421 
Number of iterations 8, .,. = 

.6 .55 .5 

.4 .45 .5 

.2703 .1622 .0892 
1. 6722 1.5921 1.512 

.2871 .4221 .5414 
Number of iterations 6, .,. = 

.4 

.6 

.0460 
1.405 

.5473 
.2293 IL 

.4 

.6 

.0446 
1.3518 

.6499 
.2965 IL 

0 
1 

.0184 

.978 

.5879 

0 
1 

.0178 

.711 

.5879 

Comparing the two seasons, optimal 
policy appears to call for selling at 
earlier ages in season 2 than in season 1, 
that is, cutoff prices in season 2 are 
lower than in season 1. In the distribu­
tion of prices for the two seasons, both 
the expected value and the variance of 
prices are higher in season 2 than in 
season 1. Other things equal, one would 
expect to sell at earlier ages in the season 
for which expected value of price is 
higher. As for the effect of the variance, 
it is of interest to observe the effects of 
changes in variance which are reported 
and examined below. 

Figure 1 also depicts convergence of 
the solution toward the invariant opti­
mal policy (IOP). Convergence is 
achieved in a relatively small number of 
iterations (7 to 9). The number of itera­
tions decreases as we move from season 
1 to season 2. Finally, the IOP cutoff 
prices are described by a negatively 

sloped sigmoid curve. This character­
istic may be a result of the structural 
relations. 

Effects of changes in the 
variance of prices 

Two results are associated with an 
increase in the variance of prices V (P) : 
First, sales tend to get dispersed over 
age groups. The lower extreme, that is, 
V(P) = 0, corresponds to the determi­
nistic case, where all sales are concen­
trated at a given age. Second, in­7f' 

creases as V(P) increases. The second 
result is surprising because one expects 
an increase in variance to appear as an 
increase in costs, but the result is the 
opposite. 

To illustrate, three values are as­
sumed for the variance of the uniform 
distribution for season 1, the expected 
price remaining at 1.512. Results are 
reported in table 4 and figure 2. 
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Fig. 2. Effects of changes in the variance of prices: I.O.P. cutoff prices compared. (Prices cor­
responding to the index of cutoff prices are tabulated in Appendix Table A-1.) 

From table 4 it appears that the 
probability of selling at younger ages 
increases as V(P) increases. This is 
shown by (1 - H,,), the probability to 
sell given the 20 possible prices at each 
age. Furthermore, we note that 7r1 < 
7r2 < 'Ira. This can be explained by the 
fact that E(x) increases as the variance 
increases. The conditional expected net 
returns from sales increase since they 
are affected by the more extreme higher 
pr\ces above the cutoff price and not 
affected by the extremes below the cut­
off price. In economic terms the pro­
ducer is able to take advantage of the 
information about V(P) in a world in 
which risk increases (where increase in 
risk is implied by the increase in V(P)). 

Policy implications 

The sequential stochastic model can 
supply the broiler breeder and the pub-

lie policy-maker with important infor­
mation also. Following the same lines as 
in the deterministic case, the implica­
tions of improving the growth, mainte­
nance feed, and quality parameters and 
of changes in the price of feed are evalu­
ated. But while in the deterministic case 
the effect on the unique optimal mar­
keting age was considered, the effect on 
the IOP is of interest in the present 
case. 

The effects of variation in the parame­
ters and the price of feed on the IOP 
(the vector H,,) are reported in table 5. 
Parameters are varied one at a time, the 
remaining parameters held at their re­
spective values in the basic model. Out­
put prices refer to season 1 and are as­
sumed to be normally distributed. 

The growth coefficient. The fol­
lowing range of values of the growth 
coefficient (a1 /31 = g) is considered: 
g = 75, 80, 85, 90, 95, and 100. 
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TABLE 5 


SENSITIVITY OF THE INVARIANT OPTIMAL POLICIES (H,) TO VARIATION 

IN g, '" IV, AND P1 (NORMAL DISTRIBUTION OF BROILER PRICES) 


Age (weeks) 
Change in Number of 
parameter iterations 

117 8 9 10 

Basic model• .85 .70 .60 .50 .35 9 

H, 

g 

75 .60 .55 .45 .40 .30 8 
80 .70 9.60 .55 .45 .35 

985 .80 .70 .60 .50 .35 
90 .90 .75 .65 .55 .40 11 

1295 .95 .85 .70 .60 .40 
15100 .95 .85 .75 .60 .45 

'Y 
.35 .75 .55 .45 8.65 .35 
.40 .80 .65 .55 .50 .35 10 
.45 .80 .70 .50 .35 9.60 

9.50 .85 .75 .60 .50 .35 
.55 .90 .75 .55 .40 11.65 

'1' 
42 .70 .35 8.55 .45 .25 

.7549 .68 .50 .40 .30 8 
56 .80 .45 9.65 .55 .35 
63 .85 .70 .60 .50 .35 9 
70 .90 .75 .65 .50 10.85 

P1 
.20 10.75 .65 .55 .45 .35 
.25 .85 .70 .60 .35 9.50 

11.30 .85 .75 .65 .50 .40 
.35 .90 .75 .55 .40 10.65 

•The basic model parameters are: ao = 8.5467, /30 = 7.410, a1 = /31 = g = 86.5, -y = .466, '1' = 63, and P1 = .260. 

The growth coefficient determines the 
inflection point. Hence, the lower the g, 
the faster the growth. This explains the 
tendency to market the flock at lower 
ages for lower values of this parameter. 
Note that cutoff prices are more sensi­
tive to changes in the growth coefficient 
at younger ages than at older ages. This 
results from two forces operating in the 
same direction: (1) the recursiveness of 
the system which results in an accumu­
lative impact of changes recursively 
from older to younger ages and (2) for 
the age range considered, the effect of 
diminishing marginal rate of growth in­
creases as g increases. 

The maintenance feed coefficient. 
-The maintenance feed coefficient (y) 
is assigned values: 'Y = .35, .40, .45, .50, 
and .55. Unlike the growth coefficients, 
the maintenance coefficient enters only 
the feed equation. An increase in 'Y 

raises both the marginal and the average 
feed consumption. In the deterministic 
decision model considering one flock, the 
optimal marketing age decreases as 'Y 

increases since marginal cost is in­
creased. Here we have the opposite re­
sult. In general, flocks would be mar­
keted at earlier ages for lower 'Y· Con­
tributing to this is the fact that opti­
mality conditions in the sequential 
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TABLE 6 


SENSITIVITY OF INVARIANT OPTIMAL POLICIES (H.) TO VARIATION 

IN g, -y, IF, AND Pr (UNIFORM DISTRIBUTION OF BROILER PRICES) 


Change in 
para.meter 

Age (weeks) 
Number of 
iterations 

7 8 9 10 11 

Basic model* .75 .65 .55 .50 .40 9 

g 

H. 

75 .50 .50 .45 .40 .35 9 
80 .60 .55 .50 .45 .35 7 
85 .70 .60 .55 .45 .40 10 
90 .80 .70 .60 .50 .40 8 
95 .90 .75 .65 .55 .40 11 

100 1.00 .80 .65 .55 .45 10 

'Y 
.35 .65 .55 .50 .45 .35 8 
.40 .70 .60 .55 .45 .35 8 
.45 .70 .60 .55 .50 .40 10 
.50 .75 .65 .55 .50 .40 9 
.55 .80 .70 .60 .50 .40 9 

~ 

42 .60 .50 .45 .35 .30 8 
49 .65 .55 .45 .40 .35 9 
56 .70 .60 .50 .45 .35 8 
63 .75 .65 .55 .50 .40 9 
70 

P1 

.80 .70 .60 .50 .40 9 

.20 .65 .60 .55 .45 .35 8 

.25 .70 .65 .55 .50 .40 12 

.30 .75 .65 .60 .50 .40 11 

.35 .85 .70 .60 .50 .40 9 

•The basic model parameters are.: au 8.5467, po = 7 .410, ai = pi = g = 86.5, 'Y .466, ~ = 63, and P1 = .260. 

stochastic model involve values of ex­
pected net returns (E(x) and ?r) which 
presumably depend negatively on 'Y· 
This is apparent from equation (60) 
wi/ere it can be verified that a smaller 'Y 
results generally in higher cutoff prices. 
The decision does not involve just equat­
ing marginal cost to the value of margi­
nal product. The comparison is between 
different policies. And because in this 
context the whole process is relevant, 
we are concerned with expected returns. 

Again, the sensitivity of cutoff prices 
to changes in the coefficient is higher for 
younger ages than for older ages. The 
factor of recursiveness operates here in 

the same way as for the growth coeffi­
cient. A second relevant factor is the 
positive relation between 'Y and marginal 
feed consumption. 

The quality coefficient.-The fol­
lowing alternative values for the quality 
coefficient ('Ir) are considered: 'Ir = 42, 
49, 56, 63, and 70. 

As expected, flocks would be marketed 
at earlier ages for smaller ..:Y's. The 
producer takes advantage of the fact 
that the bird reaches top quality at an 
earlier age. It appears, however, that the 
sensitivity of cutoff prices to variation 
in the quality coefficient is fairly uniform 
over ages. This is a result of two offset­
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ting factors. The recursiveness of the 
system works in the same direction as in 
the previous cases. But the effect of in­
creases in the quality parameter is in­
creasing weight at older ages, and this 
has the opposite effect on cutoff prices. 

Price of feed. - Price of feed has been 
varied as follows: P1 = .20, .25, .30, and 
.35. 

The direction of influence of increas­
ing feed price is the same as for increas­
ing 'Y· Price of feed is controlled by the 
government in Israel and used as a tool 
to subsidize or to tax producers. Since 
the price of feed is used as a policy tool, 
it is important to be able to evaluate the 
impact of changes in the price of feed on 
net returns of the producer. 

A similar sensitivity exercise for iden­
tical patterns of variation in parameters 
was conducted also for an assumed uni­
form distribution of output prices. The 
results are reported in table 6. Essenti­
ally, the results are similar, but there are 
some differences in the sensitivity at 

00 

Ph(P)dP = p -_(P*(x)) 'f 
2 

2 (P -!!) 

2 

P*(x) 

I 

earlier ages. As opposed to the uniform 
distribution, the normal distribution as­
sumes extreme values of prices to occur 
with a very low probability. That the 
difference in price distribution manifests 
itself in differences in sensitivity only for 
lower ages is attributable to the fact that 
at older ages the effect of low possible 
selling prices is overshadowed by the 
dominant influence of termination age. 

Computation based on the 
analytic solution 

The numerical .results in table 7 are 
based on direct solution of the set of 
equations (60), given the definition of 1f' 

in equation (52). The uniform distribu­
tion is assumed since it is convenient for 
computational purposes. The main pur­
pose is to ·demonstrate an alternative 
computational method and to show that 
the results obtained are the same as those 
from the functional equation method. 

Using the following derived results 
for the uniform dstribution 

P*(x) 

Hx f h(P)dP 

0 

1 H H H H H H ' and q,,+ 1+ 1 s+ ... + 1 s ... x 
for x = 

equations (52) and (60) may be rewritten: 

P*(x) -!! 
- ' P-E 

= 

8, 9, ... , X, 

(91) 

I f p - !'*(x + 1) C(x + 1)P*(x) = W,, l W(x P-E 
(92) 

_ 1f' + P*(x +I) - !! [P*(x +I) W(x +I) -C(x +I)]+ C(x) tf 
P-E 

for x = 11, 10, 9, 8, 7, and where H12 = 0. 
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TABLE 7 

DIRECT SOLUTION 


Iteration H 1 Hs H, H10 Hu H12 ,,. 

0.... ,,....... ,500 .500 .500 .500 .500 0 .2146 
1. ........... ,,.. .771 .660 .575 .497 .393 0 .2296 
2,, ""''""""" .736 .637 .561 .494 .384 0 ,2300 
3... ,,,,,,,,,,,,, ·.733 .634 .557 .490 .384 0 .2293 

IOP: functional 
equation solution ...... , . ,75 .65 .55 .50 .40 0 .2293 

The six equations in (91) and (92) are fork = 1, 2, ... , 20; 
solved for the six unknowns-11', P*(ll), x=7,8, ... ,11;
P*(lO), 	P*(9), P*(8), and P*(7). As 

t _ {1, 2, ... , 26 (season 1)
suggested on page 26, one starts from an - 27, 28, ... , 52 (season 2). 
initial 11' computed for all P*'s equal to 
the corresponding expected prices, then 
solves recursively for P*(ll), P*(lO), Ep[gn-1(x, t)] and Ep[gn-i(X, t)] are de­
... , P*(7). The amount of computation fined in (90), except that different price 
is relatively small and can be performed distributions are assumed for seasons 1 
by desk calculator.29 and 2. This means that seasonality is 

introduced only through the price of 
An interseasonal model broilers. Results are presented only for 

the normal distribution of prices. 
Two seasons are defined-one cor­

The solution involves the same re­
responding to the first 26 weeks and the 

cursive 	 method as the homogeneous
second 	 corresponding to the last 26 

model, except that the calendar date ap­
weeks. 

pears explicitly. As a result, the solution
Using the same approximation as in 

for IOP contains 52 policies, one for
(90), equation (63) may be written: 

each week. Convergence is verified when 
gn (x, t) = max two consecutive years have identical 

(93) 	 solutions. 
Because of the simplicity of a model 

S: R(x, t) - C(x) + Ep[gn-1(7, t - 1)]] assuming only two seasons, convergence 
[ lj: Ep[gn-1(X + 1, t 1)] was very fast. Solution was obtained in 

29 In the case of the normal distribution: 

Set p = p - I', pis price as a standard normal variable. 
fip 

Then 

j p e-<112)p 2 dP = j e-" du = e-<112)P*(xl2 

P*(x) P*(x) 2 

for which tables are available where u (1/2)p2 , and 
m 

(1 - H x) = J e-(1t2)p2 dp 
P*(x)

for which tables are available. 
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TABLE 8 

INVARIANT OPTIMAL POLICIES FOR THE SEASONAL MODEL 


(NORMAL PRICE DISTRIBUTION) 


Week (t) H, H, H, 

1-19.,. .. ,. .. .85 

20 ........... .85 
21. " ..... ,.. .80 
22 ........... .80 
23 .85 
24 .... ,,., .. .85 
25 ... .90 
26........... .95 

27-50 ........ .55 

51. .......... .50 
52 ........... .40 

.70 

.75 

.70 

.65 

.70 

.75 

.85 

.90 

.50 

.45 

.25 

.60 

.65 

.60 

.60 

.55 

.60 

.75 

.85 

.45 

.40 

.20 

H10 

.50 

.50 

.50 

.50 

.45 

.40 

.65 

.85 

.40 

.35 

.15 

Hu 

.35 

.40 

.40 

.35 

.35 

.30 

.30 

.75 

.30 

.30 

.10 

Ha 

0 

0 
0 
0 
0 
0 
0 
0 

0 

0 
0 

the second year and verified in the 
. third. Figure 3 and table 8 present the 
optimal policy for the entire year. 

For t = 1 to t = 19, a homogeneous 
intraseasonal IOP for season 1 is ap­
parent. Fort = 20 up tot = 26, the IOP 
reflects the transition from season 1 to 
season 2. As one would expect, the pro­
ducer keeps his flocks for an additional 
time in order to make extra profit by 

entering season 2 with relatively older 
flocks. t = 27 to t = 50 represents a 
homogeneous intraseasonal IOP for sea­
son 2. Finally, t = 51 and t = 52 repre­
sent the transition period from season 2 
to season 1. This is shorter than the 
other transition period, reflecting a 
policy for the producer of disposing of as 
many flocks as he can before entering 
the low-price season. 
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Index 
of 2P 
Cutoff 
Pricellf 

17 

16 

15 

14 

13 

12. 

II 

10 

9 

8 

1 

' 
5 

+ 
3 

••••,• . 

•
• 

•
• 

• 

\ .•
\ 

••. 
\ 

'·.......... 

t=26 ..... •• ......... 

t=25--- ••......... 

t=24---­ ••......... 

t=23 +++++ •• 

t==22 ... _._ 

t=21 00000 t=52- •.. - ••• 
t=20_ 000 - t=51---­

t=l-19 As t=27-50 ~ 
(Season 1) (Seas'tnf .2) 

0 .....~--~----t--~~-----+----------+----------+----------+----------...~ 
7 8 , 10 II 11 

Age 
Fig. 3. Invariant optimal policies for the seasonal model. (Prices corresponding to the index of 

cutoff prices are tabulated in Appendix Table A-1. t denotes week. Season 1: October­
March [t 1, 2, ... , 26]; season 2: April-September [t Zl, 28, ..• , 52].) 
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APPENDIX TABLE A-1 

COMPUTED BROILER PRICES, BY SEASON 

Cumulative 
density 

Normal distribution 

Season Season 

Uniform distribution 

Season Season 

Index H(P) 1 2 1 2 

IL (Israeli pounds) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

.05 

.10 

.15 

.20 

.25 

.30 

.35 

.40 

.45 

.50 

.55 

.60 

.65 

.70 

.75 

.80 
,85 
.90 
.95 

1.00 

.850 
1.003 
1.088 
1.149 
1.202 
1.249 
1.293 
1.331 
1.369 
1.407 
1.443 
1.481 
1.519 
1.557 
1.601 
1.648 
1.701 
1. 762 
1.842 
2.000 

1.124 
1.308 
1.411 
1.485 
1.549 
1.605 
1.659 
1. 705 
1. 751 
1. 797 
1.839 
1.885 
1.931 
1.977 
2.031 
2.087 
2.151 
2.225 
2.328 
2.512 

1.005 
1.058 
1.112 
1.165 
1.218 
1.272 
1.325 
1.379 
1.432 
1.485 
1.539 
1.592 
1.646 
1.699 
1. 752 
1.806 
1.859 
1.913 
1.966 
2.019 

1.255 
1.318 
1.381, 
1.444 
1.508 
1.571 
1.634 
1.698 
1.761 
1.824 
1.887 
1.950 
2.014 
2.077 
2.140 
2.203 
2.267 
2.330 
2.393 
2.456 
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