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The empirical problem of natural resource management is typically the 
intertemporal allocation of product flows and resource stocks under uncertainty. 
National forest harvest scheduling is conceptualized in this study as a stochastic 
optimal control problem. In theory, optimal solutions to most stochastic control 
problems exist, but required computer costs are excessive even for problems of 
moderate dimensions. Hence, approximate solution techniques are required, and 
this study employs one such approach called the Linear-Quadratic-Gaussian (LQG) 
control method. 

Given a set of desired or target levels for stocks and flow variables, the LQG 
optimization criterion is to keep the actual evolution of the system close to the 
target levels. Optimal harvest levels are given as the solution to a simplified model 
of the actual problem where the model is characterized by quadratic preferences 
and linear system dynamics. Imperfect observation of timber stocks is also modeled 
in the LQG approach, and part of the solution is a recursive estimator of timber 
levels that is the optimal estimator given management objectives. The relative costs 
of uncertainty are also calculated in the LQG solution. Empirical results isolate 

. those sources of uncertainty critical to management actions and indicate superiority 
of recursive estimation over static estimation. 
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Bruce L. Dixon and Richard E. Howitt 

UNCERTAINTY AND THE INTERTEMPORAL FOREST MANAGEMENT 
OF NATURAL RESOURCES: AN EMPIRICAL APPLICATION 

TO THE STANISLAUS NATIONAL FOREST 

1. INTRODUCTION 

Managers of replenishable natural resources are faced with a stochastic intertemporal 
optimization problem. The sources of uncertainty for the specific case of national forests 
can be divided into three categories. The first involves uncertainty about the actual forest 
dynamics, including the evolution of forest resource stocks over time and the impact of 
management actions and random disturbances upon that evolution. The second category 
is uncertainty in estimating the extent of resource stocks. Current U. S. Forest Service 
policy is to take a decennial survey to estimate timber stocks. The third category of 
uncertainty is specification of the preference function and its parameters. This category 
encompasses not only the underlying objectives (such as maxi)llizing profit or social benefit) 
but also the parameters that measure those goals (such as prices, costs, or social benefits 
per unit of good produced). 

Since uncertainty enlarges the management problem, actions that reduce uncertainty 
should be considered and perhaps taken by the manager. Such consideration cannot be 
pursued independently of production decisions. Uncertainty usually reduces returns from 
an enterprise. The extent of reduction will depend on the form of the decision-maker's 
preferences and on how directly a source of uncertainty affects a given production process. 
In all but the most special of problems, optimal production levels change when uncertainty 
is explicitly recognized in formulating a problem. 

The current national forest management procedure is to allocate national forestlands 
according to various uses, such as wilderness preserve or timber production. Plans are then 
generated to determine management actions on the classified lands. This procedure largely 
ignores uncertainty, assuming implicitly that using the means of random variables will 
yield essentially optimal plans. This is the current procedure because, for such a large-scale 
problem, explicit recognition of uncertainty would make the problem impossible to solve 
with today's computers. Since an optimal solution to the exact stochastic problem is too 
costly or impossible to obtain, an approximate solution technique must be used. 

Numerical methods are required ;to solve the general form of stochastic intertemporal 
optimization problems. Even problems of very modest dimensions entail computational 
costs that rapidly become excessive. Hence, many natural resource production problems 
are solved by assuming away uncertainty. Engineers, encountering stochastic problems 
mathematically similar to those in resource production, have developed approximate 
methods that explicitly recognize stochastic behavior and have computationally efficient 
solutions. One such method, the Linear-Quadratic-Gaussian (LQG) control model, has 
been used in aerospace guidance systems and has been adapted to some economic problems. 

A two-stage optimization process is used in this study. The first stage consists of 
solving a deterministic version of the optimization problem, yielding a time series of target 
levels for the system variables to attain. The second stage involves using the LQG solution 
to adjust managerial (control) actions as the system is actually evolving through time, 



2 Dixon and Howitt: Jntertemporal Forest Management 

allowing the system variables to be kept close to their predetermined target levels. Thus, 
without directly optimizing the underlying stochastic managerial problem, the technique 
offers an approximate method for stochastic optimization. 

Potentially, use of the LQG model by a manager or policymaker can yield several 
types of information relevant to decision making. First, the optimal actions to take at 
a given time can utilize all available information since the decisions are made sequentially. 
Second, cterivation of the expected value of the objective function yields the costs of 
several sources of uncertainty. The costs are related directly to the policy being 
implemented. Third, the LQG employs an estimator of the current state of the system 
that is optimal with respect to the management goals. To obtain the above types of 
information, the underlying optimization problem must be amenable to representation as 
an LQG problem. 

This study was undertaken to determine how successfully the LQG approach could 
be used \IS an aid to planning timber management. Required first is the examination 
of both :natural resource production models and the basis of the LQG optimization 
philosophy. An empirical case is then presented to determine how readily a timber 
management problem can be solved with the LQG, whereupon the empirical usefulness 
of the LQG for timber management can be appraised. On a broader scale, this study 
also investigates aspects of the LQG method that have inherent difficulties for application 
to economic and, particularly, natural resource models. 

The results of the study show that the LQG methodology can be usefully employed 
to solve empirical, stochastic, and natural resource management problems, thus yielding 
the user costs of deviations from targeted resource stocks and product flows. The values 
of improved precision in the estimates of the resource levels and production dynamics 
are also computed in terms of the cost of target deviations. The use of the Kalman filter 
approach to estimate the available resource stocks is shown to have considerable advantages 
over the conventional periodic sampling approach. For the model estimated and then 
sirnulated:in this study, the recursive estimates reduce the variances of the stock estimates 
by about one-half. The analysis of all of the sources of imprecision in this specific empirical 
study shows that improvement of the estimated relationship between timber volume and 
basal area would enhance both the optimal control actions and the precision of the 
estimates of timber stocks. 

\he study is dichotomized into two major parts--methodological and empirical. Each 
part ~as several sections. Section 2, following this first introductory section, reviews the 
principles of natural resource production in a deterministic environment. It also discusses 
the nature of the changes thrust upon the decision-maker when uncertainty is introduced. 
Also considered are appropriate management strategies in a stochastic environment such 
as maximizing expected utility, acquisition of better information, and perturbations 
imposed on the system in order to obtain better information. The burden of computational 
constraints is examined for justification of the use of an approximate strategy. Section 3 
develops the LQG optimizing technique from both philosophical and pragmatic points 
of view. It includes a detailed exposition on the use of the LQG and a brief survey of 
problems that interfere with the use of the LQG for natural resource production problems. 

The next two sections delve into an empirical application of the methodology 
developed in the two prior sections. Section 4 presents the estimation and construction 
of an LQG model of harvest activities on a mixed-conifer timber type that is in the 
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standard component (the main area allocated to timber production) of the Stanislaus 
National Forest. The species mix in this study is limited to permit inexpensive 
experimentation with the model, and harvest activities are modeled because timber 
production is a major concern in national forest management. Since the LQG technique 
models management objectives in addition to resource growth dynamics, an analysis is 
made of current management practices and policies on the national forests. Additionally, 
the acceptability of the LQG growth dynamics is appraised. Section 5 analyzes the results 
of several simulations under various stochastic assumptions and policies. This analysis reveals 
the extent to which the LQG technique can be used as an aid to forest management 
under uncertainty. Section 5 emphasizes optimum harvest levels under uncertainty, 
estimation of inaccessible timber stocks, and evaluation of the costs of uncertainty. 

Section 6, the final section, summarizes both the implications of the particular 
empirical application and more general methodological questions concerning the use of 
the LQG approach for natural resource management that are raised in the empirical 
application. 

2. NATURAL RESOURCE PRODUCTION UNDER UNCERTAINTY 

The method for scheduling production under uncertainty that is considered in this 
study is suitable for many objectives and types of resource production. Since the method 
utilizes production levels given by a solution to a deterministic model in the optimization 
process and the approximate stochastic model minimizes deviations about these levels, 
Sections 2.2 and 2.3 briefly summarize a deterministic model 1\lld necessary conditions 
for optimal,.production rates, respectively. Section 2.4 then extends the deterministic 
model to include uncertainty and ccmsider$ optimal strategies in response to various sources 
of uncertainty. Section 2.5 discusSes the computational aspects of optimal sfochastic 
solutions as criteria for approximation. Given the wide array of topics included in'. natural 
resource economics, the areas of resource theory considered in this study must be defined. 
This is done in Section 2.1. 

2.1. Definitions and Assumptions Underlyjng the Study 

Resource production is defined in this study as (1) the transformation of a given 
natural resource stock into a flow of goods or services to be consumed directly or used 
as inputs to subsequent goods and services and (2) activities to upgrade the resource stock. 
The present study is concerned with natural resource production at the firm level within 
a given geographical area, and the general management policies are given by legal mandate. 
Since such guidelines can rarely be put into a mathematical form suitable for use in an 
optimization model, it is assumed that the decision-maker completes the preference 
structure to yield a usable objective function for model optimization. The empirical aspects 
of such a construction for national forests are considered in 4.2. 

Given that the legal mandates suggest policies that would differ from those derived 
from profit maximization, the consideration of nonpecuniary externalities becomes 
relevant. Such consideration may require measuring such things as option demand and 
the effects of irreversible resource changes. In most stumpage-oriented, harvest-scheduling 
models, a zero value is assigned to the present use of standing stocks not harvested in 
the current period, implying that no current utility results simply from their existence. 
By modeling natural resource problems as optimal control problems, it is possible to include 
some external effects associated with the level of the resource stock. This is accomplished 
by recognizing explicitly the current utility of resource stocks in the management criterion 
function. 
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In summary, this study is concerned with a microeconomic analysis of a publicly 
owned natural resource on the firm level. Production flows are determined from legally 
mandated policies given in an amorphous form that represent society's preferences. Given 
the above limitations, resource production in a deterministic environment is now 
considered. 

2.2. A Firm Model of Resource Production 

Resource production is typically viewed as the balancing of current utility from a 
resource stock against future utility, given biological constraints on stock evolution. Utility 
or profit is generated by the output from the resource, u~, that requires stock 
transformation plus the simple existence of the stock, although distinction between the 
two is sometimes arbitrary. For lack of a better name, the latter value is labeled the 
stock's temporal existence value. As an example, a standing forest in a recreational society 
generates utility by existing and being accessible. A resource production function can be 
written, letting xt be a vector of resource stocks (states) and ut a vector of inputs and 
outputs (controls) as: 

0, ... , T - 1 (1) 

where 

ut ( u~, ui) 

uf vector of resource outputs 

and 

u~ = vector of inputs to improve or alter the resource stock. 

Relationship (1) is frequently referred to as the system dynamics. 1 

Given the hypothesized relation of ut to the variable input, it is then possible to 
construct a profit or social welfare function of the form 

T-1 
J Z f3t (xt, ut) + /3T (xT) (2) 

J t=O 

where J is assumed to be concave. To illustrate the role of temporal existence values, 
assume for the moment that J is a profit function of the form 

where P( ·) and M( ·) are vectors of price and cost, respectively. They are constructed 
so that price can be a function of the quantity marketed, and the cost of ut can be 
increasing or decreasing. 

1As specified, (1) does not have any capital stocks. These can be added by partitioning xt to include 
both resource and capital stocks. The functional form, Ft• would become more complex. Since capital 
stocks do not enter directly into the empirical application, they are not explicitly considered here. 
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The function P(x) is the temporal existence value of a unit of the stock of resources. 
It does not include the imputed value of the resource stock as a source of future streams 
of output, Uf+i' Vi ~ 1. This latter value is the future profitability that can be attributed 
to Xt as a source of future output. Scott (1967) defines this value as the user cost of 
consuming resources today, i.e., foregone future profitability or utility. When P(x) =I= 0, 
it also becomes a component of user cost as is shown analytically in 2.3. 

Given the form of (1) and (2), the basic problem of resource economics is equivalent 
to an optimal control problem which can be solved by various methods discussed in 2.3. 
In addition, there are certain restrictions on (I) and (2) that (2) is assumed to be separable 
with respect to time, that (1) and (2) are each differentiable at least once, and that (2) 
satisfies the Kuhn-Tucker constraint qualification. Since most timber management models 
are in discrete time, the discrete approximation is used accordingly throughout this study. 

The control or natural resource production problem can be written compactly as: 1 

T-1 
Max J ~ ~t (xt, ut) + ~T (xT) (3) 

t=O 

subject to 

xt+l = Ft (xt, ut) (4) 

ut e {u}, Xo = x(O). (5) 

The set denoted by U is assumed to be convex and contains all feasible values for the 
controls, and x(O) is the known initial state or stocks of resources. 

2.3. Optimal Rates of Production Under Certainty 

The necessary conditions for optimality in the above problem can be developed b~ 
dynamic programming or the use of the maximum principle of Pontryagin et al. (1962). 
The latter approach offers a more enlightening interpretation although--like the 
Kuhn-Tucker conditions--it provides no explicit algorithm for obtaining a solution, 
whereas dynamic programming is a solution technique. 

The actual Pontryagin conditions were developed for the control problem in 
continuous time, and they have subsequently been derived for discrete problems by Athans 
(1968), among others. One such approach is to develop (3)-(5) as a problem using Lagrange 
multipliers; then the Pon tryagin conditions become identical to the Kuhn-Tucker 
conditions. Following Burt and Cummings (1970), (3)-(5) can be rewritten as 

1The objective functional (3) is composed of two terms: the intermediate function and the 
terminal-value or final-state function,~ (xT). A "functional" is defined in Baumol (l 970) as a function 
whose domain comprises a set of functions. 

Additionally, the optimal solution could be obtained using classical mathematical programming as 
discussed in Canon, Cullum, and Polak (1970). 

2 
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T-1 T-1 
L ~ f3t (xt, ut) + /3T (xT) - ~ 


t=O t=O 


(6) 

T c 
~ l; 

t=O i=l 

1, .. ., - l 

(7) 

j' + 1, ... , c. 

The last term in (6) includes both strict equality and inequality constrain ts on the state 
and control variables. For gt i• i < j, the constraint is a strict equality. For gt i• i :;;,,, j, 
it is assumed that inequality constrain ts apply. The kt i define the boundary of the 
feasibility set. Note that it is through the gt i that any non~egativity constraints are placed 
on the ltt' ut. ' 

A complete derivation and interpretation of the necessary and sufficient conditions 
are given in Burt and Cummings (1970). To lay a groundwork for understanding stochastic 
control problems and appraising approximate solutions, observe that the optimal rate of 
production is 

aL 
0 0, .. ., T - 1 (8)aut 

where At;~·1 gives the marginal value of an additional unit of Xt+1 over the remainder 
of the time horizon and is derived recursively from 

aF'1 ag~ 
A. +- A. +--v 0 t 0, .. ., T - 1. (9)

t ax1 t+l axt 't 

Thusl At is the user cost of a natural resource which Scott defines as "... the present 
value of future profit foregone by a decision to produce a unit of output today" (Scott, 
1967, p. 42). Recall that it is argued in 2.2 that user cost is a function of future 
consumption streams as. well as its temporal existence value which is represented by a13t/axt 
in (9). By solving (9) for At, it can be seen that user cost is partially a function of the 
existence value of a resource. In a competitive industry with complete futures markets, 
At would be the price of a unit of resource. 

Given the interpretation of At, (8) can be rewritten as follows: 

(Ba) 

Assuming aFt/au7 < 0, the ruie for resource production is to increase output in the 
present until the marginal social benefit less boundary costs is just equal to the user cost. 
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Necessary conditions (8) and (9) only verify whether a given solution is optimal; 
they do not provide a solution algorithm. The system (3)-(5) can also be solved by dynamic 
programming. To illustrate the use of dynamic programming, the recurrence relation for 
the solution is written: 

(1 O) 

where the function At+ 1 (xt+1) gives the optimal action for whatever value of xt+1 results 
as a consequence of the action, ut, taken in period t. The term At is the total value 
of the objective functional for the problem beginning with xt. From (10), it is seen to 
be composed of two parts: the intermediate function giving current profit, f3t (xt, ut), 
and the profit that will accrue to xt+1 over the remainder of the planning horizon, At+ 1. 

Equation (10) solves for the optimal controls using backward recursion; that is, the 
solution is to calculate the optimal uT -i given xT-i (i = 1, . . ., T). Burt and Cummings 
(1970) point out that this is a Markovian dependence structure in the decision process. 
From (10), it can be observed that, once Xt is known, the Ut-i' i = 1, 2 ... have 
no effect on ut. Hence, the current state variables completely summarize the effects of 
all prior controls. 

In the problem where parameters are known with certainty, the entire trajectory 
of control variables can be derived at t = 0. This is called a pure open-loop strategy. 
In stochastic problems such decision strategies are inefficient. A sequential decision process 
yields a higher expected return, as discussed by Charnes, Dreze, and Miller (1966), since 
current decisions are computed with the use of all available information. The difficulties 
introduced by the inclusion of uncertainty are discussed further in 2.4. 

In summary, the necessary conditions for optimal production of resources require 
that the marginal benefits of current consumption be just equal to the marginal profitability 
of having that unit of resource in the future. These conditions are obtained via the discrete 
maximum principle, though they also 5an be derived using dynamic programming. Dynamic 
programming is used also for stochastic problems which suggests, at this point in the study, 
that some strong parallels exist between the necessary conditions for deterministic and 
stochastic problems. 

2.4. Natural Resoun:e Production in a Stochastic pnv:ironment 

In this settion the assumption of perfect knowledge of the system and goals is relaxed. 
Several sources of uncertainty that arise in natural resource moµels are classified and the 
resulting optimization problems considered. 

For natural resource control models, stochastic behavior arises m three ways: 

1. 	 Uncertainty about the structure and parameters of the objective function 
often exists. 

2. 	 There is uncertainty about the mathematical form of the system dynamics. 
Given the exact form of the dynamics, there may be uncertainty about 
the exact parameter values. 
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3. 	 The state variables or resource stocks of the system usually cannot be 
observed perfectly. Since each type of uncertainty presents distinct 
problems, they are discussed in three separate sections. 

2.4.1. 	 Uncertain Rewards and Optimal Strategies 

With Respect to Uncertainty 


In many empirical natural resource problems, the objective function parameters are 
uncertain to the extent that the exact demand curves may not be known or there is 
uncertainty about the rates of substitution between resource uses in society's preferences. 
Additionally, the decision-maker must determine some strategy to cope with uncertainty. 
Thus, two problems are discussed in this section: (1) the uncertainty about the parameters 
of the objective function and (2) the general problem of selecting a strategy for 
optimization regardless of the source of uncertainty. 

In this study it is assumed that the decision-maker combines the legal mandates 
and his perceptions of the wishes of society into a social utility function and then attempts 
to maximize this function. In a sense this means that the decision-maker acts as an agent 
to combine and order the conflicting wants of society into a scalar-valued function. 
Realistically, he is not sure that the utility function, so constructed, is the one that will 
maximize utility; but, at some point, some agent must decide which set of outcomes 
is preferred to the others. Uncertainty about the utility function can be represented by 
modeling parameters ag random variables. Alternatively, a set of preference functions can 
be constructed and optimal solutions computed for each structure to identify the structure 
or combination of structures that is optimal. This latter approach is discussed further 
in 4.3.l and in Rausser and Freebairn (1974). 

The presence of some form of uncertainty in the problem requires the adoption of 
a strategy or posture toward uncertainty. In this study the control problem is optimized 
by maximizing expected utility. As discussed in Dillon (1971), maximizing utility by 
maximizing expected utility is what a decision-maker should do whose preferences satisfy 
ordering, continuity, and independence. Maximizing expected utility provides the 
foundation for the similarity between the necessary and sufficient conditions in 
deterministic and stochastic problems. In optimizing a stochastic problem, the expectations 
opelJ!tor is first used on the random components of the problem to express the mean 
value of these components in terms of their moments. Thus, the optimal stochastic 
necessary conditions can be developed in a form that is analogous to conditions (8) and 
(9). The optimal solution to a sequential stochastic problem will differ from deterministic 
solutions because the optimal actions are determined on a sequential basis. Dynamic 
programming is usually employed in stochastic problems since evaluation of the expected 
value is usually straightforward in a dynamic programming formulation. 

The decision-maker's range of possible actions increases in problems characterized 
by uncertainty because additional information or data can be obtained to lessen 
uncertainty. Such acquisitions can usually be clas8ified either as passive or active learning. 
The latter form of information acquisition is applicable only to sequential decision-making 
processes and is discussed more fully in Section 2.4.2. Passive learning generally involves 
the purchase of additional information. Such information should be acquired when the 
reduction in uncertainty less the cost of the information results in a net gain in expected 
utility. 
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To summarize, a public resource manager is in the position of having to make a 
continual series of decisions under uncertain circumstances. The decision set includes both 
decisions on the levels at which to set controls and actions to be taken to reduce 
uncertainty. These two types of action are not always independent of one another as 
discussed below; but, in either case, the decision-maker maximizes social utility by 
maximizing expected social utility given the assumptions on the decision-maker's behavior. 

2.4.2. Uncertainty in the System Dynamics 

In this section the problems posed by uncertainty about the parameters of the system 
dynamics are considered. Letting w be a vector of both underlying random behavior and 
unknown population constants, the system dynamics ( 4) can be rewritten: 

xt+l = F"f (x, u, w). (4a) 

The distinction between random parameters and population constants is important since 
it influences the choice of estimation technique. Classical sampling theory posits that the 
components of ware population constants as in ordinary least squares. A different approach 
is treating the wi as random variables (Swamy and Mehta, 1973). 

Under both the classical and error component specifications, estimation precision is 
typically increased by additional sample information. Often the manager of a particular 
resource cannot purchase passive information about those aspects of production that are 
unique to the particular physical assets and economic circumstances. For sequential 
decisions, however, new observations of data become available in each time period so 
that the parameter estimates can be updated at each decision point. The optimal decision 
for the current problem can be determined with the use of the updated parameters. When 
the parameter estimates are updated at each decision point, the control problem has a 
dual nature. The levels of the optimal controls affect both the current value of the objective 
function and the quality of future information about w. For example, let the system 
dynamics (4) be represented by the following scalar equation: 

(11) 

where 

E(et) 0 

E (et et) = a 

and a and b are unknown. Letting the objective function (3) be known and the quadratic 
in Xt and lit and using Bayesian methods, MacRae (1972) shows that the conditional 
covariance of (at, bt), I't, is given by 

-1 + Cxt-1' ut-1)' (xt-1' ut-1) (12)rt-] a 

and the conditional mean by 

(13) 
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Aoki (1967) shows that this problem cannot be solved analytically but requires instead 
numerical methods. 

The above problem is called the active learning control problem. It is analytically 
intractable because control levels interact with future values of the parameters as illustrated 
in {12) and {13). The decision-maker has a dual problem in these circumstances. From 
(12) and (13 ), the level of controls affects both the degree of precision on future parameter 
estimates and the current returns measured by the objective function. Since higher levels 
of precision may lead to higher expected values, it is frequently in the interest of the 
decision-maker to sacrifice some current control effort (current benefits or profits) to 
learn more about the system parameters. The adaptive control problem is a 
design-of-experiments problem and a control-determination problem, both inextricably 
related. It should be emphasized that, in a dynamic problem where the exact density 
of the parameters is unknown, maximizing the expected utility of the problem requires 
at least consideration of using an active learning strategy. Any other solution is suboptimal. 

2.4.3. Estimating the Level of Resource Stocks 

The problem for the resource manager of determining the level of existing resource 
stocks is both physical and economic. The resource may be quite literally inaccessible, 
eliminating the possibility of perfect measurement as with mineral or petroleum deposits. 
The cost of determining the exact quantity or quality of the resource may be prohibitive 
in the sense that exact assessment of the extent of resource stocks would cost more than 
the resource enterprise would ever be worth. This i_s particularly true if a continually 
current estimate of resource stocks is desired. Such ah estimation problem is referred to 
in engineering literature as a filtering problem. Specifically, Gelb (1974) defines filtering 
as estimating the current level of the state vector given all past measurements. 

Filtering methods require the use of an observer relationship which can be added 
to the control problem specification {3)-(5) and represented as: 

(14) 

where Zt is the observed data and Vt is a random error vector usually assumed to have 
expyctation zero and a finite variance that indicates observer or sampling precision. 

In a control problem the only data available are assumed to be xo, z1, ... , Zt and 
uo, ul, .. ., ut-1· Thus, the filter combines this information in some fashion to determine 
an estimate of xt that is optimal with respect to the control problem. The exact form 
of the filter depends on the algebraic and stochastic characteristics of the system 
dynamics (4) and the observer relationship (14). 

Observations are costly, and the manager must decide how precise the observation 
process should be. Specifically, if the variance of Vt is zero, (14) represents a perfect 
observer. In many instances the manager can control the variance of vt by either using 
more precise technologies or increasing the sample size. A detailed model for selecting 
optimal sample size is given in Rausser and Howitt (1975). Only under fairly stringent 
assumptions can a stochastic control problem be solved to yield a solution to both the 
optimal control problem and the setting of optimal sampling intensity. 
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2.5. Computing Optimal Solutions 	to Stochastic Control Problems: 
Difficulties and Approximations 

The above discussion places very few restrictions on the functional form of the 
objective function or the system dynamics. A solution to the deterministic problem can 
be derived by dynamic programming. In practice, this proves quite difficult and frequently 
impossible. For all but the most specific of algebraic forms, computer storage requirements 
for solving even a moderately sized problem can be excessive. 

When the deterministic assumption is relaxed, obtaining an optimal solution becomes 
even more difficult. Assuming that the uncertainty is of a type requiring an active learning 
strategy for an optimal solution, a numerical approximation almost inevitably has to be 
made. Further complications arise when the noisy observation problem is included as part 
of the optimization problem. Once again, most empirical problems require an approximate 
filter (estimator). 

Given that the optimal solution to the exact problem cannot be obtained, approximate 
procedures must be employed. Many methods exist for making approximations such as 
assuming away uncertainty or selecting arbitrary decision rules. The best feasible 
approximate technique for stochastic control problems is difficult to select because no 
truly optimal solution can be computed with which approximate solutions can be 
compared. 

An obvious criterion for selecting a particular approximate solution technique is that 
the approximate problem closely resembles the actual problem. Other criteria become 
important when the purposes of developing a model are considered. From the viewpoint 
of social or economic planning, it is important that the technique generate answers at 
a low cost since extensive experimentation is usually required to both validate the model 
and determine which policies give the "best" performance. Computational ease is also 
important since it is often of interest to determine the implications of various assumptions 
or changes in the model structure. 

This study is particularly concerned with the effect of uncertainty on natural resource 
management. Questions that need to be answered are: What sources of uncertainty are 
the most costly? How do these costs vary with changes in the management objective 
function? What is the impact on production levels of assuming that parameters are known 
when they are really unknown? What is the best method of combining and utilizing sample 
information? Does neglecting the active information aspect of stochaStic optimization give 
vastly suboptimal results? 

The above questions can be answered, at least in part, with the LQG control model--a 
technique developed for the control and analysis of physical systems. Most of the 
developmental work and applications to date have been in the engineering profession. Its 
use for economic problems is suggested by Athans (1972) who summarizes the method 
in tutorial fashion. Recent applications by Outlet (1976) and Walsh and Cruz (1976) have 
developed variations on the LQG method for analysis of macroeconomic systems. The 
procedure and an analysis of the LQG technique are presented in detail in Section 3. 1 

Three strong points recommend its use in studying and making decisions for natural 
resource problems. First, it is adynamic control model. Thus, the necessary and sufficient 

1Infra, p. 12. 
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conditions for its optimality are analogous in principle to the conditions needed to obtain 
the optimal solution to the actual resource problem. Second, the LQG method explicitly 
includes many forms of stochastic behavior, and an analytical result (as opposed to 
numerical or approximate result) can be obtained for many types of stochastic behavior. 
In addition, the costs of uncertainty as it relates to the objectives of resource management 
can be evaluated. Third, the solution to the LQG problem is analytical under fairly plausible 
assumptions. This provides for model experimentation and analysis at a low cost in 
computer time. 

Besides furnishing insights on the effect of uncertainty on problems in the management 
of natural resources, this study is concerned also with appraising the flexibility and 
applicability of the LQG technique to a natural resource problem on a microlevel. Since 
the LQG approach is a comparatively new technique in economic analysis, its performance 
must be evaluated in an empirical setting. The LQG methodology is set out and examined 
in Section 3 below and then applied in later sections. 

2.6. Summary 

This section has derived and interpreted the basic properties of an optimal 
deterministic natural resource model. The deterministic assumptions do not hold for 
empirical resource models. When the stochastic nature of a natural resource problem is 
recognized, the decision-maker is usually faced with a dual problem of optimization with 
respect to the objective function and a design-of-experiments component. Solutions to 
this dual optimization problem usually must be computed numerically. This, in tum, is 
compounded by the "curse of dimensionality" which is a limiting factor for deterministic 
problems as well as ·stochastic problems. These two factors force the use of approximation 
techniques which should be so selected that they are practical and closely resemble the 
actual problem. The LQG model appears to possess these properties and to be useful 
for management of natural resource production. To pursue this hypothesis further, the 
LQG technique is examined more closely in the following section. 

3. AN APPROXIMATE STOCHASTIC CONTROL MODEL 

Section 3 analyzes the steps and procedures of the LQG method. In 3.1 the LQG 
op~mization philosophy and the analytical solution to the LQG control problem are 
discussed. Section 3.2 examines the implications of relaxing some of the assumptions of 
the LQG model that provide for the analytical solution. Approximate solutions to these 
problems are suggested. Section 3.3 covers one of the more important aspects of the LQG 
method, particularly as compared with deterministic models--evaluation of the costs of 
uncertainty. 

3.1. The LQG Model and Optimization Philosophy 

The LQG optimization technique is a three-step procedure. This section examines 
each step closely to indicate both the computational steps required and the nature of 
the approximate optimization problem. The LQG optimization philosophy which briefly 
is to keep the actual evolution of a system "close" to a predetermined path is analyzed 
most clearly when discussed simultaneously with exposition of the steps. 
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3.1.1. Step One: Specification of Target Trajectories 

The first step of the LQG procedure is to obtain a set of target levels for the state 
and control vectors. These targets become the ideal levels that the decision-maker has 
for the system; any deviation from them results in a cost or loss. The method suggested 
by Athans (1972) is to assume that algebraic description of the problem is deterministic. 
Under that assumption, the deterministic control problem is solved to give a time trajectory 
of targets for the states and controls to attain. Let those respective target values for the 
state and control variables be denoted by x{ and uf. The optimization criterion of the 
LQG method, as developed in the following two steps, is to keep the real time evolution 
of the system as close as possible to those targets. 

The intent of this first (prior) optimization problem is to define the approximate 
area where the state and control vectors will be. By assuming that the neighborhood of 
actual system deviation is small, the modeler can more confidently construct 
mathematically simplified descriptions of objectives and system dynamics. This confidence 
is inspired, in great part, by Taylor's theorem, of which explicit use is made shortly. 
With this prior knowledge, the modeler need not construct objective and dynamics 
functions in algebra sufficiently complex to cover any possible set of values the system 
may take on. 

Two remarks should be made here. The first is that there is little likelihood that 
the deterministic solution will be identical to the optimal active learning stochastic solution 
of the actual problem. That is regrettable but unavoidable. Given that fact, the 
decision-maker would like to form an idea of how suboptimal the deterministic solution 
is. An intuitive way of gaining such an insight is to consider that the approximate model 
has random parameters in a neighborhood of the targets and examines whether an active 
learning strategy would be beneficial. This topic receives more attention in Section 3.1.3. 
The second remark concerns the solution of the deterministic problem. Without any 
additional assumptions on the algebraic form of (3) or ( 4), obtaining a deterministic 
solution via dynamic programming may be computationally infeasible if there are more 
than four or five state variables and five or six time periods. Thus, just to obtain a set 
of target values, (3) and (4) may have to be converted into an algebraic form that allows 
for a solution that is computationally feasible. 

3.1.2. Step Two: Design, Estimation, and Problem Solution 

Functional Form of the LQG Model 

Given that the trajectory of target levels has been established and the optimization 
philosophy is to keep the deviations of the controls and states near their target levels, 
this section seeks a description of how these deviations evolve over time and a more precise 
definition and justification of close. Since one of the objectives of the approximation 
scheme is to yield a computationally convenient model, a linear model of variable deviations 
is developed. The linearizations are obtained via a Taylor-series expansion about the 
precomputed target levels. The target responses are related by 

(15) 

(16) 
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where (1 S) is the system dynamics used in deterministic optimization of Step One, and 
(16) is the output relationship that indicates what observations, zt, will result given the 
ideal state, xt, and how the observation process, Q(·), transforms xt' into zt'. Upon 
expanding F and Q about xf and uf and defining a new set of variables 

x* u* 
t t 

one can write 

(17) 

Q (x, t) (18) 

where I* implies that the partial derivatives are evaluated at the optimal values of the 
arguments. The a* and 1* denote the higher order terms of the Taylor-series expansion. 
One may generalize and then write: 

(19) 

(20) 

where the elements of At are defined as 

(21) 

an n x n time-varying matrix obtained by evaluating the elements of the Jacobian aF/ax
1at the precomputed known time sequences of xt' and uf. Similarly, 

uf 
(22)x*t 

(23) 

where At, Bt, and Ct are deterministic. Relations (19) and (20) are exact. In computing 
the solution to the LQG problem, the higher order terms of the Taylor-series expansion 
are represented by normally distributed random variables with mean zero. Thus, the 
approximate stochastic model of (4) and (14) is written as 
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(24) 

(25) 

where ~ N (0, ftt) and vt ~ N (0, Ot). In (24)-(27), oxt and et are n x l, i)zte1 
andvtarem x l,outisr x l,Atisn x n,B1 isn x r,andCtism x n.Theestimation 
of n1 and 8 t is particularly difficult if (4) and (l 4) are not linear. Athans (i972) gives 
no precise formulas for estimating nt and et, but he suggests that nt and et should 
be designed to reflect the level of importance exerted by the higher order terms of the 
Taylor series. Thus, the more nonlinear (4) and (14), the larger ftt and et would tend 
to be. The design of ftt and 0 t may reflect, to a large degree, the judgment of the designer. 
When the filter for estimating oxt is more fully developed, additional insights arise to 
guide in the interpretation and estimation of ftt and et. In one respect the "size" of 
flt communicates the level of accuracy to the model of the approximate growth dynamics, 
and Ot communicates the level of precision of the observation procedure. 

Derivation of the objective function for the LQG model is comparatively less 
structured than the method for obtaining the system dynamics. The form of the 
approximate objective function is quadratic in 8xt and out, i.e., 

T-1 
J 0 ~ (ox~ Kt lixt + ou\ Rt out) + lix'T KT oxT (26) 

t=O 

where Kt and Rt are respectively n x n and r x r, and both are positive semidefinite 
(PSD). The use of a quadratic form has both practical and theoretical justification. On 
a pragmatic basis, as shown shortly, minimizing the expected value of J subject to (24)

0 
and (25) yields an analytical solution that can be computed rapidly. On a theoretical 
basis, Athans (1972) justifies the quadratic form as a means of keeping a(·) and 1(·) 
small which increases the validity of the linear system dynamics. The use of quadratic 
preferences for economic decision makin_g has been argued by Theil (1964). Some of the 
more persuasive economic arguments for quadratic preferences are that most economic 
choices are characterized by diminishing marginal utility and a changing marginal rate of 
substitution, both qualities exhibited by the quadratic form. In a test of the robustness 
of the quadratic form, Zellner and Geisel (1968) show that control solutions derived under 
the assumption of quadratic preferences are close to solutions for the correct specification 
of the objective ,function as long. as the underlying or true specification is symmetric. 
The symmetry property, of course, implies that overshooting a goal brings the same loss 
as does undershooting. This is probably a rare problem since the actual performance of 
a system is usually less than a theoretical optimal performance. To avoid overshooting 
targets, Chow (197 S) suggests setting the targets slightly beyond what the system can 
reasonably be expected to achieve. In the context of forestry, some uses of the forest 
are optimized at less than maximum volumes so that a loss naturally accrues to overshooting 
a target. 

The matrices, Rt and Kt, indicate the relative weight attached to control and state 
deviations, respectively. If deviations in control actions, ut, are more costly than deviations 
in the states, xt, then the values in Rt will be larger than those in Kt. Athans (1972) 
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discusses one method for selecting appropriate values for Rt and Kt in terms of the original 
deterministic objectives for some problems. Further guides for selecting the elements can 
be obtained once the analytical solution to the LQG problem is derived. 

The quadratic objective functional (26) explicitly defines the LQG optimizing 
definition of close. What it says is that the system shall be judged to be performing 
optimally if oxt and oui are both null. Any other value for either vector results in a 
cost or a loss that increases more than proportionally to the size of the deviatio1~. 

Estimating the State Y ector 

A cmsory examination of (24) and (25) shows that stochastic behavior is limited 
to the two error terrns, et and vt, and the initial state estimate, llxolo· The assumption 
that At, Bt, Ct, Kt, and Rt are deterministic is restrictive but allows for an analytical 
solution. The implications for relaxing some of the LQG assumptions are discussed in 
3.2. This section addresses the following problem: Given that the objective function is 
concerned with controlling oxt and out and that &xt is not assumed to be perfectly 
observed, what is the best way of estimating &xt, given all oui, i < t, all llzt, i ~ t, 
the system model (24) and (27), and no other information? The estimator desired is the 
one derived in the minimization of the expected value of J0 . 

The optimal estimator for the problem posed above is the Kalman filter (Kalman, 
1960). The proof of optimality is given in several sources, one being Aoki (1967). The 
optimality of this estimator for the above problem is due to the separation theorem of 
Joseph and Tou (1961). The separation theorem states that, for minimizing the expected 
value of 1

0 
, estimation of the state vector is separate from determination of the optimal 

controls, given the state vector estimate. Since the Kalman filter is the optimal estimator, 
this section presents and interprets the recursive equations that generate the optimal 
estimate. 

In addition to the assumptions that flt and et are known, it is assumed that the 
two error tenns are uncorrelated with each other for all t and uncorrelated with the initial 
estimate of the state deviations. Further, each covariance process is assumed serially 
independent of itself, e.g., Bt is independent of 0 t+i• i =I= o. 1 Given these assumptions 
and the others in this section, the Kalman filter can be visualized as a two-step procedure: 
a prediction stage and an updating stage. Because of the two-step nature of the estimator, 
itJis necessary to introduce some new notation. Specifically, the state variables are given 
two subscripts such that 6Xj lj is the estimate of oxi, given all of the observations /'jz 
up through and including 6zj. 2 The covariance of &Xj lj is written PiU• such that PiU 
is the covariance of 6Xj, given all of the data through period j. Given the normality 
assumption on ei 1.md vt and assuming that &XOIO is normally distributed with covariance 
Poto, it is shown in Aoki (1967) that all of the estimates of l>xt are also normally distributed 
and that oxt It is a sufficient statistic. 

u the error terms are serially correlated or cross-correlated with each other, the systerri can be 
augmented, and results similar to those presented can be de.rived as discussed in Meditch (1969). 

21n the optimal solution, lizt determines 011i: so that, by knowing ozt, 011i: is also known. 

1
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Beginning at the end of period t, the predict cycle begins with predicting tSxt+l 
by 

(27) 

with covariance 

(28) 

Simply, (27) is a linear combination of oxt It with a constant, Bt out, added so that 
the covariance (28) follows naturally. The second step commences at the beginning of 
period t + 1, when a sample is taken so that ozt+ 1 becomes available. A residual value, 
17t+ 1, is computed as 

(29)Tlt+l = ozt+l 

which is easily interpreted as the difference between what would be expected to be 
observed, given the predict estimate, and what is actually observed, ozt+l · If 7lt+l 0, 
then, intuitively, the new sample data agree with what is predicted, and no change is 
needed to update oxt+ l It· Rarely is 7/t+1 null. Thus, in the second step (update cycle), 
the information gained by sampling must be combined optimally with oxt+I It to yield 
the estimate of oxt+l lt+l· To do this, it is first necessary to compute Pt+11t+I as• 

The optimal estimate is given as 

(31) 

The matrix, Pt+ l It+ 1 Ci+1 8!)1, is referred to as the Kalman gain matrix. It shows how 
the residual vector should be weighted in adding it to ozt+ I It which has the identity 
as an implicit weighting matrix in (3 I). If the observation error is large relative to the 
predict error, Pt+llt' then from (30) it is clear that the second term on the right-hand 
side of (30) will become quite small, and Pt+l lt+l ~ Pt+I It· Additionally, in (31) a 
large Ot+l causes 8:;:+\ to be very small so that little significance is attached to the residual 
vector as is intuitively expected. If the observer is relatively inaccurate, then little reliance 
should be placed on the observation as a source of information about oxt+ 11 t+ I· Just 
the opposite result obtains if et+ I is small relative to Pt+ I It· 

Two remarks are in order here. First, observe that (28) and (30) are based on 
information that is known before the actual control problem begins. Thus, the Pilj is 
precomputable and unaffected by the control actions. This is a result of the separation 
theorem. The impact of the relative sizes of nt and 8 t on the estimates provides an 
additional guideline in estimating these covariances. If the modeler knows that the 
observation process is more inaccurate than the predict process, then this should be 
reflected in the construction and estimation of nt and et and will result in et being 
larger than nt· 

Derivation of the Optimal Controls 

The separation theorem and the solution to the LQG problem are well known in 
the control literature. Even so, the solution to the control segment of the problem is 
derived here in some detail to underscore an assumption that is troublesome for economic 
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problems in which some or all of the control and state variables have limited feasibility 
regions. Backward recursion, as employed in dynamic programming, is used to derive the 
optimal solution. 

The Tth period problem is to minimize the expected value of JT-l given 
oxT-llT-l where 

JT-l = lix.f 1 KT lixT-l + liu.f _ 1 RT-l ouT-l + .SXT KT oxT. (32) 

Anticipating the generalization to multiple periods, let HT KT so that, substituting into 
(32) for oxT from (24) and gathering like terms and employing the expectation operator, 
(32) can be rewritten as 

(33) 

To obtain the optimal control, the gradient of the expected value of (33) with respect 
to 8ut is set equal to zero giving: 

where 

It can readily be shown, as in Meditch (1969), that the solution generalizes to 

(34) 

t = 0, ... , T 


J 


0, ... , T - 1 (35) 

0, ... , T I. (36) 

Two remarks can be made about the solution of (34)-(36). First, the linear quadratic 
minimization problem is a control problem. Thus, the necessary conditions that (36) 
satisfies are analogous to those satisfied for production levels in the deterministic problem. 
Hence, the LQG model must weigh the current cost of control deviations against the 
user cost of deviating from the desired level of resource stocks in the future. The second 
remark is that the effect on But of the relative sizes of Kt and Rt can be analyzed in 
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(36). As Rt becomes larger relative to Kt+ l • (Bt Ht+ 1 Bt + Rt)-l becomes smaller. Hence, 
less change is made in the control vector for a given oxtit· The opposite effect, however, 
holds if Kt+ 1, is large relative to Rt. Then the controls become increasingly responsive 
to oxt 1t· These effects can help guide the choice of the relative weights of Kt to Rt 
in the design procedure of the objective function in step two. 

The expected value ofJt, given oxo1 O• oz1, ... , OZt, is: 

T-1 

~ tr Hi+I Qi 
i'= t 

(37) 
T-1 

+ 	 ~ tr A'i Hi+l Bi Gi Pili· 
i=t 

Since the last three terms of (37) are constants, they can be computed before the system 
starts to evolve in real time. These terms have an interpretation as costs of uncertainty 
and are discussed in more detail in 3.3.1. 

Sufficient conditions for a minimum are fulfilled if all of the Rt and Kt are PSD. 
This can be verified by examining the Hessian of (33) with respect to out and observing 
that Ht will always be .PSD given that Rt and Kt are PSD. This latter aspect is difficult 
to ascertain from (33) but is clearly illustrated in Chow (197 5). 

3.1.3. Step Three: The Real Time Solution 

The prior two steps occur before the system to be controlled begins to evolve. Once 
the system begins evolving, the control process is quite direct. At t = 0, the oua is 
computed given oxol o via (36). At the end of the initial period, ox l Io is computed 
using (27). An observation is then taken to generate oz1. Given oz1, ox111 is computed 
using (31 ). Then the whole cycle can be repeated until the end of the planning horizon. 
Clearly, given out, ut can be computed directly. 

To analyze the system for various properties or policies or to validate the model 
itself, experimental runs are typical. Such require, in many instances, simulating a series 
of ozt, t = 1, ... , T. This can be done by using historically observed values or by 
generating normally distributed random variables given the covariances of lixolO• et, and 
Vt. 

3.2. 	 Implications of Relaxing the LQG Assumptions 
and Suboptimal Controls 

Section 2.4.2 argued that the management of natural resource production is a 
stochastic control problem and that the optimal solution can be obtained only when active 
learning strategies are employed. The solution to the LQG problem, derived in 3.1 .2 is 
optimal without employing active learning strategies. Optimality of the solution results 
because all of the model parameters except et and vt are assumed to be known constants. 
When those assumptions are relaxed, as realism suggests, then active learning strategies 
become a relevant consideration. An additional problem that frequently arises in control 
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models of natural resources is keeping stock and production variables feasible. Because 
of the unconstrained nature of the solution, it cannot be assumed that use of the LQG 
model will guarantee feasible controls. 

The active learning aspect of control and possible approximations with uncertain linear 
dynamic coefficients are discussed in 3.2.1 I The control constraint problem is pursued 
in Section 3 .2.2. 

3.2.1. 	 The LQG Model With Stochastic Coefficients 

in the System Dynamics 


This section examines the implications of relaxing the assumption that At and Bt 
are known with certainty. It determines the impact of assuming that At and Bt are fixed 
when they are actually random, and it goes on to discuss when that assumption results 
in a nearly optimal solution. That is, it considers when an active learning solution is clearly 
required and when it can be closely approximated by a nonactive learning solution. 

To develop the above ideas, some of the problems involved can be best illustrated 
by assuming that At and Bt are random but that their joint density function is completely 
known for all t at t = 0 and that Ct, nt, and flt are still assumed known. In such a 
case an active learning strategy is not called for since nothing can be done to change 
the level of uncertainty in the At or Bt. If it is assumed that the state vector is perfectly 
observed, then this problem has an analytical solution as developed in Aoki (1967). The 
solution, a modified version of (34)-(36), is referred to as a pure stochastic solution. 
In the following discussion the solution when At and Bt are assumed known is called 
the certainty-equivalent solution. Developing the stochastic problem in a precise algebraic 
form depends on obtaining the expected value of the product of three matrices, XYZ, 
where X and Z are random. That can be accomplished by ~efinV1g a st~,cking operator 
¢(M), where M is any i x j random matrix as ¢'(M) = {m1, m2, ... , ml] where mk is 
the kth column of M. Thus, r/J(M) is an ij x 1 vector. Then rxz can be defined as the 
covariance of the ¢(X) and ¢(Z) vectors. Using the star product defined by MacRae ( 1971 ),2 
the expected value of XYZ is 

E (XYZ) = y * T'xz + XYZ 	 (38) 

where a bar denotes the mean. Writing E(XYZ) as XYZ, the optimal solution to the LQG 
.rroblem, assuming perfect observation of xt, is: 

(39) 

1Active learning strategies for uncertain preferences are not well developed in the control literature. 
Also, the assumption that the coefficients Ct are known is largely in agreement with reality. 

2rhe star product of an m x n matrix A and an mp x nq matrix B is a p x q matrix C such 
that 

C A* B .E.E a-· B··
i,j l] lj 

where aij is the ijth element of A, and Bij is the ijth (p x q) submatrix of B. 
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G = (40)
t 

(41) 

In empirical applications the stochastic solution is frequently used as an approximate 
solution to the active learning problem. The stochastic solution can be modified to be 
an open-loop feedback solution that employs passive learning. That strategy assumes that 
the estimated density of At and Bt will remain constant for the planning horizon, whereas, 
in fact, it will be updated. A solution is calculated on that assumption, and the initial 
period control action is taken. At the end of the time period, new data are available 
in the form of an additional observation on oxt and out so that the estimates of At 
and Bt can be sequentially updated. A new solution is computed, once again assuming 
that the density of all At and Bt are known, and the procedure is continued in each 
time period. Thus, the open-loop feedback solution uses the stochastic solution and 
sequential updating. 

The certainty-equivalent and open-loop feedback solutions can be viewed as 
approximations to the truly optimal active learning solution when At and Bt are assumed 
to be unknown constants. Prescott (1972) investigated the conditions under which one 
of these solutions is a satisfactory approximation for an active learning solution assuming 
oxt is observed perfectly. He used a simple scalar model for his numerical problem and 
determined that the value of experimentation, i.e., active learning, increases with the 
number of time periods in the problem and the degree of uncertainty in the unknown 
coefficient. His results indicate that the certainty-equivalent solution is an acceptable 
approximation to the active learning solution when the prior estimate for the unknown 
parameter is at least four times its standard error in absolute value. The stochastic solution 
provides a reasonable approximation of the active learning solution for determining initial 
period controls when the parameter estimate is at least twice its standard error. When 
a coefficient is less than twice its standard error, experimentation becomes an important 
consideration. Since the linear dynamics used in the study by Prescott is quite simple, 
his results cannot be categorically generalized to models of greater linear complexity and 
dimension. Unfortunately, no better information or guidelines appear to exist for stipulating 
when active learning can be approximated closely by approximate techniques. More robust 
guidelines are clearly called for in future research efforts. 

In discussing when an active learning strategy can be accurately approximated by 
a certainty-equivalent solution, it should be borne in mind that the underlying stochastic 
control problem represented by (3) and (4) may require an active learning solution even 
if the LQG system's coefficients are statistically significant. Thus, the modeler must make 
the assumption that, if the approximate LQG system dynamics does not require active 
learning strategies, then the open-loop feedback or certainty-equivalent solutions are a 
reason~ble approach to the solution. Such an assumption is similar to the LQG assumption 
that the optimal path for the system is close to the ideal trajectory yielded by the 
deterrninistic optimal solution of Step One of the LQG technique. If the statistical 
significance suggests that an active learning solution is appropriate, the feasibility of 
employing approximate solutions that utilize some experimentation should be considered. 
For example, MacRae (1972) and Popovic (1972) give explicit expositions of approximate 
solutions that incorporate learning. Additionally, most of the empirical solutions using 
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active learning strategies assume that there is a straightforward relationship between the 
parameters in the current and future periods. Since the parameters are derived via Taylor's 
theorem in LQG models and the relationship between parameters over time periods may 
be quite complex, the relevance of Prescott's findings to LQG models is further 
questioned. 1 

When the assumption is relaxed that <'>xt is observed perfectly, the control problem 
becomes even more difficult with At and Bt uncertain. Consider, first, the case where 
At and Bt are random but their density is completely known at t = 0, for all t. The 
Kalman filter is no longer optimal for several reasons. One of the clearest is that At 
OXt is the product of two random matrices. This implies that the variance of 6xt+ 11 t 
is a function of the levels of both the mean of At and 6xt It· Recall from (28) and 
(30), the covariance propagation matrices, that all Ptlt are independent of the level of 
Oxt, for all t. From (37), it is also clear that, when the Ptlt becomes a function of 
the level of the state vector, the costs of uncertainty terms involving Pt It are no longer 
constants. The expressions involving Pt It become part of the control problem, and the 
separation principle no longer applies. Solving the integrated control estimation problem 
requires numerical methods, so the convenience of an analytical solution is lost. If the 
assumption that the density of At and Bt is known at t = 0 is relaxed, solving the LQG 
problem is all the more difficult. Optimality requires not only an active learning solution 
but simultaneous solution with the observation problem. 

Approximations must be made in solving empirical problems. The LQG model is such 
an approximation since it assumes away all uncertainty except in et, Vt, and <'>xolo· In 
the empirical applications of Section 5, a stochastic solution using (39)-(41) is computed 
under the assumption that the separation theorem between control and estimation still 
holds. The Kalman equations are used to derive an estimate of the inaccessible state vector. 
The implications of using the Kalman filter for random At and Bt vary with the particular 
densities of At and Bt· Section 4 discusses the implications of that approximation for 
the empirical application. 

3.2.2'; Feasibility Constraints 

The unconstrained optimization of (32) implies that <'>xt and But may take on any 
real value,. In the physical example of a forest, it is clear that such an assumption is 
not valid since it is impossible to harvest nonexistent volumes. Feasibility constraints are 

Jquite common in many natural resource problems. This section analyzes the feasibility 
problem and an approximate solution. 

In the typical dynamic programming problem, the curse of dimensionality is often 
confronted when there are more than four or five state variables. A remarkable property 
of the LQG method is that no such constraint materializes. The actual solution is obtained 
by generating (34) and (35) by backward recursion from T and storing them on disk 
files. The controls are computed moving forward in time as 8xtlt becomes available. Assume 
for the moment that the LQG problem is deterministic and that the recursive relations 

lclearly if something has been learned about future parameters in the LQG, the deterministic model 
in Step One'can be updated; hence, a new set of targets would be generated. Given this link, the optimal 
level of experimentation using the LQG model is an extraordinarily complex problem. 
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(34) and (35) have been computed. 1 It is then possible to generate ou0, ouT-l· If 
any of those controls violate a priori constraints, the solution is not feasible, 
although--given the proper convexity assumptions on K and R--the expected cost of 
this infeasible solution is a lower bound on the cost of the optimal feasible solution. 
To compute the truly optimal constrained solution by dynamic programming would be 
extraordinarily costly for most problems with today's computers. Given the 
quadratic-linear nature of the LQG problem, however, it can be converted to a' quadratic 
programming problem. For a problem with large dimensions, this approach also ca,n become 
computationally intractable. 

The constrained problem becomes more complex when the deterministic assumption 
is relaxed. The problem also can be solved by quadratic programming, although: it is then 
necessary to solve a quadratic program in which some of the parameters are random. 
Again, dimensionality would be a significant problem. 

Given these difficulties, it can be argued that a solution to a stochastic ;tracking 
problem for all possible random events requires that an approximation be u~ed. One 
approach is the use of penalty functions. One variation of that approach is to: assign a 
large weight in the objective function to variables that tend to infeasible value\; so that 
the solution to the problem will avoid large violations of feasibility. From an e,conomic 
standpoint, such a scheme may be difficult to rationalize. Additionally, in stochastic 
problems the use of penalty functions may require numerous iterations to determi'ne which 
variables need to be penalized. Some aspects of penalty functions are discussed in Sage 
(1968). 

An alternative method (employed in Section 5) is to restrict changes in variables 
only to those variables that do not lie on a feasibility boundary. For example, suppose 
that no harvests are scheduled in a given stand during a particular period. The target 
hanrest level is zero so a negative out i is infeasible. Thus, this control is on its feasibility 
boundary. The problem is avoided by designing Bt such that those components' of out 
that lie on a feasibility boundary cannot be changed as discussed in 4.2.2. The restriction 
can be justified on the grounds that, most of the time or by design, the actual· system 
performance will result in somewhat less than all the target values so that the control 
variables will be less than their target levels. In addition, in the neighborhood· of the 
optimum, radical shifts in variable levels would not be expected. Tlius, variables lying 
on a feasibility boundary, particularly those at a zero level, would probably remain at 
that boundary, especially if the target levels are set such that the actual ~ystem performance 
undershoots the target levels. 

The above restriction does not entirely rule out the possibility of infeasible controls. 
If there are large variations in oxt It• then the possibility of infeasible controls certainly 
exists. When such large disturbances occur, the use of a tracking model may be 
overshadowed by the need for a new set of targets to be tracked. In the application, 
infeasible unconstrained variables are rare, occurring only with some controls. When they 
do occur, the control is set at its closest feasible level, similar to the approach in Kim, 
Goreux, and Kendrick (1975). This procedure results in a suboptimal feasible solution. 
How suboptimal the controls and objective function value will be in comparison with 

1That is, e1 and Vt are degenerate random vectors. 
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other approximate techniques remains to be established. This question requires further 
research, with important implications for the use of control models in solving economic 
problems. 

3.3. Evaluating and Interpreting the Costs of Uncertainty 

As discussed in Section 2.4.1, the introduction of uncertainty into a problem broadens 
the set of decisions that a manager must make. Part of this expansion of the decision 
set involves the consideration of using active learning strategies. Another aspect of 
uncertainty is evaluating the costs of the several sources of uncertainty. On the basis of 
these comparative costs, the decision-maker can decide where research or sampling efforts 
(passive learning) should be directed toward lessening uncertainty. In the LQG model it 
is possible to evaluate the various costs of uncertainty. Since two versions of the LQG 
model have been analyzed, i.e., one with known At and Bt and one assuming them to 
be uncertain, the two mo dels are discussed separately. The costs of the sources of 
uncertainty for the certainty equivalent model in 3.3.1 are examined, and the costs of 
uncertainty engendered by uncertain At and Bt are analyzed in 3.3.2. 

3.3.1. Uncertainty in the Certainty-Equivalent Model 

Under the certainty-equivalent (CE) assumptions, uncertainty is represented in the 
model by ox0 I0, the randomness of et, and the sampling error Vt· The costs of these 
sources of uncertainty are given in (37) below which is rewritten here for convenience. 

T-1 
bx'tl t Ht bxtl t + tr HT pt I t + ~ tr Hi+l .Qi 

i=t 
T-1 

+ 	 1: tr A[ Hi+l Bi Gi Pili· 
i=t 

All of the terms in (37) are scalars, and Ht and Ai Hi+ 1 Bi Gi are symmetric PSD so 
that all four terms are always nonnegative. Each of the above terms has an economic 
meaning. The first term represents the total cost, present and future, of the estimate of 
Xt deviating from the desired state, x*. Recall that the maximum principle yields results 
identical to those with dynamic programming so that the gradient of the first term with 

J 	 respect to 8xt1 t would yield an estimate of the user cost of deviating from the goals 
by an increment to oxt It• i.e., the estimated marginal cost of welfare over the rest of 
the planning period of an increase in the deviation from current targets. 

The last three terms of (37) are independent of the level of oxtlt· The second term 
quantifies the cost increase due to current uncertainty in oxt. As Athans (1972) states, 
this term couples the effects of the control cost functional quantified by Ht with the 
current uncertainty of estimation, Ptlt· A similar interpretation can be given to the fourth 
term. It represents the current cost of future actions arising because of uncertainty in 
the current and future estimates of oxtl t· The relation of the Ptlt to the period-by-period 
control cost functional is given by Ai Hi+l Bi Gi. The third term in (37) represents the 
current cost of future system dynamics uncertainty over the entire planning horizon. In 
all three of these terms, the larger the respective covariance matrices, the greater the cost. 
Hence, the terms of (37) indicate to the decision-maker the cost of various types of 
uncertainty, and research efforts can thus be allocated in an appropriate way. In 
determining the allocation of research efforts, the prospective return to research investment 
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must also be considered; however, this is not a parameter of the control problem. Thus, 
the optimal rate of research is not given as a result of the LQG model. For example, 
the LQG model does not indicate the optimal rate of sampling since it does not include 
sampling costs. Rausser and Howitt (1975) examined a control problem that included 
sampling costs and found that an analytical solution exists only for a specific case. 

The analysis in this section can be extended by taking the partial derivatives of the 
three constant terms to obtain marginal costs of uncertainty. Many useful trace derivatives 
are given in Athans (1968). 

Given that Ht is a function of the Ki, Ri (i > t), it is quickly deduced that the 
costs of uncertainty are related directly to the objective function. That is, under varying 
policies, as represented by Kt and Rt, the costs of various sources of uncertainty will 
change as Kt and Rt change. This fact gives the decision-maker a method of analyzing 
the costs of uncertainty under a variety of policy regimes to determine the areas ofresearch 
that have the potential for the highest returns from research. From (37), it is clear that 
these costs of uncertainty are in the same units as Kt and Rt. If the units of Kt and 
Rt are in dollars, then an unambiguous interpretation can be given to the costs of 
uncertainty. If, as is more likely in the case of publicly owned resources, the units of 
Rt and Kt do not have a dollar unit, evaluation of the costs becomes more complex. 
If the utility index represented by Kt and Rt is derived under the assumption of maximizing 
expected utility, it would be possible to subtract the cost of decreasing uncertainty from 
the income or budget and then determine whether the resulting expected utility justifies 
the cost of the increased information. In any event, expected utility can be increased 
by a decrease in uncertainty, given a quadratic preference function. Thus, in terms of 
minimizing disutility, a quadratic loss function is risk averse. When the LQG loss function 
is in an arbitrary utility unit, no cardinal significance can be attached to the last three 
terms in (37) since they vary proportionately with a linear transformation of_ the Kt and 
Rt. However, the percent of costs, accounted for by various sources of uncertainty, are 
invariant under a linear transformation of Kt and Rt· 

3.3.2. 	 Costs of Uncertainty With 

Stochastic Linear Coefficients 


The analysis in 3.3.1 applies equally to the stochastic model (S); but, under the 
more general assumptions of S, evaluation of all sources of uncertainty becomes more 
complicated since Ht is a function of the covariance matrices (r) of the various linear 
coefficients. Evaluation of the costs of uncertainty generated by the presence of the 
variances and covariances of At and Bt is quite complicated; in general, few analytical 
results can be derived. 

Assuming for the moment that oxt is observed perfectly, Chow ( 1975) has shown 
that it is not possible to conclude that uncertainty in the linear-dynamics coefficients 
will lead to higher expected costs. In terms of the cost matrix, Ht, this implies--letting 
superscripts denote the stochastic specification of the model--that HfE is not necessarily 
less than Hr by a PSD matrix. Thus, to evaluate the cost of uncertain linear coefficients, 
the specific numerical values must be computed. 

One distinction between the CE model and S model is that uncertamty in the At 
and Bt may add to the cost of current state deviations as measured by the first term 
of (37), oxtlt' Ht oxtlt· If oxtlt = 0, then any cost of uncertainty associated with Hr 
is zero in terms of current deviations from desired goals. Intuitively, this makes sense. 
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Even if a system exhibits randomness, there is no cost if the system is exactly on target 
since no control action can be taken to better the state of the system. When a system 
is considerably off target, h9wever, oxt It is large, and the uncertainty associated with 
current state deviations will then become increasingly costly, assuming that the random 
factor adds a positive definite matrix to H~. 

The effect of uncertain At and Bt is partially manifested also in the latter three 
terms of the objective function. Clearly, since Ht is affected by the uncertainty of At 
and Bt, the costs of .Qt and Ptlt will most likely change. Thus, the total impact of random 
At and Bt on costs of uncertainty can only be evaluated by numerical computations. 

3.4. Summary 

This section has briefly examined the problems of obtaining an empirical solution 
to a stochastic control problem and has suggested an approximate optimization method. 
The technique, the LQG model, is a three-stage optimization problem embedding one 
optimization process inside another. The LQG approximation reduces the original problem 
into a much simpler algebraic form. The simplified form can then be examined to determine 
whether. active learning strategies are appropriate. Even though the LQG model presents 
the system dynamics in a linear form, once the uncertainty in the linearized coefficients 
is recognized, the convenience of an analytical solution to the control and state vector 
estimation problem is lost, and approximate estimators and control algorithms must be 
used to keep computational costs at a level that allows inexpensive model experimentation. 
An additional problem that may arise with the LQG technique for economic models is 
from feasibility constraints. Careful design of the LQG model helps avoid most problems 
in that area, but some resource problems may not be amenable to the LQG method if 
the feas!bility problem does not permit reasonable approximations. A final attribute of 
the LQG analysis for this study is that the costs of uncertainty can be evaluated in relation 
to the decision-maker's objectives, and various sources of uncertainty can be ranked at 
least in terms of percentage of total costs. 

4. MODEL SPECIF1CATION AND PARAMETER ESTIMATION 

Given the theory in Sections 2 and 3, the study now turns to application of the 
LQG technique, examining how effectively the LQG technique can be used for timber 

I 	 scheduling under uncertainty on the Stanislaus National Forest. The harvest schedule for 
the standard component 1 in the Stanislaus National Forest is determined with the Timber 
Resources Allocation Method (Timber RAM or RAM) which is a linear programming model 
(Navan, 1971). Use of a Timber RAM model provides the deterministic model needed 
in Step One of the LQG method. 

The empirical analysis is limited to the mixed-conifer timber type which comprises 
134,720 acres of the 275,330 acres in the standard component. That limitation is made 
since this study examines the application of stochastic control to timber management 
problems and requires extensive model experimentation. The pine and red fir timber types 
that make up the balance of the standard component in the Stanislaus National Forest 
are excluded to diminish computing costs due to the dimensionality of the matrices in 

loefined as those lands within the Stanislaus National Forest suitable for timber production under 
methods of intensive management. 
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(34) and (35). Their inclusion would generate no theoretical difficulties but would make 
model experimentation and simulation much more costly. 

RAM, the deterministic model used in Step One of the LQG method, is described 
briefly and analyzed in Section 4.1. The growth prediction model used for RAM on the 
Stanislaus National Forest is analyzed and then approximated into a linear model. The 
linearized dynamics is interpreted, and its accuracy as a representation of a timber 
management problem is evaluated. The ensuing sections then detail how the exact parameter 
estimates are obtained for constructing the objective function, the equations of motion, 
and the observer relationship. 

4.1. Timber Resources Allocation Method 

Timber RAM is a linear programming model developed by Navan (1971) for scheduling 
regeneration harvests and thinnings. It can be specified to incorporate various goals such 
as maximum present value, maximum sustained yield, or nondeclining flow. The last 
objective implies that the harvest vectors, ut, are recursively related such that letting i 
be a column vector with unit values for each component, 

t = 0, 1, ..., T. 

The constraints and technical coefficients are specified by the user to represent the 
particular characteristics of the stands under consideration. Since many national forests 
do not have a complete road system throughout their standard component, harvests can 
be restricted in such areas until the dates of anticipated road completion. 

The length of the decision period for Timber RAM is a decade, and the planning 
horizon is 38 decades. The output from Timber RAM can be utilized to determine (I) the 
quantity of timber to be harvested in regeneration cuts and thinnings and (2) the level 
of timber stocks for each condition class of timber. The model implicitly assumes that 
the acres within any condition class are homogeneous, thus avoiding aggregation difficulties. 
Technological change must be perfectly anticipated and incorporated into the elements 
of the coefficient matrices. 

Timber RAM has been critically reviewed by Chappelle, Mang, and Miley (1976). 
They observe that, although RAM employs linear programming, the structure of the model 
and the method for entering data severely restrict the feasibility region of the activity 
vector. Data are entered in tabular form, and the length of rotation for a stand is given 
as input. The levels of entry and reentry cuts per acre are entered as parameters for the 
condition classes. In addition, RAM is a "point" model since it neglects the distribution 
of areas, ignoring aspects of planning such as the environmental impact that harvesting 
in one area has on an adjacent area. RAM also does not schedule cultural treatments 
other than thinning. 

Another drawback of RAM according to Chappelle, Mang, and Miley (p. 290) is that 
"Timber RAM focuses on optimizing timber outputs thereby neglecting other multiple 
uses of the forest, except insofar as lands dedicated to other uses are subtracted from 
the resource availabilities entered into the model." Chappelle, Mang, and Miley further 
suggest that the widespread use of RAM and the "... low availability or nonavailability 
of methods to schedule other forestry outputs encourages misallocation of resources in 
favor of timber production." Thus, the use of RAM to schedule harvest on a portion 
of a national forest most likely does not yield a solution that is optimal with respect 
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to the overall management objectives. But, as Chappelle, Mang, and Miley (p. 293) state, 
"No existing models can provide answers to these broad questions." 

An important property of the model (also true for the current models that give 
long-run plans for large forest tracts) is that the harvest schedule cannot be applied directly 
to a forest. The reason is that organization of an actual harvest requires on-the-ground 
judgment by a local forester concerning possible violations of any environmental or 
ecological constraints. Such constraints can be so critical in nature and so numerous and 
variable within relatively small regions that the costs of data collection and resulting 
computer analysis are prohibitive. Classification and stratification of complex natural 
systems to allow quantification in a model can always be criticized as "too aggregated 
and unrealistic." The criteria by which the specification should be judged is whether the 
specification captures the characteristics of the natural system at the same level of 
aggregation at which policy decisions based on the model are made. Exact specification 
of a complex system subverts the concept of a model and would lead to "too fine" an 
information grid for the system (Marschak and Miyasawa, 1968). Thus, the lack of complete 
problem formulation presents a type of specification error in large-scale models that must 
be considered in utilizing the output results. 

A major point of departure between Timber RAM and the proposed model is that 
the former is strictly deterministic, and there is no explicit strategy for responding to 
stochastic events. For example, it is assumed that there is no error in observing the states, 
a tenuous assumption since the forest inventory is estimated by decennial sampling. In 
addition, considerable uncertainty exists about projected yields. Thus, it is important to 
examine the effects and costs of stochastic behavior. 

4.2. 	The LQG Model as a Representation 
of a Timber-Harvesting Problem 

In this section the objective function, system dynamics, and observer relationship 
of the LQG model are interpreted as an approximate model of the harvest-scheduling 
problem solved by Timber RAM. Derivation of the At and Bt matrices requires a detailed 
exposition of how timber growth is modeled in RAM; this is presented in 4.2.1. Given 
this understanding of growth as modeled in RAM, the approximate growth system used 
in the LQG model is explained in 4.2.2. Because of the way the growth dynamics in 
the LQG model is structured and estimated, the flexibility of the LQG model is limited. 
The limitations are discussed in 4.2 .3. 

4.2.1. 	 Growth Prediction in the Stanislaus 

National Forest RAM Model 


The growth dynamics used in the RAM model to generate the needed targets in 
Step One of the LQG is discussed and presented in U. S. Forest Service (1974b) for the 
Stanislaus National Forest. In the growth dynamics, merchantable volume is given as a 
function of basal area and height. Thus, the growth system consists of three equations: 
(1) to give height as a function of age, l (2) to give BAt+1 as a function of BAt and 
age, and (3) to give Volt+! as a function of BAt+l and current stand height. However, 
since height is a function solely of age, the equation giving height can be eliminated by 
making volume a function of BA and stand age. The growth system then becomes 

1Computed as an average weighted by basal area. 
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(42) 

(43)BAt+l 

where 

Vol merchantable volume 

BA basal area 

and 

Ut = timber removal actions. 

By excluding the height variable, the dimensionalities of the LQG matrices to represent 
(42) and ( 43) are decreased substantially. This provides a large savings in computational 
costs for the LQG model. 

A somewhat striking aspect of (42) and (43) is that Volt+! * F (Volt)· Volume 
is determined by basal area and stand age. Thus, volume for a given area is determined 
by BAt for that area and the stand age. Additionally, volume is never directly observed 
in this system so that sampling is done only for BAt. 1 A further characteristic of the 
RAM model is that the timber removal actions are taken at the beginning of the period 
and volume and basal area in the next period are predicted given the residual basal area.2 
This can be easily modeled in the LQG as discussed in 4.2.2. 

4.2.2. An Approximate Model of RAM 

Application of the LQG model to a harvest-scheduling problem on a national forest 
requires that the objectives of management be specified as a quadratic form of the following 
type: 

T-1 
J = ~ (.Sx~ K 1 6x1 + ou~ Rt out) + Bxr KT oxT (44) 

t=O 

where a indicates that a vector is in deviation form, i.e., oxt (x'f Xt). In this 
application the vector xt is 33 x I, its first 15 components are volumes of merchantable 
timber in millions of cubic feet, and its last 18 components are in thousands of square 
feet of basal area. All components denote levels at the beginning of t. The state vector 
is defined in further detail shortly. The vector out is 20 x l, and its components are 
the volume (in millions of cubic feet), removed by thinnings or regeneration harvests at 
the beginning of t. The Kt are 33 x 33, and the Rt are 20 x 20. These matrices, 

1For regenerated stands, unifonn establishment is assumed which allows average stand age to be 
known with certainty. To avoid excessive model dimensionality problems with the LQG solution, it is 
assumed that the age of the wild·· stands is known with certainty. · 

nue to the limited data base to estimate (42) and (43), the effects of mortality, weather, and 
other exogenous effects on the forest are represented by the additive error terms as in (24). 

2
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respectively, represent the cost (or loss) of not having the predetermined timber stocks, 
xf, or the desired harvest levels, u{. Selection of the weighting values for Kt and Rt 
is discussed in 4.3.1. 

The approximate timber growth dynamics is modeled as: 

(45) 

where 

c'.ixt and et = 33 x 1 vectors 

At = 33 x 33 matrix 

and 

Bt = 33 x 20 matrix. 

To understand (45), observe that, in the system used to simulate growth in RAM, (42) 
and (43), three kinds of information are given for every acre: basal area, volume, and 
stand age. Since the linear coefficients in ( 41) are a function of age, the growth dynamics 
equation (45) models only basal area growth and volume, given basal area. The basic 
procedure used to model the growth and volume by (45) is to use two interrelated systems 
that (1) models growth of wild stands and (2) models the growth of regenerated stands. 
To understand that system, c'.ixt is partitioned as: 

<x't [1p·r,' oBA l' oBA 2]u . Tt• t ' t 

where 

oVt 15 x 1 vector 

oBAf 3 x 1 vector 

and 

15 x 1 vector' 
The components of oVt are volume deviations in given timber classes, and the components 
of oBA1 an~ the deviations in basal area in the corresponding timber classes. For example, 
the first component of c'.iVt is the deviation in volume of a given class, and the first 
component of oBA1 is the corresponding deviation in basal area on that acreage. Since 
it is assumed in the RAM model that no timber can be utilized for postharvest use until 
a stand is 35 years old, the three components of oBA t represent the deviations in basal 
area of the 5-, 15-, and 25-year-old regenerated timber classes. All of the state variables 
are given at mid-decade as in RAM, and RAM regeneration occurs five years after a 
regeneration harvest. The LQG period begins and ends at mid-decades. 

The mixed-conifer species initially has seven timber classes as listed in Table 1. The 
first six (M01-M42) represent wild stands, and the seventh (MP) designates recently 
regenerated. The volume and basal area on sites within M01-M42 are the last six 
components of c'.iVt and BBAt, respectively. For example, assume that time t starts at 
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zero; when t 2, the 11th component of oVt is the deviation in volume of timber in 
MIO and the stand is 115 years old. The 11th component of oBA1 is the deviation in 
basal area in M 10. Once an area in one of the M01-M42 classes is regeneration-harvested, 
it becomes part of the regenerated timber system. The regeneration system is structured 
differently from the system for the M01--M42 classes to permit ease in computer 
programming. The first nine components of oV1 are the volumes of regenerated stands 
by age. For example, the first component of oVt is the volume of timber that is 35 years 
old at the beginning of t. The second component is the volume of regenerated timber 
that is 45 years old, and so on. Since the model starts with a regenerated stand 15 years 
of age and continues for 10 periods, it is necessary to be able to model volume for a 
regenerated stand 115 years of age which is the ninth component of oV1. Once any wild 
mixed-conifer stand is harvested and regenerated, the deterministic model assumes that 
all regenerated stands are homogeneous in growth characteristics. 

TABLE 1 

Initial Time Stratification of Existing Timber Classes 

Timber classa 

MOl (overmature) 

MlO (poorly stocked) 

MZO (mature saw) 

M30 (multistoried) 

M41 (young saw) 

M42 (young saw) 

MP (plantations) 

A_g_e 

_y_ears 

155 

95 

125 

135 

85 

225b 

15 

Volume 
million 

cubic feet 

6.90 

51. 88 

193.90 

450.90 

146.40 

40.17 

o.oo 

Area 

acres 

600 

11,750 

26,840 

45,560 

27,070 

13,660 

9,270 

aThe first six classes (MOl to M42) represent wild stands; the seventh 
(MP) designates recently regenerated. 

bEven though M42 is labeled as young saw timber, it was subjectively 
given an age of 225 in the RAM plan so that, when coupled with its 
basal area estimate, the resulting volume would be close to the sub
jective volume estimate. 

Source: Timber Resources Allocation }fethod. 

To understand further the structure of the growth model, the role of the elements 
of At are defined. In partition form the matrix At is written: 
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Avol6 x 6 

Abal2xl2 

where Ojxk indicates a null matrix of dimension j x k. The matrices Avo19x9• Avol6x6• 
and Aba6x6 are diagonal and time-varying. 1 The Abal2xl2 is an off-diagonal matrix 
whose nonzero elements are bai i-l (i = 2, ... , 12). The reason the matrix is off-diagonal 
instead of diagonal is that, when a given element is nonzero, it has the same value for 
all tin which it is nonzero. Making Aba off-diagonal contributes considerably to efficiency 
in programming the model. The Avol matrices are multiplied by the llBA 1elements of 
oxt to give the volume corresponding to given basal areas which is how volumes in RAM 
are determined. The Aba matrices model the recursive relationship between basal area 
int and basal area int + I. The Avol6x6 and Aba6x6 model the growth of the MOl-M42 
condition classes, and the Avol9x9 and Aba 12xl 2 model the growth of the regenerated 
timber stands. The transfer of areas from the M01-M42 classes when they are harvested 
is modeled in the Bt matrix. Once the stands in MOl-M42 are completely 
regeneration-harvested, Avol6x6 and Aba6x6 could be discarded, and Avol9x9 and 
Aba12x I 2 would represent a continuous cycling of the forest if the rotation were no 
longer than 115 years. For an even-aged postconversion stand, all of the elements of 
the At and Bt would be constant. This type of steady-state system is desirable from 
an estimation point of view since the elements of A and B could be directly and 
continuously updated by the data gathered by the observer. This type of estimation is 
discussed by Aoki (1967).2 

The control vector, out, is 20 x 1. The first six components of out are for thinning 
on the regenerated age classes, ages 55-105. The next six components of out are for 
thinning on MO I -M42, respectively. The last 8 components are for regeneration harvests, 
with the 13th and 14th components being regeneration harvests in the regenerated stands 

J 	 and the last 6 components being for the MO l -M42 classes. The model is constructed 
so that the bij corresponding to the jth components of ouj in period t is nonzero only 
if the target model has a control action scheduled in that period. This restriction is made 
so that the LQG solution only makes adjustments in scheduled harvests; to avoid feasibility 
problems, it does not allow harvests at any other time. For example, let out,i be the 

!The notation Avol· k indicates that the particular submatrix is associated with the A matrix, and 
its element~ are associdfed with volume. A similar interpretation holds for Abajxk· 

2 A comprehensive approach to parameter updating in economic LQG models remains to be thoroughly 
investigated. Given that the At, Bt, and Ct parameters are derived via a Taylor-series expansion, the 
relationship between At and the At+i• i ;;;. 1 may be very difficult to model; hence, the problem of 
using 6Zi to estimate future parameters is most likely quite complex. 
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ith components of out and let u{) =- 0. If no restriction were made in the control model 
and timber stocks were below x'{, the But i could possibly be positive, indicating lit i < 0, 
i.e., the timber stocks should be increased' (a negative harvest). If the assumption is made, 
as it is here, that actual timber stocks will tend to be less than x{, then that restriction 
is a practical way of keeping the variables feasible. In conjµnction with using output from 
RAM to derive the target levels, that restriction can be justified on the basis that allowing 
the LQG to schedule harvests for previously unscheduled areas might be inconsistent with 
the road or other harvest-related plans. Hence, even if a component of 15xt is nonzero, 
no corrective action will be taken until the RAM model indicates some cutting activity 
for that particular condition class. For example, RAM takes no harvesting or thinning 
actions on regenerated stands until they are 5 5 years old, so the LQG model takes no 
control action until a stand is 5 5 years old. The necessity for that restriction is a major 
limitation of applying an LQG model to RAM or, for that matter, to any other problem 
with limited feasibility regions. Additional research on more flexible ways of dealing with 
feasibility problems is clearly called for. 

A regeneration harvest is distinguished from thinning in the model by having 
regeneration harvests indicate the transfer of the harvested area into the component of 
l>xt, oBAl l • which gives the level of basal area in stands that are five years old. To 
understand the function of Bt, it is partitioned as: 

_ [Bvoll 5x20]
Bt 

Bba18x20 

so that Bvol1 5x2o represents the removal of timber volumes (in milHons of cubic feet) 
and Bba18x20 represents removal of basal area (in thousands of square feet) as well as 
regeneration, a function to be described shortly. Bvol l 5x20 and Bba l 8x20 are closely 
related since removing a volume of timber also removes basal area. For example, ut 15 
is the actual volume of timber harvested from the MO I timber class at the beginning 
of period t. Multiplied by the appropriate coefficient, ut 15 is also the amount of basal 
area removed from BAt,10, the 28th component of xt.' 

An additional effect of changing the rate of regeneration harvests is an alteration 
in the level of regeneration. Such an alteration means that the level of basal area in the 
five-year-old class will change in the next period. For adjustments about the optimal 
values of xt and ut, an increase in regeneration harvests will increase the level of basal 
area in the five-year-old age class in the next period. The last eight components of 
the 16th row of Bt indicate the change in the level of basal area in the five-year basal 
area age class for a change in the level of regeneration harvests. The exact positioning 
of all elements in Bt is given in the Appendix. 

Finally, et is a zero-mean Gaussian random variable that represents the approximate 
nature of the relationship in (45). It also includes the effect of omitted variables silch 
as weather, mortality, and insect infestation. 

The sampling or observing system is modeled as 

(46) 

where Ct is 33 x 33, and vt and ozi are 33 x 1. The matrix Ct is a diagonal matrix 
with ones or zeroes as the diagonal elements. When a condition or age class has no 
possibility of existing, e.g., it has been clear cut, then the corresponding diagonal elements 
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of Ct are zero; otherwise they are one. Thus, the components of ozt are estimates of 
the corresponding components of oxt where the components of Bzt are a function solely 
of the sample data gathered at the beginning of period t. 

In the observation system used on the Stanislaus National Forest, volume is not 
sampled directly, so the first 15 components of llzt are estimates of current volumes, 
given the sampled estimate of basal area. I It can be imagined that, at the beginning of 
every time period, samples are taken; then estimates, based on those data, are combined 
with oxt It-1 using the Kalman filter to yield the optimal estimate of oxt.2 

Management actions in RAM and the control model are identical in timing. In RAM, 
control actions are taken in the middle of the decade which is the beginning of the LQG 
period. For example, the volume of a class is observed, the harvest is then taken, and 
growth for the remaining stocks in that class is then projected. To replicate this timing 
in the control model, the Bt matrix is written as the sum of the two matrices, At B 1 t 
and B2t, and B2t is null except for the last eight elements of the 16th row which are 
the coefficients indicating the increase in basal area levels of the five-year-old basal area 
class. The matrix, B It, contains all of the basal area removal coefficients.3 Thus, (45) can 
be rewritten as: 

(47) 

where the B 1 t and B2t elements are calculated with the removal actions occurring at 
the beginning of t, and At is also calculated at the beginning of t but after the harvest 
actions have been taken. In the empirical application, Bt is defined as 

4.2.3. 	 Evaluation of the LQG Model as a 

Representation of Harvest Scheduling 


J Actual implementation of the indicated harvest alterations in reference to the RAM 
plan is approximate. In designing the tracking model, there is a loss of information 
vis-a-vis the RAM plan. The information loss occurs because RAM disaggregates the above 
seven classes into subclasses. For example, the MO! class is divided into two subclasses. 
The growth and thinnings among the subclasses within a given class are identical. The 
distinction between the subclasses is that they are regeneration harvested at different times. 

1To derive the coefficients for At and Bt, volume clearly had to be measured for the regression 
analysis. But for the projection method laid out in (42) and (43), age and basal area indicate the actual 
state of the system, and volume is only an output of the system, not an input. 

2It should be observed that At and Bt are not unique in their particular structure. The whole model 
could be cast in terms of basal area, though that would introduce considerable uncertainty unnecessarily 
into the objective function. The approach employed represents the planning method currently used on 
the Stanislaus National Forest more closely than would modeling basal area only. 

3Since the first 15 columns of the At are null, there is no reason to put the -1 's in B 1 l SxZO . 
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The tracking model combines all subclasses within any condition class into a single class. 
RAM and the control model call for three types of actions: thinnings, regeneration harvests, 
and a combination of those two harvest activities. An information loss in using the control 
model occurs with the latter two activities. 

When thinning is scheduled for a single timber class in RAM, every acre in that class 
is thinned by the same amount so that, when the LQG indicates a decrease in level of 
thinning in a class, it means that the thinning per acre should be decreased. Thus, there 
is no loss of information from simply thinning. A second situation is when only harvesting 
is scheduled for a class. Assume that the conditional mean, oxtlt' of volume indicates 
that volume is 10 percent below the target level. By the assumption made in RAM that 
all acres within a class are homogeneous, the deviation implies that each acre has 10 percent 
less volume than its target level. Now suppose that the control indicates that the 
regeneration harvest volume from the class should be decreased by only 5 percent from 
the target volume. More acres will have to be harvested within the whole condition class 
than in the RAM plan. A loss of information occurs because the tracking model does 
not say from which of the several subclasses of the RAM model this additional harvest 
should be taken. 

The third situation is when both harvests and thinnings are scheduled for a class. 
The LQG model is structured so that the harvest is taken, and the remaining acres are 
thinned. However, the LQG does not distinguish from which subclass within a particular 
class a change in regeneration harvest should be registered. That is, suppose that the areas 
to be harvested are increased, the LQG will not indicate from which subclass these acres 
will come. 

In reference to the RAM plan, the additions or deletions of areas in the regeneration 
harvest plans can be taken from any of the subclasses within a class at the discretion 
of the manager. This is consistent with the RAM method because in the RAM model 
no characteristics are given to distinguish one acre from another in terms of physical or 
locational attributes. Thus, the loss of information vis-0.-vis RAM is not important from 
the manager's standpoint. The loss of information can be attributed, in part, to the rigidity 
of RAM. Thinning levels are entered as data at a prescribed level as are rotation lengths 
for regenerated stands. A more natural method is to let the linear programming model 
set the level of thinning per acre as well as to allow the program to generate rotation 
length as an output instead of an input. The LQG model prescribes continuous levels 
of removals, whereas RAM gives discrete levels so that in this respect the LQG model 
is less constrained than RAM. 

4.3. Parameter Estimation 

This section derives the values for the parameter matrices. Since the actual number 
of parameters estimated is large, they are not listed individually here; only the methodology 
for their derivation is given. The Appendix lists all of the LQG model parameters, including 
the target levels of Xt and ut- The following sections derive the appropriate values for 
the objective function, At, Bt, and the required covariance matrices. 

Given a complete data base, estimation of the parameters would proceed along the 
lines of conventional econometric methods. The objective function could be estimated 
directly, as in Rausser and Freebairn (1974), or by a direct specification from the U. S. 
Forest Service. The growth dynamics would be estimated by first specifying the appropriate 
structural forms and then using the reduced-form coefficients as the growth-dynamics 



36 Dixon and Howitt: lntertemporal Forest Management 

parameters. The estimation approach is not unified, however, because of the need to 
construct a model using the existing data base. Should a control-systems approach be 
actually implemented, then data collection could be arranged to provide information 
necessary for using a more comprehensive estimation technique. 

4.3.1. The Objective Function Coefficients 

In employing the LQG technique to control a system, the measure of system 
performance is minimization of the disutility of not meeting the target values for all e-0ntrol 
and state variables. Given the quadratic form of the LQG objective function, the cardinal 
units of Kt and Rt are not important since out is invariant with respect to a linear 
transformation of Kt and Rt· As argued in 3.3 .1, the costs of uncertainty can rarely be 
given an exact dollar value, so the LQG analysis results in a ranking of the relative costs 
by the percentage of costs resulting from a given source of uncertainty. 

Estimating the utility index or objective function is a problem of selecting the relative 
values of Kt to Rt to represent the preferences of a national forest decision-maker. An 
intuitive approach would be to design Kt and R1 so that they closely resemble the original 
preferences of the deterministic model as in the neighboring optimal control approach 
discussed in Athans (1972) or Bryson and Ho (1969). That approach is not used here 
since our interest lies partially in determining the impact of different policies. Instead, 
a more direct approach is taken in representing current policies and possible alternative 
policies since the neighboring control approach would raise considerable computational 
problems. In addition, it is argued shortly that the RAM objective function is an incomplete 
specification of management policies. 

The targets used in this study were derived using RAM to maximize first-perio1 
harvests under the constraints of nondeclining, even-flow, maximum-sustained yield. 
This policy requires that the amount harvested in any given period shall not be less than 
the amount harvested in any prior period. The nondeclining yield criterion is used in 
guiding the forest to a state of maximum-sustained yield.2 The policy of nondeclining 
yield has been subjected to many criticisms of an economic nature as discussed in Zivnuska 
(1975). In addition to these criticisms, the policy of nondeclining yield presents 
considerable difficulty of implementation in an uncertain environment since the policy 
is not defined broadly enough to encompass uncertainty. It is clearly infeasible to guarantee 
any level of harvest into perpetuity so long as a forest might be decimated by fire, insects, 
or some other disaster. Thus, the policy must be defined more precisely with an explicit 
allowance for uncertainty. For example, such a policy could specify a level of probability 
that a given trajectory of harvests could be met into the future. The higher the level 
of probability or assurance wanted, the lower would be the planned harvest levels. 

1For a further discussion of the exact procedures to derive the harvest schedule, see U. S. Forest 
Service (l 974b). 

2rhe basic Forest Service policy has been modified since the particular RAM schedule being analyzed 
was derived. The National Forest Management Act of 1976 (NFMA) provides that harvest levels shall 
be limited " ... to a quantity equal to or less than a quantity which can be removed from such forest 
annually in perpetuity on a sustained-yield basis ..."(Public Law 94--588, Sec. 11; October 22, 1976). 
The NFMA also gives the Secretary of Agriculture the discretion to depart from such plnns provided 
that such departures are consistent with the overall multiple-use objectives. More recently, the Forest 
Service has proposed in the National Archive of the United States (1978) that the NFMA be implemented 
by adhering to a nondeclining yield policy subject to various restrictions related to multiple use and 
economic criteria. 
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It is not possible to structure the LQG objective function to the exact concept used 
to determine xr and ur because nondeclining yield, as defined for deterministic models, 
is not a viable concept for stochastic problems. The inability to represent nondeclining 
yield for the LQG model is not a large hindrance because the management of national 
forests is also supposed to consider multiple use. Multiple use is defined as managing 
" ... all of the various renewable surface resources of the National Forests so that they 
are utilized in the combination that will best meet the needs of the American people . . ." 
(U. S. Forest Service, Section 4a, l 974a). Furthermore, this combination is not necessarily 
the combination which yields the greatest financial return. As Chappelle, Mang, and Miley 
(1976) have argued, the RAM harvesting schedule tends to be biased in favor of timber 
activities. It seems reasonable to conclude that the current official policy for national 
forest management is not so precisely articulated that it can be expressed as a scalar-valued 
functional. 

Given the numerous possible values that the objective function parameters could 
assume, no attempt is made to estimate one precise form or set of values for the Kt 
and Rt· Instead, the view of Rausser and Freebaim (1974) is adopted that constructing 
a unique welfare function for a given problem is both unnecessary and unrealistic. They 
argue that, because of the diversity of political groups and the different pressures those 
groups exert on political decisions, several objective functions should be constructed to 
reflect the extremities and compromises between the contending groups. By deriving the 
optimal controls for each policy, the outcomes of such policies can be examined. As Rausser 
and Freebairn (p. 192) suggest, "The generation of such information might even contribute 
to the efficiency of the bargaining process in reaching a consensus." Predicting which 
group will prevail or what policy function should be adopted is beyond the realm of 
this study or the purview of control models. The use of a set of preference functions 
can also be viewed as a strategy that a decision-maker can employ to measure the 
sensitivity of controls to variations in policies. Such a procedure defines when policy 
variations will have the greatest impact. 

Given the above premise, the specification of values for Kt and Rt is direct. Kt can 
be interpreted as the loss of not having the exact stock levels for the recreational, watershed, 
or numerous multiple uses that publicly owned forests provide. By varying Kt relative 
to Rt, controls can be determined for policies that emphasize temporal existence values 
over harvest values and vice versa. This weighting scheme represents what Clawson (1975) 
perceives as the compromise that society has to make in selecting among forest utilizations 
that are sometimes mutually exclusive. Roughly, the relative weightings of Kt to Rt 
represent society's preferences for nonharvest to harvest uses. The lumping of all nonharvest 
multiple uses into a single loss index is a large simplification since the various multiple 
uses are optimized at various densities of timber stock. Thus, the losses represented by 
Kt must be interpreted as indices of aggregate loss. It should be noted that such a weighting 
scheme does not imply that higher nonharvest benefits are associated with higher timber 
stocks but that deviations in either direction are costly. 

In the various experimental runs, the Rt is diagonal, and all of the diagonal elements 
of the Rt are set at one if the corresponding component of ut is nonzero; otheiwise 
the element is set at zero. 1 To obtain the effect of varied policy emphases, the Kt, t < T 
are also diagonal. All the nonzero elements of Kt, t < T within a particular policy function 

1The Rt is then discounted fort> 0. 
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are identical except for a time discount factor. The particular value of the nonzero elements 
for the ith policy function is denoted as ki. A diagonal element of Kt is nonzero if the 
corresponding element of o"'.t is nonzero. I Given the design of the model, if a component 
of Vt is zero, then the corresponding component of Vt will also be zero irrespective 
of the control action; so the corresponding component of oVt should not be weighted. 
One run sets ki at zero, and then ki is incremented in successive runs. At some point 
the control actions become insensitive to further increases in ki because the effect of 
Rt becomes increasingly less influential; so further increases in ki serve no informative 
purpose. Part of the experimental effort is directed toward determining that point. The 
layout of the experimental design is given in Section s.2 

The KT or terminal-value matrix is specified to be diagonal, with values of unity 
corresponding to the volume components of Vf that are nonzero. These values are set 
arbitrarily although, as preliminary results have shown, the absolute value of the elements 
of Kt have very little effect on the initial period controls or the costs of uncertainty. 
Thus, little is to be gained by rationalizing one set of values over another. It should be 
observed that, with ki = 0, if KT is null, no control actions would ever be taken as 
can be seen in (34) and (35). Since a null KT is nonsensical in economic terms, KT 
is given a PSD value. 3 AU of the Kt and Rt are discounted at 7 percent per year. 

The specification that the Kt and Rt are diagonal implies an emphasis on deviations 
in stock or harvests within each condition class. The policy could also be one of loss 
from the sum of deviations in condition classes and harvest totals for the forest as a 
whole. In such a case the off-diagonal values of K1 and Rt would become nonzero. One 
would expect to balance off deficiencies in one class with relative surpluses in other classes. 
Results in Dixon (1976) show that there is more substitution between classes with this 
policy, but the other characteristics of interest in the simulations are similar to the results 
when the Kt and Rt are diagonal. To minimize computation costs and to allow exploration 
of other aspects of model design that are judged more important from a policy standpoint, 
the experimental policies are limited to diagonal forms for the Kt and Rt. 

J 
1No loss accrues to deviations in basal area except as such deviations imply deviation in Vt since 

the policies are concerned with deviations in timber volumes. Thus, only the first 15 diagonal elements 
of the Kt may assume nonzero values. 

2 . 
Infra, p. 48. 

3when the remainder of the area in a class is to be regeneration-harvested in period t, an appropriately 
discounted unit value is added to the diagonal element of Kt that corresponds to the class being terminated. 
The value of the diagonal element of Rt corresponding to the regeneration harvest is set equal to zero. 
This construction reflects the fact that at t 1, the policy problem is to balance the loss of deviating 
from current harvest levels against the combined loss in t from not having the target volume for both 
nonharvest and harvest uses at the beginning of t. This construction is necessitated by the fact that 
harvests are taken at the beginning of t, and the elements of At are computed after the planned harvest 
is taken. In a terminated class the target volumes are zero so that the corresponding coefficients of 
At and Bt are not well defined. Thus, no harvest actions are indicated for a class being terminated 
in its final period. The ki value corresponding to this class must contain both the timber's harvested 
and nonharvested value. In the solution algorithm the level of the class in its terminating period is regarded 
as the final harvest level. 
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4.3.2. The Growth-Dynamics Parameters 

This section considers estimation of the At and Bt parameters. Recall that in 
Section 4.2.1 the original RAM growth system could be characterized by two equations 
instead of three. In U. S. Forest Service (l 974b), height is specified to be a linear function 
of the base 10 logarithm of stand age, A Gt, in decades. Volume is then given in cubic 
feet per acre as: 

where HT is height in feet and basal area and BAt is basal area in square feet per acre.1 
To eliminate the height equation, the volume equation is respecified as: 

(48) 

When regressed on the original data, (48) is 

-685.86 + 36.36 [BA * loglO (AGt)l .90 	 (49) 
(420.7) (2.01) 

with the standard error of the estimates in parentheses. The R 2 of the· or:iginal volume 
equation in U.S. Forest Service (1974b) is .91 so that little is lost in terms of\explanator:y 
power by respecifying the volume relationship. Using the F test suggested QY Goldfdd 
and Quandt (1965), (49) is heteroscedastic at a 95 percent confidence level. ~eestimation 
after dividing the dependent and independent variables in (49) by the squar<f root of the 
independent variable gives the result · ./ 

' Vol1 = -119.17* + 33.183* [log 10 (AGt) • BA ] R2 .89 (50)
1

(104.77) (1 .322) 	 s.e, p7.48 

where the asterisk denotes that the coefficients are estimateq by generaliied least squares. 
Tiris implies that the variance of the dependent variable is proportional, to the independent 
variable. In (50) the R2 is slightly lower ~hich is to be· expected with heteroscedastic 
data since the majority of the variance in the dependent variable can be generated by 
a minority of the observations. · 

The U. S. Forest Service (l 974b) plan gives none of the variances of the coefficients 
or standard errors. Since the LQG model needs those statistics when coefficient uncertainty 
is recognized, it was necessary to reestimate the basal area growth equation. Using the 
same functional form and data as in U. S. Forest Service (1974b), the regression equation 

is: 

-20 .2034 BA1 + 3.963 (BA 1)1/2 + 75.55/AGt 
(11.6) 	(.0935) (2.117) (65.22) 

' (51) 

+ 	 2.028 BA1/AG1 15.956 (BA1) 1/ 2/AG 1 .88 
(.6194) (12.83) s.e. 4.119 

As in U. S. Forest Service (l 974b), all of the stands are assumed to be Dunning Site II. 1 
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where BAGt is the basal area growth per acre in square feet. The estimates differ slightly 
from those in U. S. Forest Service (l 974b). The determinant of the correlation matrix 
of the independent and dependent variables is 1.9 x 10-6, suggesting a degree of 
multicollinearity such that rounding error could account for the differences between the 
results. 

Given the greater efficiency of the estimates in (50) and the necessity for additional 
regression results not reported in U. S. Forest Service (1974b), the parameters in (50) 
and (51) are used in lieu of those used in the original RAM run. Since the volume regression 
results differ substantially from those used in the RAM run to derive the xf and uJ:, 
the targets have to be updated. 1 The RAM model could, of course, be run with new 
data. Alternatively, the current RAM plan could be employed by following the same harvest 
schedule in terms of acres harvested and thinned but computing the volume per acre in 
light of (50) and (51 ). This latter option is taken because the former method entails 
sub st an tial practical difficulties. For the purposes of this study, the latter method is quite 
satisfactory since the qualitative results of the study will not differ regardless of which 
method is pursued. 

Somewhat parenthetically, it may be observed that many variables such as mortality 
or weather are not included in (50) and (51) due to a lack of sufficient data. A stochastic 
model makes a much better accommodation for such misspecifications than deterministic 
models. By using an observer at the beginning of each period, the changes in the timber 
stocks due to forces not explicitly in the growth dynamics are picked up by the observer. 
Even though some significant variables are formally excluded, their actual impact is thus 
consistently incorporated into the LQG model. Thus, the problem of incomplete 
specification is mitigated. 

The basal area transition coefficients, Aba, are derived directly from (51 ). Adding 
BAt to both sides of (51) gives the needed recursive relationship: 

(52) 

To determine the approximate linear coefficients, the first derivative of (32) is taken with 
respect to BAt so that the nonzero elements of the Aba are defined as 

Abaij = -.2034 + 1.982 BAt-l/2 + 2.028/AG 1 
(53) 

- 7.979 (BAt)- 112 /AGt + 1 

where both BAt and AGt are defined at their target values.2 Recall that At is determined 
after the scheduled harvests have been deducted from xf. 

The state-transition parameters for the volume states, Avolt, are derived from (50). 
Relation (50) may be written as 

!The volume regression reported in U.S. Forest Service (1974b) is Voii: =-476 + .26 (HT1 • BAt). 

2RAM does not give target values for basal area per acre for ages 5, 15, and 25. Respective subjective 
estimates for these age groups based on information supplied by Klaus Barber, at that time forester 
on the Stanislaus National Forest, are 5, 30, and 65 square feet of basal area. 
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(54)Volt+l = -119.17 + 33.183 [F (BAt) · log 10 (AGt+l)] 

but by the definition of BAt+1 in (52), BAt+ 1 = F (BAt) so that 

Volt+l = 119.17 + 33.183 [BAt+l • log 10 (AGt+l )] (55) 

which gives the recursive relationship desired. By taking the first derivative of (5 5) with 
respect to BAt, the coefficients of Aval are derived. Since 33.183 and AGt are constant 
with respect to BAt, the typical nonzero element of Aval is 

Avolij = .033183 • log 10 (AGt+l) • Abai+l8,j) 

where the coefficients have been adjusted to give volume in millions of cubic feet related 
to basal area in thousands of square feet. Table 2 gives the coefficients for Ao· 

TABLE 2 

State Transition Coefficients for A for the Initial Perioda
0 

Nonzero coefficients 

a 
10,28 

= • 0415 
(.lSxl0-2)b al8,17 1. 5392 

(.299) 

a 
11,29 

= .0375 
(.15xl0-2) a28,28 1.0247 -1 

(.15xl0 ) 

alZ,30 = .0395 -2 
(.16xl0 ) 

a29,29 1.1065 -2 
(. 71xl0 ) 

al3,31 = .0401 -2 
(.17x10 ) 

a30,30 1. 0534 -1 
(.12xl0) 

al4,32 = .0361 -2 
(.15x10 ) 

a31,31 1.0416 -1 
(.13xl0 ) 

al5,33 = • 0493 -2 
(, 24xl0 ) 

a32,32 1.1131 -2 
(. 93x10 ) 

a33,33 1. 0838 -1 
(.3lxl0 ) 

aThe element of the ith row and Jt· h co1umn o f A i's indicated by a ..•
0 l., J 

bNumbers in parentheses indicate standard errors. 

Source: Computed. 

1When A Gt 5, (53) gives a value of -2.40. Subjectively, that value is set at 1.65 to be more 
reasonable with respect to the values of (53) in later years. 
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When acknowledging the uncertainty of the parameters in the LQG solution, the 
variances of the aij must be estimated. Those variances can be computed by observing 
that the linear terms of the Taylor-series expansion of (51) are the regression coefficients 
multiplied by a vector of independent variables. In deriving the Aba, AGt and BAt are 
assumed to be known so that the relevant linear regression coefficients of (51) are 
multiplied by the target values of AGt and BAt and then summed to get the linear 
coefficient as in (53). The covariance matrix of the coefficients is available from the 
regression results. Since the derived coefficients for the LQG model are linear combinations 
of the regression coefficients, the variances of the elements of At are derived by pre
and postmultiplying the relevant rows of the covariance matrix of (47) by the vectors 
that give the elements of Aba12xl 2 and Aba6x6· The variance for the linearized coefficients 
in (55) is derived by observing that the coefficient is the product of the regression 
coefficient (0.033183), log 10 (AGt+1), and the linearized coefficient for BAt· Because 
0.033183 and the linearized coefficient of BAt are random variables, the product rule 
for moments of random variables is used to obtain the variance for the elem en ts of A vo!. 1 

The basal area removal coefficients, Bit, cannot be obtained directly from (51) and 
(54) because no harvesting activity is included in those relations. Thus, Taylor's theorem 
cannot be applied directly. A practical approach is to use (51) and (54) to determine 
the amount of basal area being removed for any control action. By using the optimal 
values of BAt and the given AGt in (51) and (54) and assuming that the removal actions 
are linear as they affect their states, the resulting coefficients are similar to those that 
would be obtained by a Taylor series if relations (51) and (54) included removal actions. 

Recall that, to obtain Bt, the state-transition matrix, At, is multiplied by B 1 t, and 
the product is added to B2t. Since the first 15 columns of At are null, only the coefficients 
relating to removal of basal area and regeneration need be estimated for Bt. The elements 
of Blt, relating to the removal of basal area, are determined by computing how many 
thousands of square feet of basal area correspond to the removal of 1 million cubic feet 
of timber from a given timber class defined as the optimal basal area. For example, in 
the initial period the thinning of I million cubic feet of timber from the MO! timber 
class requires a corresponding removal of 25.31 7 thousand square feet of basal area. 
Algebraically, letting blij be the ijth element of Bl, they are defined as 

where Vol*/acre is volume in millions of cubic feet and BA* is in thousands of square 
feet per acre. Basal area and volume are starred to indicate that they are the target values 
derived from the RAM targets. For the coefficients denoting thinning, the constant term 
in (50)--used to calculate Vol*/acre--is ignored in order to be consistent with the 
method used to determine basal area removal in the RAM model. 

The B2t coefficients are those that apply to the change in basal area in the 
five-year-old class, i.e., those coefficients that imply a change in the regeneration schedule 
due to a change in the harvest schedule. These are derived by determining the number 
of acres that corresponds to removal of an additional million cubic feet in any period 

The volume and basal area relations are estimated by single-equation methods, so the two random 
coefficients are assumed to be independent. 

1
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given BA{. The number of acres is then multiplied by 0.005, the basal area in thousands 
of square feet that corresponds to the change in basal area in the five-year-old age class. 
Algebraically, letting b 116,j be the jth element of the 16th row of BI t• 

j = 13' .. ., 20.Vol*/acre O.OOS 

The variances of the elements of the B lt and B21 are determined in an approximate 
way. Recall that the elements of Blt are determined by deriving a target level of basal 
area per acre to be removed, BA'f. Using BAf, Vol/acre is predicted to derive the elements 
of Blt. Thus, Vol/acre can be viewed as a random variable, with its variance being the 
forecast variance.I Now, BAt/(Vol(acre) can be viewed as the quotient of two random 
variables in which the BA'f is a degenerate random variable. As shown by Mood, Graybill, 
and Boes (1974), there is no analytical expression for the moments of quotients of random 
variables; but the linear term of a Taylor-series expansion gives the mean as E (x/y) = x/y, 
and the Taylor-series expansion for the variance, truncating after the second-order terms, 
is 

2cov (xy) = (_L)2 
Var W + Yi.!__illVar (x Iy) _ _ _ 

2 2 yxy x y 

These approximations are used to determine the moments of the elements of Blt and 

B2t. 

Finally, to obtain Bt, At is multiplied by Blt and the product is added to B2t· 
The variances of the resulting Bt coefficients are derived by assuming that the elements 
of At and Bt are independent and then using the product rule. A further simplification 
is to assume that every element of At is distributed independently of every other element 
in At and Bt· A similar assumption is made for the elements of Bt. 

In total, there are 186 nonzero At parameters and 132 nonzero Bt parameters. All 
but nine of these At parameters are at least four times their standard error. The remaining 
nine parameters are less than twice their estimated standard error. The nonzero Bt 
parameters are statistically less significant. Of the 132 parameters, only 41 are more than 
four times their standard error, while 19 are between twice and four times their standard 
error. The remaining 72 parameters are less than twice their standard error. Nonetheless, 
65 .4 percent of the total parameters in At and Bt are at least four times their standard 
error; only 25 .5 percent are less than twice their standard error. By extending Prescott's 
(1972) findings, one can conjecture that At and Bt can be assumed constant and still 
derive an approximately optimal solution to the LQG problem. This hypothesis is 
empirically examined in Section 5.2 

21The forecast error for the linear model y = X~ for some y* given X* is s t s2 X* (X' X)-lx:, where s is the standard error of the regression. 

2Jnfra, p. 48. 
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4.3.3. Covariances of the Error Terms 
and Initial Conditions 

The LQG method requires three sets of covariances: Pol 0, the initial covariance of 
the states; nt, the covariance of the equations of motion; and et, the degree of observer 
precision. Since the equations in the growth dynamics are estimated by single-equation 
methods, the covariance matrices are nearly diagonal. For Qt, it is specified that the error 
term of a volume equation is distributed jointly with the error tenn of the basal area 
growth equation for the respective class being modeled. Similarly, since the observation 
of volume is conditional on basal area, it is assumed that, within any one class, basal 
area and volume observations are correlated. The same assumption holds for Pol 0 since 
it is regarded as the observer precisions at the beginning of the initial period and calculated 
in the same way as the et. However, the observation errors within any given class are 
assumed to be independent of errors in any other class. It is also assumed that Qt and 
et are white-noise processes, i.e., serially independent. The white-noise assumption implies 
that the sampling units are selected randomly at each point in time. Furthermore, it is 
assumed that the basal area within each sampling unit is measured perfectly. 

The error terms of the first 15 state equations in each period are specified as the 
sum of two uncorrelated random variables: the error of the function giving volume as 
a function of BAt and AGt and the error of the function projecting BA in t + l given 
current basal area and age. This latter error must be incorporated into the first 
15 components of et because current volume is a function of current basal area. The 
variances of these errors are obtained from the linearizations of (50) and (51 ). The 
determination of the variances of the linearized versions of (50) and (51) is difficult sLr1ce 
both are nonlinear and neither contain any control actions (harvest activities). Even so, 
given that age is considered a known parameter in the model, (50) is linear in basal area 
so that the standard error of the regression in (50) is a very reasonable estimate for the 
standard error of the linearization of (50). 

For the linearization of the state equations representing basal area growth, a similar 
approach is taken. First, the independent variable, BAtfA 1 t• in (51) has a correlation 
coefficient of 0.922 with BAGt, and the correlation coefficient of all of the variables 
is 0.936. It can be concluded that most of the variation in BAGt can be explained by 
BAtfAlt. Thus, the standard error of (51) for the linearization of (51) is a good 
approximation to the actual unknown standard deviation. The standard error of (51) is 
ljSed as the basis for computing the last 15 diagonal elements of nt.1 BAt+l is also in 
the linearized volume equation, multiplied by .033183 • loglO AGt+l, so the additive 
error associated with BAt+l becomes part of e1 multiplied first by 33. I 83 • log10 AGt+ 1. 
Thus, et for the first 15 equations is the sum of two uncorrelated random variables: the 
error due to estimating volume given basal area and the error in estimating basal area 
in t + 1, given basal area in t multiplied by a constant. The variance of et is then computed 
using the rule for the variance of the sum of two random variables. 

Since basal area enters the volume equation additively and is multiplied by a constant, 
the covariance between the respective volume and basal area classes is the variance of 

For basal area in its first three periods of growth, the standard error of (51), 4.119, gave unreasonably 
large variances. Thus, the standard errors were subjectively set at I, 2, and 3 for the 5 -, 15-, and 
25-year-old basal area growth equations, respectively. 

1
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the basal area equation multiplied by .03 3183 • log! 0 AGt+1. For example, let a and 
b be two uncorrelated random variables with variances ai and at and k is some constant. 
Then 

Cov [(a + kb), b] = kaG 

Because all the acres within a class are considered to be homogeneous, the variances per 
acre are multiplied by the square of the number of acres in that class and normalized 
into the units of the components of oBAl and oBAf_ This is done for all Polo' rlt, 
and 01; and it results for all of the covariance matrices being heteroscedastic. 

The covariance matrices of the observer relationship for basal area must be specified 
by the decision-maker since no observer precision levels are given in RAM. Most volume 
estimates on a per acre basis in U. S. Forest Service (1974b) have a·~tandard error between 
5 and 11 percent of the sample mean. It is postulated that the future observations on 
basal area will be such that the standard error of the estimate will equal 5 percent of 
the sample mean. Thus, given the target levels of basal area, it is possible to estimate 
the last 18 diagonal elements of et· For example, at the beginning of the first period 
in the MO 1 timber class, the RAM plan indicates 100 acres with a total basal area of 
24.212 thousand square feet. Its standard error to the required observation precision is 
1.21 so that its observation variance is 1.48. 

Since the estimate of current timber levels are conditional upon basal area ,:stimates. 
it is specified that the observation variance is the sum of the regression variance in (50) 
plus the variance of basal area observation times the square of the product of the slope 
coefficient and log10 (AGt), i.e., the typical nonzero diagonal element of the first 15 rows 
of et, denoted eii' is 

(56) 

where 1Ji+l8,i+l8 is the observer variance of basal area and s is the standard error of 
the regression (50). Of course, (56) is adjusted for units and heteroscedasticity. The 
covariance of the two error terms is simply the covariance of the sum of two uncorrelated 
random variables and one of the original variables where this latter random variable has 
been multiplied by a constant in the sum. The fo1mula is the same as for the covariances 
in .Qt· 

The initial covariance of the basal area states is difficult to determine. The initial 
state estimate was determined by dividing the original classes into various strata and 
sampling each stratum for basal area.1 In each stratum apparently only one observation 
was taken. The mean for the whole class was calculated by combining subjective estimates 
with a weighted mean of the observations. Since no further information is available, the 
assumption is made that the standard error of the initial estimate of basal area is equal 
to 5 percent of the estimated mean for a given age class so that Po I0 is computed in 
the same way as the ei. 

1These are actually data generated by the sampling for volume done for the whole forest on a 
probability proportional to size (volume) basis. 
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4.3.4. Error Introduced by Linearization 

In this section the question is addressed as to how well the linearized dynamics system 
(41) duplicates the nonlinear dynamics (46) and (47). It is not necessary to validate the 
observer system since it is essentially identical in design to the system in U. S. Forest 
Service (1974b). It is important to determine how closely the linearized growth system 
approximates the nonlinear system so that the size of the neighborhood in which the 
LQG is accurate can be determined. Clearly, when all of the actual levels are met, the 
linearized system exactly duplicates the nonlinear system. As the actual path of the system 
diverges from the targets, the accuracy of the linearized model will deteriorate. 

The method used for validation was to vary the actual harvest levels from 2.5 percent 
above and below the target harvest to 50 percent above and below. The variation of a 
particular harvest between the given limits was given by a unifonnly distributed random 
variable. The error terms in both the linearized and nonlinear regressions were set equal 
to zero, since random events would affect both systems almost identically, given that 
both of the specifications posit that the random disturbance is additive. 

Six levels of possible control variation were set between the limits cited above, and 
12 runs were made--two for each level of variation. Bivariate regressions were obtained 
for each run letting the state of the system given by the nonlinear dynamics be a function 
of the state levels predicted by the linearized model. In a perfect replication the constant 
terms would be zero, the slope coefficients unity, and coefficients of determination equal 
to one. I 

The results demonstrate that the linearized model is a very good model of the 
nonlinear relationship. The coefficients of determination range from 1.0 to .81. Three 
of the slope coefficients were different from one at the 95 percent confidence, and three 
of the intercept terms were statistically different from zero at the 95 percent confidence. 
These results are not surprising since volume as a linear function of basal area given age 
and the growth of basal area over time is relatively smooth so that linearizing it over 
decades gives a reliable approximation. 

The accuracy of the linearized model is an important result in itself. The Kalman 
filter could be used for timber stock estimation regardless of whether an optimal control 
m<jdel was being used to set harvest levels. The limiting concern when the filter is used 
alone is the accuracy of the linearized model of the growth dynamics. Since the linearized 
model in this case appears to be quite accurate, the Kalman filter can be recommended 
for use in stock estimation with the Stanislaus National Forest growth model. Additionally, 
errors made. by a linearized model are partially corrected by the observer and the update 
phase of the Kalman filter. Given these results, it appears that linear recursive estimators 
have much to offer to forest mensuration problems. 

1Thls simulation is not a stochastic simulation in the sense of regressing actual observed values on 
values stochastically predicted by the model as discussed in Aigner (1972). In the bivariate regressions 
above, the additive error term represents solely the error introduced by linearization, and it is assumed 
in concordance with the LQG theory that such error is normally distributed. Due to the lack of time 
series data, it was not possible to compare the LQG model with observed data. 
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4.3.5. Characteristics of the Linearized System 

Engineering control literature describes a number of the characteristics of linear models 
that are used to assess the qualitative nature of the models. Among these properties are 
stability, controllability, and observability. This section analyzes the estimated parameters 
for At, Bt, and Ct with respect to the above characteristics for their relevance to the 
LQG model just estimated. 

A very important property of any system is the stability of the state-transition 
matrices, At. If a system is unstable--given some initial ox0 =I= 0--oxv as t approaches 
infinity, need not converge to the origin. It can be immediately observed that the system 
is not stable since, for all t, the 32,32 element of all the At is greater than one, and 
there are no other nonzero elements in row 32 of the At· Thus, left unperturbed, a given 
deviation will continue to grow. 

To combat any explosive tendencies in the system, control effort can be exerted. 
A system is said to be controllable if it is possible to move it to 'any predetermined 
state in a finite number of periods. The estimated system is not controllable over the 
10-period trajectory. This lack is a direct result of the construction of the At and B1. 
They are structured so that in all periods the Euclidean space spanned by the At and 
Bt is strictly less than 33. That is to say, by design of At and Bt it is impossible to 
move the system from any given initial state to any desired state within the 10-period 
time horizon. 

The lack of controllability is due, in part, to the restrictions on the elements of 
the Bt. Recall that, to avoid feasibility problems on the variables, the tracking model 
only adjusts harvests indicated by RAM; it does not initiate any. If that restriction could 
be lifted, the manager could exert much more control. However, even with all possible 
controls, the forest can only be moved to levels that are biologically feasible. 

The last property of linear systems to be discussed here is observability. This property 
implies that, given enough observations, lizt, it is possible to determine the initial state, 
0xo. This property is not relevant for the empirical model because it is assumed that 
an estimate of the initial state is known; hence, the property of observability is meaningless 
in this particular application. 

All three of the above properties have been defined as deterministic concepts. When 
the true stochastic properties of the growth dynamics system are recognized, all of the 
above properties are defined in ways that are quite different. In general, stochastic 
observability, stability, and controllability I analyze the boundedness of Pti t over time. 
These advanced topics in control theory, covered in Aoki (1967), are difficult to analyze 
with time-varying covariance matrices, nt and et. Empirically, the results show that Pt It 
does not seem to exhibit explosive tendencies. 

4.4. Summary 

In Section 4 it was shown that the usefulness of the LQG technique for analyzing 
and studying stochastic problems in harvest scheduling depends directly on how accurately 

1For further information on observability, stability, and controllability, see Meditch (1969). 
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the deterministic model of the underlying optimization problem can be translated into 
the required linear-quadratic forms. Three major difficulties are encountered in fitting 
the Stanislaus National Forest. RAM plan into LQG form. The first is that growth and 
timber removal actions are entered as tabular data as opposed to continuous functions; 
the second difficulty is that the objectives of national forest management are not clearly 
defined for a stochastic problem; and the last difficulty is that a timber-harvesting problem 
requires extensive use of feasibility constraints. 

The difficulty inherent in the tabular form of the RAM input is handled by using 
the original functions employed in obtaining the tabular data and employing Taylor's 
theorem. The resulting model of growth dynamics offers both advantages and disadvantages 
over the RAM model. A desirable aspect of the LQG dynamics is that thinning levels 
and harvest rotation become, in most instances, outputs of the solution instead of inputs 
to it. A drawback to the LQG dynamics is that there is a loss of information vis-a-vis 
RAM. 

The problem of feasibility constraints is partially solved by not allowing variables 
with a target value of zero to be altered in the solution. Given that small variations in 
timber removals at a zero level might seriously disrupt long-range plans and that the 
variations would be small relative to the harvest levels, this approximation is judged 
acceptable. Since it does not assure feasibility in all cases, however, the behavior of this 
aspect of the model remains to be examined in Section 5 below. 

The LQG objective function is hindered by a precise articulation of Forest Service 
objectives under uncertainty. The policy of non declining yield is not well defined for 
an uncertain environment, and the multiple-use criterion is vague. Given these 
circumstances, a set of objective functions is postulated to span the reasonable possibilities 
of diagonal quadratic preferences. In the context of forestry, this results in various 
weightings of harvest versus nonharvest uses if the decision-maker is risk averse. 

A fmal note concerns use of the Kalman filter. Its implementation is not tainted 
by feasibility or objective function estimation problems. The only part of the filter 
significantly affected by the linearizations is the growth dynamics. The experimental results 
indicate that the linearizations are an accurate model of the underlying nonlinear model. 
Thus, the Kalman filter can be used as an estimator for the Stanislaus National Forest 
timber stocks even if the rest of the LQG control technique is judged inappropriate. 

5. ANALYSIS OF S™ULATED RESULTS 

This section presents and discusses the results of several simulations with various 
stochastic assumptions and policy directions. The objectives are dual in nature: (I) to 
demonstrate how stochastic control models can be used to answer problems that confront 
the decision-maker and (2) to show how optimal actions change as objectives of 
management change. This latter point measures the sensitivity of control actions to policy 
variations. The more sensitive control actions are to policy variations, the more important 
it is to lessen uncertainty about society's preferences for national forest management. This 
section is divided into three parts. Section 5. l examines the control actions and resulting 
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state trajectories under varying policies and stochastic specifications, Section 5.2 
demonstrates the use and significance of the Kalman filter by analyzing the reduction 
in variance of the estimates of timber stocks compared with the use of nonsequential 
estimators, and Section 5.3 analyzes the costs of the different sources of uncertainty and 
determines the impact of more precise information. 

By varying the objective function parameters, it is possible to determine whether 
changes in Kt and Rt affect some aspects of managerial actions more than others and 
whether the range of relative values between Kt and Rt can be determined to establish 
when harvest objectives take precedence over having desired stocks and vice versa in the 
LQG model. An important question to be answered in this section is whether it is a 
serious misspecification to assume At and Bt to be constant when they are actually random. 
That comparison is important since it indicates when a certainty-equivalent assumption 
(setting random parameters equal to their means and optimizing) is acceptable. 

Additionally, from (34), (35), and (37) it can be seen that the costs of uncertainty 
vary with the value of Kt and Rt· By varying the Kt values relative to Rt, it is possible 
to calculate when a given source of uncertainty is more costly and how various sources 
of uncertainty vary in cost, given the same objective function. A final point of investigation 
is the impact of lessening uncertainty. From evaluation of the expected cost of uncertainty 
in the objective function (37), it is clear that the size offJt and rlt--the observer variance 
and growth variance--through their effect on Ptlt and relation to Ht are important in 
determining the costs of uncertainty. Varying et or .Qt allows evaluation of the impact 
of greater precision on the costs of uncertainty. 

In addition to the above areas, attention is devoted to assessing the use of the LQG 
model with respect to variable feasibility constraints. This is very important since variable 
constraints· play an active role in micromodels, and one of the objectives of this study 
is to determine whether the LQG can be used effectively with micromodels. 

Simulation of the real time solution of the LQG model requires generating a series 
of volume and basal area observations. The 8zt are obtained by generating a series of 
ct and vt and initial error on <'lx0 I0. Given the construction of Pol 0 , et, and rlt, the 
model implies a bivariate normal distribution between a class volume and basal area. Since 
the error term of the first 15 equations of <'ixt is the sum of .033183 • loglO (AGt) 
times the error of basal area growth and the error term in the volume equation (50), 
the first 15 et's are calculated to reflect this. Simply, random normal deviates are generated 
for .SBA and the error for the error term in (50). The former error is multiplied by 
.033183 • loglO (AGt) and added to the latter deviate. This makes the calculation of 
the error term consistent with the construction of et and rlt as discussed in 4.3.3. Thus, 
<'ixt, the "true" state is computed as: 

and <'izt is computed as: 
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There are 16 different simulations labeled 51-516. The exact design of these 
simulations is in Table 3. This section summarizes the results. A more detailed listing 
of the results is given in a separate supplement of results. 1 

To facilitate rough comparisons between simulations, the same random variates are 
used in 51-510. In 51 l through 516 the variates are calculated according to the covariance 
specification of the particular simulation. However, control responses are strictly 
comparable between any two simulations only for the initial period. The simulations are 
differentiated by varying the coefficients in the objective function, the stochastic 
assumptions on At and Bt, and the levels of .Qt and 81. 

For the total problem, run in single precision, processor time was 4.9 seconds.2 About 
two-thirds of this time is devoted to obtaining the filter covariance matrices. If none 
of the elements in At, Ct, Ot, nt, or Polo are changed, then the filter need be computed 
only once and stored on disk for successive runs. Alternatively, if sensitivity analysis is 
focused on et and nv then only the filter problem needs to be rerun, with the 
Ht, At Ht+! Bt, Gt, and Gt being stored on disk.3 

S.1. Examining the Harvest and Volume Trajectories 

The real time operation of the model is illustrated by exammmg in detail the 
initial-period results for two simulations with differing objective functions in 5.1.1. The 
results of 51-510 are aggregated into summary measures in 5.1.2 to analyze the 
performance of the LQG over the IO-period horizon from both modeling and policy 
points of view. The effect of random At and Bt on the control and state trajectories 
is discussed in 5.1.3'. 

S.1.1. Initial-Period Response for Sl and S4 

In all of the simulations, it is assumed that MOl, M30, and M42 timber classes have 
the following deviations from their target volumes, defmed by RAM at t = 0. 

Timber class4 Target volume Estimated 

MO! 6.90 6.89 .0 I 

M30 450.90 448.09 2.81 

M42 40.17 32.32 7.85 

1The supplement with the full set of results is obtainable from the authors :m request. 

The simulations were run on a CDC 7600 at the University of Illinois at Urbana-Champaign. 

3-rhe program, written in FORTRAN IV, uses matrix subroutines developed by White and Lee (1971). 

4Por definitions of timber classes, see Table 1, supra, p. 31. 

2



TABLE 3 

Characteristics of the Experimental Runsa 

Simulation Kt = 0 K 
t = .10 K 

t = .20 K
t = 1.0 K 

t = 4.0 

A Bt' t 
assumed 

known 

et nt J 

At 
initial 
values 

Reduced 
by 

75 percent 

Last 18 
diagonal 
elements 

reduced byb 
75 percent 

At 
estimated 
values 

Last 18 
diagonal 
elements 

reduced byb 
75 percent 

Sl x x x x 

S2 x x x x 

S3 x x x x 

S4 x x x x 

SS x x x x 

S6 x x x 

S7 x x x 

S8 x x x 

S9 x x x 

SlO x x x 

Sll x x x x 

Sl2 x x x x 

Sl3 x x x x 

Sl4 x x x x 

SlS x x x x 

Sl6 x x x x 

aThe x indicates that a run has the indicated characteristics. 

bSince the remaining nonzero elements in these covariance matrices are partially a function of the last 18 diagonal elements, the remaining 
nonzero elements are accordingly adjusted using the procedures in 4.3.3, supra, p. 44. 

Source: Computed. 
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The values in the "estimated" column are assumed to be the conditional mean estimates 
of the existing volumes. I The adjustments to the thinnings and regeneration harvests for 
SI are mild as shown in Tal;>le 4. The preferences in SI strongly emphasize maintaining 
harvest flows. All of the harvests and thinnings in volume classes that are below their 
target levels remain at their target levels or decline as would be expected. A harvest 
reduction is taken in M42 because of the large relative discrepancy between target level 
and actual level in M42. In contrast to SI where the Kt, t < 10, are set at zero, in 
S4 where Kt = I, the control responses are comparatively more vigorous. In the M42 
class for S4, the ratio of the deviation in harvest to the deviation in volume is 0.60, 
whereas in SI it is 0.04. The increased responsiveness is due to the importance of having 
current stock levels as implied by the objective function in S4. 

Jn SI the potential decline of harvests is postponed to a less costly future. However, 
when a loss is associated with not having desired current stocks, say for multiple-use 
purposes, then no opportunity exists for postponing losses to a less costly future. The 
conclusion cannot be drawn that assigning temporal existence values to volume deviations 
will always result in decreasing harvests. Recall that the control rule, out = -Gt oxtlt• 
is linear in oxt It· In the particular example displayed in Table 4, all of the volume 
deviations are below their targets. If the sign of oxtl t were changed, then the sign of 
out would also change, indicating that for SI and S4 most of the harvest activities would 
be above their target levels in the initial period. 

The problems presented by binding variable constraints can be seen in Table 4. Given 
the restrictions imposed on the elements of Bo in the LQG model, no control or state 
variables lie outside their feasibility region for the initial period of Sl or S4. If this 
restriction were not made, the number of feasibility constraint violations could be 
considerable. For example, assume that no regeneration harvest activity is scheduled for 
the M42 class in the initial period of S 1 but that the possibility for regeneration harvest 
in M42 is permitted in B0. The corresponding element of 8u would still be 0.353 indicating 0 

, 

a negative harvest. In a forestry context this could be interpreted as an indication to 
increase the timber stock as through fertilization or planting. The restriction on the Bt 
is not totally effective in preventing feasibility violations. For example, assume that oxa Io 
is multiplied by 5.12 so that the 15th component of ox0 !0 is 40. l 9, essentially indicating 
that there is no timber in the M42 class. In SI the control would indicate a harvest 
of 11.86 which is clearly impossible since no timber exists. Feasibility violations are rare 
in the simulated results. In S 1-S16 there are no more than three control violations per 
simulation; this is out of a possible 60 control actions in each simulation. Violations tend 
to occur when the level of the target harvest is close to the level of the target volume 
of the given class. Hence, in periods where the remainder of an age or timber class is 
to be comP.letely clear-cut, feasibility violations are frequent. In the simulations the 
infeasible harvests are set equal to their nearest feasible level. 

The conclusion that can be drawn from the above results is that feasibility violations 
are not a serious problem when variables remain relatively close to their target values. 
This implies that the LQG method can be used even if the original optimization problem 

11n general, it is to be expected that the initial state will be below the target level since a system 
is rarely "on target" at the beginning. Additionally' with xr * XO, the resulting initial period controls 
are the solution of a more realistic stochastic control problem instead of the deterministic controls, 
u6. 
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TABLE 4 

Initial Period rtarvests for Simulations One (Sl), Four (S4), Six (S6), and Nine (S9) 

Sl S4 
Scheduled Actual Scheduled Actual 

Regenera 1Regenera Regenera- l j Regenera
tionTimber Thin tion Thin- tion Thin-Thin- , tion 

classa ning harvest ning ningharvest harvest..... ning harvest 

MOl 5.75 0.31 5.75 

milliAn ~· 

0.31 

i" feet_ 

5.75 0.31 5.76 0.31 

MlO 13.28 0.00 13.28 o.oo 13.28 0.00 13.29 o.oo 

M20 20.95 0.00 20.95 0.00 20.95 0.00 20.95 o.oo 

M30 10.89 86. 77 10.89 86.77 10.89 86. 77 10.04 85.93 

M41 0.00 o.oo 0.00 o.oo 0.00 0.00 0.00 o.oo 

M42 

.MOl 

13.66 

5.75 

I 

0.00 

S6 

0.31 

13.31 

5.76 

o.oo 

0.31 

13.66 

5.75 

0.00 

S9 

0.31 

8.99 

5.78 

o.oo 

0.30 

MIO 13.28 0.00 13. 28 o.oo 13.28 0.00 13.32 0.00 

M20 20.95 0.00 20.95 o.oo 20.95 o.oo 20.98 o.oo 

M30 10.89 86. 77 10.89 86.77 10.89 86. 77 10.05 85.96 

M41 o.oo o.oo o.oo o.oo o.oo o.oo 0.00 0.00 

M42 13 .66 o.oo 13.31 o.oo 13.66 0.00 9.32 0.00 

aThe classes (MOl to M42) represent wild stands. 

Source: Computed. 
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has variables with constrained feasibility regions. Penalty functions would also prevent 
feasibility violations but would make interpretation of the costs of uncertainty difficult 
if not meaningless. Also, computational costs would be increased substantially. Hence, 
for economic problems, the use of restrictions on the Bt may be a better and more useful 
approximation. 

The initial-period control responses show little substitution effect among the 
controls.I This is a direct result of the diagonality of Kt and Rt. As results in Dixon 
(1976) show, when Kt and Rt are nondiagonal, there is considerable substitution between 
the controls. Intuitively, it might be expected that there would be no substitution with 
diagonal objective function matrices. This would occur if the At and Bt were square and 
diagonal. The substitution that does occur is as expected. In classes that have their target 
volume, some alteration is made in those controls and, hence, states so that the loss is 
spread among classes. For example, in S4, harvests are increased in the MIO in the initial 
period to counterbalance the decreases in the M42 and M30 classes. With a quadratic 
loss function, this is a predictable result. 

A final aspect of the initial-period controls is the effect of uncertainty in At and 
Bt· The impact of uncertainty is registered in several aspects of the results. In this section 
attention is restricted to the initial-period response. In S6, which is identical to SI except 
that the randomness of Ar and Bt is explicitly included in the solution, a comparison 
of the initial-period controls between S 1 and S6 shows that the controls are almost 
identical. Thus, the effect of uncertainty about the coefficients in the dynamics on the 
control vector is slight. Table 4 also gives the initial-period results for S6 and S9. The 
norm of the control vector is 0.353 in SI and 0.352 in S6. Likewise, the sum of deviations 
of control vector is 0.360 in SI and 0.359 in S6. In S9, the stochastic counterpart to 
S4, the effect of uncertainty is more pronounced. The control norm is 4.83 in S4 and 
4.49 in S9. In percentage terms there is a larger difference between the norms when the 
objective function weights oxt more highly. The trend continues as the ratios of initial 
period norms for S2 to S7, S3 to S8, and SS to S IO are l.02, 1.03, and I. I0, respectively. 
It can be concluded that, as more emphasis is placed on timber stocks being at their 
predetermined levels, the effect of uncertainty in determining the optimum harvest levels 
becomes more influential. Phrasing this result another way, if a certainty-equivalent 
approach is taken, the error likely to be made in determining optimal harvest level will 
be greater when deviations from desired timber stocks are more important than 
harvest-level deviations. 

J 
The above results suggest that the assumptions made about uncertainty should depend 

on the objectives of management. When there is little concern about the state of the 
system, uncertainty in At and B1 has little effect on the control effort. When policy 
emphasis is shifted onto the timber stocks, then the same level of uncertainty has a larger 
effect on control actions. A plausible interpretation of this is that, when only control 
levels are important, the controls can be readjusted in each time period to give the desired 
flow. When the policy is expanded to include losses from stock deviations, then the controls 
must be used also to counterbalance the effect of the uncertain growth functions which 
now have an added importance. 

IFor successive periods, it is difficult to judge the degree of substitution since frequently a class 
has a large deviation but no control actions are permitted. Thus, it is not possible to compare own-class 
and cross-class effects as clearly as in the initial period. 
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The desirability of active learning with respect to At and Bt cannot be fully assessed 
until the costs of uncertainty about At and Bt have been analyzed. This is done partially 
in 5.1.3 and completed in 5.3. In this latter section the necessity of employing active 
learning for the particular model used is considered. 

5.1.2. 	 Analysis of Harvest and Volume Trajectories 

Under a Certainty-Equivalent Specification 


Having analyzed the response of the initial-period controls, attention is now focused 
on the behavior of the control and state vectors over the time horizon. The analysis is 
directed to determining the policy-relevant range of the value of Kt to Rt,. i.e., to 
determine when further increases in one set of values relative to the other will have 
negligible impact on control effort. Additionally, the control and state trajectories are 
examined to determine the variation from the deterministic results when the randomness 
in the At and Bt is explicitly incorporated into the solution. 

Before discussing either the CE or stochastic (S) trajectories, the accuracy of the 
results can be assessed by noting that in S 1-S 10, 5 percent of the actual control levels 
are less than 50 percent of the target harvests and less than 6 percent of the controls 
are 50 percent larger than the target harvests. Since the analysis in 4.3 .4 shows that the 
LQG model is highly accurate for the vast majority of the actual control levels, the 
linearized model is an accurate portrayal of the state of the forest for the indicated control 
actions. This, of course, is contingent upon the accuracy of the deterministic model. 

Table 5 displays the harvest and stock trajectories for SI and S2. Net stock and 
removal flows are given since those are usually of interest to a forest manager. To measure 
the response of the controls to deviations in the level of timber stocks, the Euclidean 
norm of the control vector is divided by the norm of the stock deviation vector, i.e., 
the first 15 components of lixtlt· This is an approximate measure of control effort. I Clearly, 
the less responsive the controls, the closer this ratio would be to zero. This ratio is not 
bounded above :.by one; but, in practice, values in excess of one are rare as indicated 
by all of the resµlts in Sl-Sl6. Using this ratio, the sensitivity of control actions to 

·different policies:, can be revealed by comparing these ratios across simulations for 
corresponding tim~; periods. Such a comparison is exact only when the state vectors are 
identical, compon.ep.t for component. Such is the case for only the initial-period controls. 

\ 
The harvest tr~jectory of Sl given in Table 5 remains quite close to the target levels 

in early periods, la.pgely ignoring deviations in the timber stocks. The modification in harvest 
and thinning lev~tS in the early periods is slight in S 1 compared with 1iu0 under different 
management policies. This response is to be expected though since the objective function 
is weighted almost exclusively to maintaining harvest flows. The control vector begins 
to respond toward the end of the planning horizon when the model must balance the 
deviation in current harvests with deviations in the terminal timber stocks. The trajectories 
indicate that potential losses in current harvests are postponed to a less costly future. 
When 	 there is little change in the control vector, the controls may become particularly 
susceptible to feasibility violations for the reason given in 5.l.l. 

The pattern of harvests of S\ confirms that nondeclining yield is not a completely 
specified objective function in a stochastic environment. The preference structure in Sl 

1For further discusfilon of measuring control responsiveness, see Chow (1975). 
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TABLE 5 


Comparison of Volume and Harvest Deviations Over Time by Period for Simulations One (Sl) and Toto (52) 


Sl S2 
Ratio of harvest Ratio of harvest 

Net harvestNe.t volumea to volume Net harvest to volumeNet volumea 
acLJ_ustmentsaPeriod deviations adJ..ustmentsa deviationsa deviations deviationsa 

ic feetmillion cu 

10.67 .161
0 0.36 .042 10.67 1.81 

7.671 
 - 0.03 .005 6.05 3.10 .103 


82.46 0.01 .0542 
 .004 77 .37 
 4.55 

3 
 43.47 .008 33.27 o.53- 0.24 .030 

42.134 
 1.18 .014 5.94 .08430. 73 


,018 5, 72
5 
 73.99 1.80 56.72 .010 

45.38 6,786 
 67.84 7.68 .143 
 .163 


.0607 
 2.87 8.1330.81 .054 1.11 

.202
-27.98 3.84 -49.69 0.568 
 .206 


.487
20.93 .610 
 -20.49 12.309 
 - 1.54 

aPositive numbers indicate that the numbers are below their target levels; all numbers are the quotient of the Euclidean norm (the square 
root of· the inner product of a vector) of the control vector divided by the norm of the first 15 elements of the state vector, i.e., the 
timber volumes. 

Source: Computed. 
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is a plausible structure for a preference function representing nondeclining yield under 
uncertainty. Table 5 shows that, over the time horizon, harvest levels are below the target 
levels and, furthermore, that the net deviations are not in a nondeclining pattern. As argued 
earlier, no plan of positive harvest levels can be assured with a probability of one so 
that any level of nondeclining yield is associated with some level of probability that the 
planned harvests will not be met. 

The results provide a further insight into the nature of the nondeclining-flow policy. 
The preference structure in Sl could be improved as a representation of nondeclining 
flow by using a negative discount rate. That would have the effect of making larger 
adjustments in the present and smaller adjustments in the future. 1 Zivnuska (1975) argues 
that nondeclining flow has the effect of bringing any future fall-offs in harvests into 
the present where, with a positive discount rate, they have the greatest cost. Furthermore, 
if the nondeclining objectives are altered to consider uncertainty, then high levels of 
confidence will require low levels of harvest since the policy-maker must consider future· 
possible losses in timber. That effect will be lessened if a positive discount rate is used 
and amplified if a negative rate is used. 

When the Kt are given small positive values, the results are surpnsmg. In S2 the 
nonzero diagonal elements of Kt are set equal to 0.10. The change in control response 
is considerable. For example, the ratio of the initial-period control and state nonns in 
Sl is 0.042, whereas the quotient increases by more than a factor of three in S2. Similar 
increases in the responsiveness of the removal flows can be observed by comparing the 
norm ratios in Table 5 (S 1 and S2) for the first eight time periods. When the Kt values 
are increased again to 0.2, the factor of increase in responsiveness is much less from S2 
to S3 than from Sl to S2. As this pattern is continued, incrementation of Kt relative 
to Rt has a diminishing effect on the responsiveness of the controls. This latter effect 
can be explained by examining the control law, Gt. As Kt+l grows larger relative to Rt, 
the effect of. Rt is overwhelmed2 so that Gt, 

increasingly ignores Rt· Further increases in Kt+ 1 do little to change Gt since both Ht+ 1 
and its inverse are in Gt. 

Table 6 further illustrates this effect by displaying the ratio of control to state norms 
for Sl-SlO. In most periods this ratio increases, but the rate of increase declines as Kt 
becomes larger. Thus, the region of substantial trade-offs, in terms of control effort, 
is where the elements of Kt are less than those of Rt· Once the Kt become larger than 
Rt, the effect of further increases is relatively insignificant. 

The reason for this particular range of sensitivity is clear when the economic impact 
of the weights, Kt, are considered. When a forest exists solely as a source of timber for 
harvest, a unit of timber has a product value in the sense of yielding a revenue in the 

1The results in Howitt, Dixon, and O'Regan (1977) show that, with a zero discount rate and 
preferences similar to those in SI; the initial period response increases substantially compared to the 
response in S 1. 

2rhe recursive effect of Kon H can be seen in equation (34), Section 3, supra, p. 12. 
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last period of its existence. When the Kt become positive, it implies that the timber stocks 
produce a direct benefit (utility) in each period of their existence. Clearly, if an owner 
is receiving nearly the harvest value of a tree in each period, the maximizing behavior 
is to let the tree stand. When the multiple-use value is ascribed to the forest and quantified 
in units comparable to the price of harvested timber, the value maximizing rotation can 
be quite different from what has been traditionally considered in the forestry literature.I 

TABLE 6 

Ratio of Harvest Deviation Norms to Volume Deviation Norms 
by Period for Simulations One (Sl) Through Ten (SlO) 

Period 
;-------

Sl S2 S3 S4 
Simulation 

SS S6 S7 SS S9 SlO 

0 .042 .160 .252 .579 .806 .042 .158 .244 .539 . 730 

1 .005 .103 .161 .328 .436 .005 .101 .156 .312 .431 

2 .004 .054 .080 .126 .132 .004 .053 .078 .126 .143 

3 .008 .030 . 038 .141 .375 .008 .030 .036 .106 .250 

4 .014 .084 .132 . 248 .312 .015 .079 .119 .238 .321 

5 .018 .070 .100 .158 .160 .020 .070 .098 .155 .171 

6 .143 .163 .178 .327 .513 .144 .160 .171 .272 .410 

7 .054 .060 .063 .686 .140 .054 .055 .055 .058 .087 

8 .206 .202 .192 . 214 • 252 .199 .194 .191 .200 .228 

9 .610 .487 .380 .193 .107 .602 .500 .414 .225 .153 
j_ l 

Source: Computed. 

The impact of Kt becoming nonzero is also evident in the numerical values of the 
objective functions. The term ox'olo Ho oxolO is the present value cost of the current 
deviations and is shown later. In Sl this cost is 2.62. In 82 the cost for the identical 

J 	 llxolo is 17.46. For 83, which doubles the Kt in 82, the cost is 30.30--a much less 
significant jump in terms of percent than that from Sl to 82. This behavior is continued 
in S2-S5. For example, the deviation cost is I 07 .32 for S4 and 331.25 for SS. Thus, 
slight perturbations of Kt around zero, given that the Rt values are unity, will have the 
largest percentage impact on relative costs. Therefore, it is clear that precision in knowing 
society's goals for national forest management is most critical when losses from stock 
deviations are less than losses for equivalent deviations in harvest levels. 

S.1.3. 	 The Effect of Random System Parameters 

on Harvest and Volume Trajectories 


Random At and Bt have less clear effects on the harvest and. stock trajectories than 
on the initial-period controls. In comparing Sl with its stochastic counterpart, 86, the 
control responses in S6 appear to be slightly more aggressive than the certainty responses. 

I For a more detailed discussion of this point, see Dixon and Howitt (1977). 
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That is ascertained by comparing Tables 5(Sl) and 7(S6) and by observing that in identical 
periods the ratio of norms is greater in three periods and lesser in only two periods. 
In general, however, the effect of uncertain At and Bt is not significant in the sense 
that the levels of stock and harvest deviations are almost identical when comparing the 
levels between periods. 

When values are assigned to the stocks, there is a detectable though not substantial 
change in the pattern. A comparison of the period-by-period harvest and stock deviations 
for S4 and its stochastic counterpart, S9, shows that the absolute value of total net stock 
deviations are greater in the stochastic model than in the certainty-equivalent model except 
for the initial period as shown in Table 7(S4) and (S9). Further, the ratios of norms 
in S4 are greater than the corresponding norms in S9 in 8 out of 10 periods. This pattern 
suggests that, as more weight is put on having the desired stock levels, the optimal behavior 
is to become more conservative in the control response. This conservatism translates to 
staying closer to predetermined removal levels although, in all of the comparisons between 
simulations, the harvest- and stock-deviation patterns remain quite similar. That is not 
surprising since the relative level of uncertainty is moderate in terms of statistical 
significance. 

Recall that, in comparing the trajectory of stochastic norms between SI and S6, 
the stochastic policy tended to be slightly more responsive. In comparing the corresponding 
period-by-period norms of S2-S5 with their stochastic counterparts (S6-S IO), as can 
be done utilizing Table 6, the stochastic norm ratios are less than the corresponding 
certainty-norm ratios in three-fourths of the periods. However, the differences between 
these ratios do not always grow as Kt increases relative to Rt· Given the difference in 
norm behavior between S 1 and S6 and between policies which attribute losses to stock 
deviations, the effect of linear-coefficient uncertainty varies with the management policy. 

The effect of the random At and Bt on the cost of current stock deviations, 
ox0I0 Ho ox0 I0, varies with the objective function. The cost due to the initial deviation 
is 2.67 in Sl and 2.69 in S6, an increase of roughly 0.7 percent over SL When Kt increases 
from 0 to 0.1, costs are greater by .5 percent in S7 than in S2. As shown in Table 8, 
the change in the percentage of costs is related to Kt, with the increase in percentage 
growing at a declining rate with respect to Kt for the larger Kt values. This indicates 
that the current deviation cost due to uncertainty in At and Bt usually increases with 
a shift in emphasis toward the state deviations but that, once the preponderant emphasis 
is on the states, further increases in Kt do not lead to substantially increasing rates of 
this cost due to uncertainty about At and Bt. 

Even though uncertainty about At and Bt does not have a substantial impact on 
harvest actions or current deviation costs, active learning with respect to At and Bt cannot 
be ruled out categorically. The impact of uncertainty about At and Bt on the cost of 
uncertainty terms in the objective function (37) must also be examined. This is done 
in 5.3, and it is then possible to consider the necessity of various forms of active learning 
more fully for the empirical model of this study. 

5.2. Optimal Stock Estimates: The Kalman Filter 

The Kalman filter offers a distinct departure from traditional mensurational 
techniques. Since the filter appears to have substantial potential for timber management 
models, its operation on a particular state variable is examined. 



TABLE 7 


Comparison of Volume and Harvest Deviations Over Time by Period for Simulations Four (S4), Six (S6), and Nine (59) 


r-- S4 
Ratio of 

]§. 
Ratio of 

59 
-

Ratio of 
Net Net harvest Net Net harvest Net Net harvest 

Period 
volume 

deviationsa harvest 
ad_iustmentsa 

to volume 
deviationsa 

-
volume 

deviationsa harvest 
ad_iustmentsa 

to volume / 
deviationsa . 

volume 
deviationsa harvest a 

a<!l_ustments 
to volume 

deviationsa 

million cubic feet 

0 10.67 6.36 .579 10.67 0.36 .042 10.67 5.90 .539 

1 0.93 9.90 .328 7. 67 - 0.02 .005 1.44 9.01 .312 

2 64.55 10 ..81 .126 82.45 0.06 .004 66.06 10.78 .126 

3 13.03 - 3.31 .141 43.40 - 0.27 .008 14.65 - 2.48 .106 

4 13.83 11.17 .248 42.09 1.23 .015 14.65 11.03 .238 

5 33.15 9.02 .158 73.90 1.94 .020 34.16 9.14 .155 

6 16.90 - 1.62 .327 67. 60 7.94 .144 17.87 - 0.63 .272 

7 -13.03 - 4.30 .086 30.26 3.07 .054 -13.23 - 3.03 .058 

B -65,56 - 3.28 •214 -28.84 3.50 .199 -67. 57 - 4.10 •2!10 

9 -32.56 2.50 .193 - 2.04 19.99 .602 -33.93 l 2.45 .225 

aPaaitive numbers indicate that the numbers are below their target levels; all numbers are the quotient of the Euclidean norm (the square 
root of the inner product of a vector) of the control vector divided by the norm of the first 15 elements of the state vector, i.e., the 
timber volumes. 

Saurce1 Computed, 
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TABLE 8 

Comparison of Cost of Initial Deviations 

Between Certainty-Equivalent 


and Stochastic Models 


Certainty-

equivalent, 
 Stochastic, 

RatioaSimulation oXOlO HO OXOJO 
1 

oxO lo HO oxOjO 
3 

Sl 

2 

2.69 1.0072.67S6 


S2 
 1.00517.5517.46
S7 


S3 
 1.00930.5630.30
S8 

S4 1.042111. 88107.32
S9 

SS 1. 098363.70331. 25
SlO 

aColumn 2 divided by column 1. 

Source: Computed. 

Selected for the purpose of exposition is timber class M42 (young saw timber). In 
the initial period of S4, the optimal solution is to decrease regeneration harvesting by 
4.675 million cubic feet from its target level. In the next period, therefore, the equations 
of motion predict that the deviation in this volume class will be equal to 3.231. To 
illustrate, let oVol 1 denote the volume deviation of timber in period 1 for M42 and let 
oBAo be the deviation in basal area of the M42 class in the initial period so that 

.SVoll I 0 .049 .SBA0 I0 - 1.143 .su0 

3.231 .049. 175 - 1.143. 4.675. 

The variance of this prediction is 82.99. The sampling of basal area in the M42 class 
at the beginning of the next period indicates a deviation in volume of .36 million cubic 
feet. The variance of this sampled estimate in this class is 76.96, so there is considerable 
uncertainty surrounding the estimate of volume based on the current sample of basal area. 

The Kalman filter then combines the ·prediction based on prior observations, oVol 110, 
with the estimate based on the most current sampling, oz1, using (31). Essentially (31) 
combines two weighted estimates of oVol1 so that, when added together, the best unbiased 
estimate of 0Vol1 is given as 0Vol1I1 = 1.884. This estimate lies between the two values 
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that are given as estimates of 8Vol 1. The variance of this combined estimate is 39.95. 
Thus, instead of having an estimate with a variance of76.96, which relies solely on current 
samples, use of prior samples ,reduces the variance by more than 48 percent. It is noted 
that less reliance probably would be placed on 8Vol 1I0 if the stochastic nature of At 
and Bt were recognized which it is not by the Kalman filter. When that source of 
uncertainty is explicitly recognized, the uncertainty of the predicted estimate, oxt I t-1' 
would most likely increase, placing relatively more reliance on the observation (sampling) 
procedure. 

In general, the impact of the Kalman filter is to decrease the variance of the estimated 
stock variable levels by about 50 percent from the observer variance. This is shown in 
Table 9 which displays the observer variances for the six wild stands and their 
corresponding Kalman estimate covariances for the first five periods for Sl-SlO. These 
results indicate very clearly that use of recursive estimation results in a substantial decrease 
in uncertainty, given the magnitudes of the parameters in this problem. The decrease in 
uncertainty in any given application is, of course, a function of the relative sizes of At, 
Ct, .Qt, and et. 

To observe the effect of a different sampling precision, a simulation was run reducing 
all of the elements in et by 7 5 percent. This effectively reduces the size of the observation 
standard error by 50 percent. Thus, more reliance is placed on the sampled estimates 
and less on the predict, 8xtl t-1 · The control in the initial period is still 4.675, and 
the predicted deviation in volume is still 3.231. The sampled value 8z1 is -.05; but the 
conditional updated estimate 8xtlt is .079 which is closer to the sampled value than with 
the less precise observer, and the variance of the new estimate is 15.62. Intuitively, this 
is what would be expected. 

Experiments such as the above can determine the effect of greater precision, but 
it must be recalled that the cost of this greater precision is not part of the control problem 
so that optimal sampling intensity is not a result of the model. 

The Kalman estimation procedure essentially introduces a new step into traditional 
survey techniques: the intermediate prediction, i.e., the prediction based on all past sample 
information and the estimated growth dynamics. It has been assumed in this study that 
plots have been selected by a simple random sample. Clearly, the sampling strategy could 

J 	 be altered to suit the specific estimation goals. For example, if the current objective is 
to obtain the best possible estimate of basal area in condition classes, the sampling strategy 
used might be different from that if the objective were to estimate timber volume. If 
the objective were to estimate the coefficients of At and Bt, then another sampling 
technique might be better. Choosing the "best" sampling plan is intimately related with 
a topic in stochastic control known as identifiability (Aoki, 1967).1 Basically, if a system 
is identifiable, then--with a sufficient number of observer signals--it is possible to 
estimate A1 and Bt· In any of these cases, a recursive estimator, of which the Kalman 
filter is a special case, generally will be used to estimate the current state variables. 

1The engineering definition of identifiability is not to be confused with the identifiability problem 
in econometrics although they are closely related. 



TABLE 9 

Comparison of the Observed Variances and Updated Variances of Timber Classes 
by Period for Simulations One (Sl) Through Ten (SlO) 

Timber classa 
MOl MlO M20 

Up- T Ob-
M30 M41 M42 

Up- Up- Ob- Up- Ob- Up-Ob- Ob- Ob- Up-
Period served dated served dated served dated • served ] served dated dateddated served 

1 0.03 0.02 120.0 61. 2 1435.0 2700.0 1456.0 716.0 77 .0708.0 5403.0 

2 0.01 1567.00.03 139. 0 68.1 746.0 2378.0 1187.0 1705.0 816.0 80.9 41.1 

76.23 0.03 0.01 158.0 1598.0 755.0 579.0 302.0 1868.0 884.0 84.9 I 43.1 

I 
4 0.00 0.00 177 .0 84.5 332.0 168.0 589.0 283.0 1916. 0 905.0 89.0 45.1 

5 0.00 0.00 196.0 92.7 338.0 162.0 584.0 277.0 1096.0 526.0 93.2 47.2 

aThe tilnber classes MOl to M41 represent wild stands. 

Source: Computed. 

39.6 
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5.3. The Costs of Uncertainty 

One of the major sources of information generated by use of the LQG technique 
is an evaluation of the costs· of various sources of uncertainty in a control model. This 
section investigates the impact of the various sources of uncertainty and differing policies. 
In addition, the impact of lowering various sources of uncertainty is measured. The purpose 
of analyzing uncertainty is to determine where research or sampling efforts should be 
directed to lessen uncertainty and increase expected returns. 

Table 10 gives decompositions of the expected value of several of the simulations 
for the 10 planning periods. The reader is reminded that these costs are invariant under 
a linear transformation of Kt, KT, and Rt· In Table IO(SI), the most striking result is 
that the fourth column is always greater than the fifth column on a period-by-period 
basis. This means that the cost of uncertainty in future growth dynamics, ~tr Ht+1 ilt, 
is greater than the future costs of uncertainty in estimating the state vector. At the 
beginning of a time period, steps can be taken to lower ni, i ;;;. t and ei• i > t. I The 
results for SI show that more is to be gained by decreasing uncertainty in ni than ei+ 1 · 
Anytime ni is lowered, it has a two-pronged effect on costs. First, tr Hi+! ni will be 
directly reduced. The second effect is on Pi+ I Ii+ 1. Recall from (28) and (30) that the 
magnitude of Pi+1l i+1 is related to the magnitude of ni. Thus, reducing ni will effect 
reductions in costs for terms in the objective function containing Pi+ 1Ii+1 · The impact 
of the ni in S 1 can be measured in another way. ~tr Hi+ I ni accounts for 65 percent 
of the expected 'loss in E(Jo). This percentage is a lower bound on the cost of ni since 
it does not account for the effect of ni-1 on Pili· 

When the policy ascribes a loss to not having desired timber stocks, almost all of 
the costs increase substantially. Additionally, the levels of corresponding cost of uncertainty 
terms in S2-S5 are approximately proportional to the changes in the Kt· When the Kt 
assume nonnull values, they account for roughly 99 percent of the total initial period 
expected costs in S2-S5, whereas they only account for 77 percent of the initial period 
total costs in SI .2 Thus, when having stocks at a specified level is important, the relative 
cost of a given level of stock deviations declines substantially. This result implies that 
it might be more advantageous to allocate budget from harvest activities to reducing 
uncertainty when stock deviations are costly. That is, reducing harvests would likely result 
in increased stock deviation costs, but a decrement in uncertainty will have a much higher 
payoff than when stocks do not have a temporal existence value. 

In S2-S5 the cost of future growth-dynamics uncertainty, once again, is greater 
than the costs of future uncertainty in estimating the state vector. However, the cost 
of current uncertainty in the state vector, tr Ht Pt It accounts for 58 percent to 
60 percent ·of all initial period costs in S2-S5 implying that, when stocks yield temporal 
existence values, it is important to be able to observe them precisely. This result seems 
to say that initial stock levels should be sampled more intensely. Given the strict structure 
of the problem, this is not an alternative. The initial covariance, Po 10, is a given parameter; 
only ei, i ;;;;., I can be altered. Stepping outside the strict structure of the model, the 

11n the context of the model, at the beginning of t, ozt is observed so that et cannot be changed. 

2since KT remains fixed, tr H10 n9 and tr A9 H10 B9 G9 P9 19 remain the same in SI through 
SS. 
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cost of initial uncertainty in the state estimate could be significantly reduced by use of 
a "prefiltering" cycle. This process begins with an initial state estimate at t = -1. Then, 
using (27) to calculate an update estimate, a sample is taken at t = 0 and combined 
with 6x0 I I· Then P0 Io most likely would be considerably reduced over what it is now. 
In more concrete terms of a timber application, this requires using the data of a current 
and prior decennial survey and a predict relationship such as (27) to forecast what the 
current volumes are. This procedure would extract more value out of old sample data. 

In determining whether resources should be devoted to sampling or reducing 
growth-dynamics uncertainty, the potential usefulness of the uncertainty reduction must 
be considered. Given the way that growth is modeled in the Stanislaus National Forest, 
more intense sampling will be likely to have only a small return. This is shown by comparing 
total expected costs of SI with Sl I and S4 with SI 2. The values of the expected costs 
for S 11 and S 12 are given in Table 11. In S 11 and S 12, all the (J t's are reduced by 
75 percent. In S 11 the greatest drop in total cost in any of the periods is less than 
I 0 percent of the corresponding costs in SI. A somewhat larger imP.act occurs between 
S4 and S 12; in one period, total costs drop by about 30 percent. I However, there is 
not a perceptible difference in total initial period cost in either of the comparisons. The 
reason is that, in the variance of any update estimate, Pt+ 11 t• the vast majority of variance, 
as it pertains to cost, comes from the first 15 diagonal elements of llt. Even if the estimate 
Pt It is very precise, substantial uncertainty will be introduced in the next period via the 
addition of Qt+ l • and a very precise sample will again have to be taken to reduce Pt+ I It+ I· 
If, however, the research effort were reversed and the ni were reduced, which means 
that relationship (42) would be estimated more precisely, then all three of the cost terms 
would be reduced, perhaps substantially. Assume that a relatively precise estimate of 6x0 j0 
is available. Then with precise ni, i > l, all future estimates of 6xt It will be more precise 
since some of the precision of the former estimates are preserved over the time horizon. 

Determining the cost of uncertainty is only one side of the problem. The other side 
of the problem is the cost of obtaining greater certainty. As noted earlier, that is an 
aspect of the management problem that the LQG problem does not consider. Even though 
future uncertainty in the system dynamics costs more than future observation error, it 
cannot be definitely stated that research effort should be devoted to Ui instead of (Ji· 

Such a decision must also consider the prospective returns from research. 

The question of where research effort should be directed in the Stanislaus National 
Forest model can be shown to point clearly to relationship ( 42), relating volume of timber 
to basal area. That relationship affects both ilt and (Jt· In Sl3 and Sl4, et is specified 
so that the basal area variances and covariances are reduced by 75 percent. Sl3 and Sl4 
are respectively identical in preference structure to SI and S4. Table 10(S4) and (Sl4) 
gives the decomposition for the objective functions. On total initial rosts, the effect of 
the increased observer precision is slight. The objective function of S 1 is less than I percent 
higher than S 13 and that of S4 is not perceptibly different from Sl 4. The costs of Ht+ I nt 
remain the same. In both comparisons the cost of current deviation uncertainty goes down 
substantially in S13 compared to SI for all periods but the initial period although, from 
S4 to Sl4, the cost declines less than 5 percent in each period after the initial period. 

1The fact that some of the expected costs in SI I and S 12 are greater than their corresponding 
costs is due to the fact that a change in flt results in a change in llzt· Thus, the state estimates and 
controls change which results in some of the state deviation costs being greater in S11 and S 12. 
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 TABLE 10 


Decomposition of the Objective Function for Simulation~ One (Sl), Four (54), Fourteen (514), and Sixteen (516)'2 


Coat of future 

I 
Coat of growth dy- uncertainty inObjective Current Current volume,--1 namic e unc:.ertainty ,_ volume estia.atee,function, deviation cost, estimate uncertainty, IE(Jt) tr Ht+l ~ tr ~ Ht+J,. Bt Gt_ Ptj_tox~ Lt Ht oxtLt tr 1'.t_ Ptlt_ 

4 5 

Sl 

0 

Period fil ~ l 2 I 3 

.ll7E + 02 .267E + Ol ,251E + 00.132E + 01 .l41E - 01 

l .124E + 02 .445E + 01 .556E + 00 .2l8E + 00 .224E - 02 

2 .l40E + 02 ,646E + 01 .354E + 00 .200E + 00 ,277E - 02 

3 .ll9E + 02 .461E + 01 .266E + 00 .153E + 00 .641E - 02 

4 .121E + 02 .517E + 01 , 179E + 00 .131E + 00 ,373E - 02 

5 .12U:.+ 02 • 525E + 01 .150E + 00 .174E + 01 .441E - 02 

6 •753E + 01 ,163E + 01 .950E + 00 .484E - 01 .940E - 02 

7 .598E + 01 ,986E + 00 .968E - 01 .147E + 01 .209E - 01 

.514E + 01 .946E + 00 .784E+OOB .264E 01 .169E - 01 

9 .410E + 01 . 668E + 00 .334E + 01 • 254E - 01_l 
54 ··;------·· 


0 
 .169E + 05 .107E + 03 . 994E + 04 .409E + 04 .290E + 03 

l' .498E + 04 .275E + 03 ,145E + 04.222E + 04 •633E + 02 

2 .269E + 04 • 953E + 03 •765E + 03 .216E + 02 

3 

.543E + 03 

.794E+03 .102E + 03 .283E + 03 .606E + 01 

4 

.210E + 03 

.386E + 03 , B37E + 02 .23BE + 01 

5 

.109E + 03 .BB3E + 02 

, 255E + 03 .106E + 03 .45BE + 02 .504E + 02 . 948E + 00 

6 .874E + 02 .l02E + 02 .259E + 02 .266E + 02 .487E + 00 

7 .504E + 02 .125E + 02 .137E + 02 .144E + 02 . 252E + 00 

8 .241E + 02 • 721E + 01 • 737E + 01 .607E + 01 • 995E - 01 

9 . 781E + 01 .133E + 01 .311E + 01 .334E + 01 .254E - 01 
I ~·J__·----··~--------- -------------~ 



514 

0 .169E + 05 .107E + 03 .994E + 04 .409E + 04 .290E + 03 

1 .490E + 04 .310E + 03 .216E + 04 .145E + 04 • 228E + 02 

2 .273E + 04 .104E + 04 • 737E + 03 .543E + 03 • 707E + 01 

3 • 760E + 03 .822E + 02 .275E + 03 .210E + 03 • 217E + 01 

4 .377E + 03 .802E+02 .106E + 03 .883E + 02 .86ZE + 00 

5 .254E + 03 .lOBE + 03 .445E + 02 .504E + 02 • 333E + 00 
; 

6 .852E + 02 • 908E + 01 .254E + 02 .266E + 02 .182E + 00 

7 .497E + 02 .123E + 02 .134E + 02 .144E + 02 • 979E - 01 

8 • 245E + 02 .77BE+Ol • 726E + 01 .607E + 01 .3BOE 01 

9 • 780E + 01 .138E + 01 .307E + 01 • 334E + 01 .977E 02 

S16 

0 .168E + 05 .107E + 03 .994E + 04 .404E + 04 .290E + 03 

1 .483E + 04 .286E + 03 .215E + 04 .143E + 04 • 226E + 02 

2 .270E + 04 .103E + 04 • 730E + 03 .537E + 03 .638E + 01 

3 • 752E + 03 .840E + 02 .272E + 03 • 207E + 03 .16BE + 01 

4 .371E + 03 • 789E + 02 .lOSE + 03 .871E + 02 .635E + 00 

5 • Z53E + 03 .109E + 03 .439E + 02 .498E + OZ • 249E + 00 

6 .825E + 02 • 732E + 01 • 251E + 02 .263E + OZ .126E + 00 

7 .485E + 02 .116E + 02 .132E + 02 .142E + 02 .650E 01 

8 .231& + 02 .658E + 01 • 716E + 01 .601E + 01 .255E 01 

9 • 756E + 01 .121E + 01 .302E + 01 .332E + 01 • 651E 02 

_L 

aThe Sil.ID. of coltimDS 2-5 in any one period does not equal the value in column 1. Note that J t also includes the sum of the c.osts in the. re
maining periods iJ:I. the last two eolUinns as in equation 37, Section 3, b'Upro, p4 U>

Sool:'ce: Computed~ 
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In S 1 S and S 16 the last 18 diagonal elements of .nt and its covariances are also reduced 
by 75 percent as well as basal area observation precision being similarly reduced. Comparing 
S4 with the decomposition of costs of Sl6 given in Table 10(Sl6), there is less than 
a 1 percent drop in total mitial period costs. Thus, the bulk of uncertainty cost, which 
is by far the larger cost in all of the simulations, is directly attributable to uncertainty 
arising from the relationship of basal area to volume. 

TABLE 11 

Expected Total Costs by Period for 

Simulations Eleven (Sll) and Twelve (Sl2) 


Period (tJ. 

Total cost, E(J )
t 

SU Sl2 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

.116E + 02 

.112E + 02 

.138E + 02 

.114E + 02 

.121E + 02 

.122E + 02 

• 727E + 01 

.583E + 01 

. 48'3E + 01 

.397E + 01 l 

.169E + 05 

.358E + 04 

.372E + 04 

. 802E + 03 

.319E + 03 

.263E + 03 

.766E+02 

.496E + 02 

.255E + 02 

• 766E + 01 

Source: Computed. 

In discussing the various sources of uncertainty, it has been implicitly assumed that 
the various uncertainty sources are estimated from different data bases. If the approach 
is taken that cSzt, c5u1, cSXQ\O, and l'Jt are the only information the decision-maker has 
and that all· of the values for At, Bt, .nt are uncertain, then the above analysis must 
be modified. If cSzt is used to estimate the parameters, At, Bt, and .nt, as well as cSxt, 
which it would be with a conventional econometric systems estimator, then the precision 
with which ozt is observed affects the precision of all the other parameters. Of course, 
such a problem involves active learning which is not addressed empirically in this study. 

When At and Bt are random, most costs affected by the random, At and Bt, rise. 
In comparing S l with S6, the initial period expected total costs rise by about 4 percent 
and most dramatically for Ht+1 .nt, particularly in the early periods. This trend is not 
evident when the Kt take on nonnegative values. In comparing S2-SS with their respective 
stochastic counterparts, the .costs tend to be quite similar except for the costs of future 
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state estimation uncertainty.1 For example, E(Jo) is 1730.0 in both S2 and S7. This 
illustrates the differing influence of uncertainty in these simulations. Stochastic At and 
Bt make for very little difference in control actions for preferences that do not emphasize 
harvest flows, but their randomness does noticeably increase the costs of uncertainty. That 
trend is reversed when Kt becomes positive. 

It is now possible to address the question of whether active learning is justified for 
this problem. Considering first the problem of uncertainty in the At and Bt, the empirical 
results show that both controls and costs are essentially little affected by this source of 
uncertainty. The effect of the linear coefficient uncertainty varies with the particular policy; 
but overall, active learning would not significantly reduce costs. However, substantial costs 
have been attributed to the uncertainty represented by the additive error term in the 
volume to basal area regression equation. An active learning solution with regard to this 
source of uncertainty would yield more precise estimates of the mean and variance of 
the additive error, but there is no reason to believe that a more accurate estimate of 
the variance of this error would be smaller than the current estimates. Thus, active learning 
with respect to additive uncertainty will not necessarily yield lower overall expected costs. 

As discussed in 3.2.1, active learning for LQG problems presents some extraordinarily 
difficult problems. Most research examining active learning has assumed that the At, Bt, 
and Ct are unknown constants and not partial derivatives from a Taylor-series expansion. 
A very pragmatic alternative to active learning in this application is to reexamine the 
specification of ( 48). More independent variables could be introduced as well as using 
a different functional form. Either of these approaches could reduce the costs of 
uncertainty and, in terms of practicality, could be directly applied. The whole topic of 
active learning in LQG methodology requires considerable theoretical development. 

The following conclusions can be drawn. First, uncertainty regarding future-growth 
dynamics in the Stanislaus National Forest is currently more costly to achieving systems 
goals than the future-observer (sampling) system. Of course, as the size of flt to 0t+1 
changes, this result may change. Second, sampling more intensely for basal area will deduct 
little from the cost of uncertainty. Third, ascribing a loss to volumes substantially increases 
all costs of uncertainty and makes uncertli.inty costs a larger proportion of initial-period 
expected total costs. Fourth, the model provides a means whereby the cost reductions 
from lessening uncertainty can be measured in terms of the system's objective function. 

5.4. Summary 

This section has compared and examined results from 16 simulations. The control 
actions are in accordance with intuitive expectations. For minimizing the loss from 
timber-flow deviations, losses are avoided in the present and near future, being deferred 
to the less costly distant future. By varying preference weights, the controls were shown 
to be sensitive to different policy intensities. Including a positive temporal existence value 
for timber stocks changes the harvest flows from those that assign a zero temporal existence 
value. The extent of the disparity will depend on the size of the weights on the stocks 
relative to the weights on timber flows. 

1These costs are a relatively small component of the total costs. 
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It wa·s determined that the sensitivity of the controls to deviations in the state variables 
is a function of the size of Kt compared with Rt. As one matrix of weights becomes 
much larger than the other, the control response is insensitive to a greater disparity. The 
assumption that At and Bt are constants appears justified in the LQG model estimated 
since including the variances of the At and Bt does not have a substantial impact on 
costs or controls. This behavior is consistent with Prescott's (1972) finding that, when 
parameter uncertainty is low (for At and Bt), the certainty-equivalent solution is a good 
approximation to the active learning solution. 

The experimental results show that feasibility constraints may exclude applying the 
LQG method to some resource problems. For variables that lie on the boundary of their 
feasibility set, infeasibilities can frequently occur in the LQG controls. That is, when a 
variable takes on a boundary value in the deterministic model, it can be adjusted in only 
one directibn. The LQG does not recognize such a constraint. For variables that do not 
lie on a boundary, feasibility problems are usually avoided in the above simulations because 
the control rule usually indicates feasible movements about the target value. Constructing 
Bt so that variables which lie on a feasibility boundary cannot be readjusted avoids the 
problem of infeasible variable levels though there is some loss of flexibility in the solution. 
Thus, the LQG model can be applied to at least some microlevel problems. 

In addition to solving the control problem, estimation of the inaccessible states is 
done in a way that is optima.I with respect to the control problem. This results in a 
large decrease in the variances of the state estimates. Because of the recursive nature of 
the Kalman filter the information value of observations is increased over static estimation 
techniques. This is important considering the cost of sampling. 

Another facet of the estimation and control complementarities is that the costs of 
uncertainty about the actual system dynamics as well as the observation process are 
determined. Regardless of the cardinal values computed, these costs are comparable in 
terms of which source accounts for a given percentage of total costs of uncertainty. The 
results indicate that the greatest benefit in reduced uncertainty from research in the 
Stanislaus National Forest would be derived from a more precise relationship between 
basal area and timber volume. 

6. SUMMARY 

The empirical planning of production from natural resources is an intertemporal 
stochastic optimization problem. For all but the simplest functional forms of such 
problems, computational requirements leave no other option than approximate 
optimization techniques. The LQG technique gives a stochastic approximate solution to 
the underlying problem although, in its simpler forms, the LQG neglects the active learning 
aspects of stochastic optimization. 

In many respects the LQG model is well suited for modeling production from natural 
resources. The approximate model is also an intertemporal model so that the resulting 
LQG controls consider user costs directly in terms of future and current deviations. Benefits 
or costs that accrue to stock levels as a result of temporal existence values can be directly 
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accounted for in the LQG objective function. The costs of various sources of uncertainty 
are quantified as a function of the particular policy employed. The problem of stock 
estimation is considered simultaneously with the control problem in the LQG model. This 
is a particularly important feature for forestry models since harvest scheduling and sampling 
problems in forestry are generally intertwined. Even when the problems separate, the 
optimal estimator for the total problem is a recursive estimator and not a series of samples 
over time that successively ignore all past sample data. 

The major drawback of applying the LQG technique to natural resource problems 
is its inability to handle feasibility constraints optimally. Feasibility problems ca~ become 
a significant difficulty if the target levels of variables lie on a feasibility boundary and 
the perturbations of the actual variable levels are large. In the present study, variables 
lying on a feasibility boundary are constrained to that boundary. Future research efforts 
should be directed toward developing methods that handle this problem more efficiently. 

An additional area of needed research is determination of how approximate the LQG 
technique is. This will be particularly difficult on two counts. The first problem is that 
such a test requires the optimal stochastic solution to be computed and compared with 
the LQG solution--a difficulty discussed earlier. The second problem is how much the 
reliability of the LQG solutions varies with the functional form and degree of uncertainty 
in the underlying problem. Barring a major methodological breakthrough, such testing must 
await a generation of computers having increased capacity. 

The particular harvest-scheduling model selected for analysis is transformed into the 
required LQG functional forms with varying degrees of success. Current Forest Service 
policies cannot be represented as a scalar-valued functional. As an alternative, a set of 
objective functions is used that partially spans the possible policies representable by a 
quadratic form. Estimation of the linearized dynamics is straightforward but results in 
a loss of information vis-a-vis that of the Timber RAM. ln so doing, however, it provides 
a degree of flexibility that RAM lacks. 

· The experimental runs reveal that the policy trade-offs between having desired timber 
stocks and harvest flows become sensitive when the cost of stock deviations is less than 
the cost of equivalent harvest deviations. Alternatively, when there is uncertainty as to 
what the societal preferences are, precise estimates are most valuable when the loss for 
stock deviations is less than harvest deviations. Once the cost of stock deviations surpasses 
the cost of harvest deviations, little change is noticed in either control actions or relative 
costs of uncertainty. In general, the impact of uncertain At and Bt is slight, but it varies 
with the particular policy. For harvest-oriented policies, the impact of uncert.ain At and 
Bt is slight on control actions but more pronounced on uncertainty costs. Effects are 
opposite when harvest deviations take on loss values. 

Given the low level of uncertainty surrounding the At and Bt parameters, the Kalman 
filter is a good approxirna te estimator for the timber volumes. The results show that, 
for the estimation procedure employed on the Stanislaus National Forest, the variance 
of the volume estimates is effectively reduced by about 50 percent over what a 
nonrecursive estimator would yield. That is a particularly important finding since data 
collection is not costless. 
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Even though the precision of the At and Bt estimates is high for a majority of the 
parameters and the inclusion, of their variances in the solution does not have a dramatic 
impact on costs or control actions, considerable uncertainty exists in the model. From 
a cost point of view, the uncertainty surrounding the error term on the volume-to-basal 
area relationship is considerable. This large cost calls for at least a reexamination and, 
perhaps, respecification of this relationship. 

One of the more uncomfortable aspects of this study is the seemingly overgenerous 
use of "it is assumed" or "assuming that." Most of those uses could be eliminated by 
a single grand assumption that uncertainty does not exist. Prior studies have done that, 
but one of the underlying themes of this study has been to see how the problem changes 
when uncertainty is recognized. The results show that uncertainty does have a significant 
impact on both harvest levels and returns to enterprise. Thus, in the presence of what 
may seem to be moderate or benign sources of uncertainty, stochastic optimization may 
be of considerable assistance. 
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APPENDIX 

THE MODEL PARAMETERS 

The parameters for all of the matrices used in determining the n,umerical results are 
listed. To avoid unnecessary repetition, the parameters are given in a concise manner. 
In order, they are the system dynamics, the covariance matrices, and the target levels 
for the state and control targets. Since all of the parameters are time varying, they are 
given in order of period. 

In the following Section 1, the elements of At and Bt are listed in the same form 
that would be read by a FORTRAN program. Specifically, only 32 elements of the At 
can be nonzero and no more than 48 elements of the Bt where Bt = At Bit + B2t. 
At the beginning of the list of At parameters, two sets of indices are listed. The first 
gives the row designation of the element of At and the second the column designation. 
The elements of At are then listed. For example, the 16th number in any period listing 
corresponds to the 16th pair of indices. That is, the 16th row index is 17, and the 16th 
column index is 16 so that in period 0 the (17, 16) element of A is 0.0. In period 1 
the (17, 16) element is 1.6500. A similar method is used to list the elements of Bt· 
The variances of the A parameters are listed after all of the coefficients over the time 
horizon have been listed in exactly the same order as the nonzero elements of A. A similar 
scheme is used for the variances of the B coefficients. 

In Section 1 the covariance matrices Po IO• nt, and et are given. The diagonal elements 
of those matrices are given first and then the covariances for the respective periods. Pol 0 
is referred to in Section 1 as the initial covariance of the state vector. In Section 3 the 
target values for use and xt are listed by time period. They are listed across by rows 
as are the other parameters. 
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