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Abstract

Among others who point to environmental variability and managerial uncertainty as

causes of fishery collapse, Roughgarden and Smith (1996) argue that three sources

of uncertainty are important for fisheries management: variability in fish dynamics,

inaccurate stock size estimates, and inaccurate implementation of harvest quotas. We

develop a bioeconomic model with these three sources of uncertainty, and solve for

optimal escapement based on measurements of fish stock in a discrete-time model.

Among other results we find: (1) when uncertainties are high, we generally reject the

constant-escapement rule advocated in much of the existing literature, (2) inaccurate

stock estimation affects policy in a fundamentally different way than the other sources

of uncertainty, and (3) the optimal policy leads to significantly higher commercial

profits and lower extinction risk than the optimal constant-escapement policy (by

42% and 56%, respectively).



1 Introduction

Fishery collapse is an increasingly common phenomenon worldwide. Though the

Gordon-Schaeffer type models suggest management can overcome the economic (and

indeed biological) consequences of unregulated fisheries, many managed fisheries have

collapsed. Suggested causes include habitat destruction (World Resources Institute

2001), reduced recruitment levels in the face of environmental variability (Pearcy

and Shoener 1987; Barber and Chavez 1983), fishery overcapitalization (Food and

Agriculture Organization 1999; Grafton, Squires, and Kirkley 1996), and a lack of

political will to impose quotas that will ensure sustainability (Johnson and Libecap

1982; Homans and Wilen 1997). Despite spatial and temporal differences in fisheries,

excessive harvest is widely accepted as a major contributor to declines.

Roughgarden and Smith (1996) note that the inherent problem of over-fishing is

exacerbated by uncertainty in fish stock size and dynamics. Among other factors, they

attribute fishery collapse to uncertainty in marine environments, and suggests that

ignoring uncertainty can lead to excessive harvest. “In reality, if stocks are seen to

grow, then quotas are usually increased, resulting eventually in a quota that exceeds

production and extinguishes the stock” ((Roughgarden and Smith 1996), page 5079).

This paper focuses on the implications of environmental and managerial uncertain-

ties for the management of fisheries and formally addresses, in an economic framework,

the issue posed by Roughgarden and Smith. The model they outline involves three

sources of uncertainty: (1) environmental variability that influences the growth of fish

stocks, (2) stock measurement error, and (3) inaccurate implementation of harvest

quotas. The first two sources of stochasticity have been discussed in the literature,

while the third is a novel element that they introduce. While the authors discuss how

these growth shocks and error sources affect fishery management they do not offer

an optimal solution to the manager’s problem. This paper frames and solves this

fishery management problem under uncertainty. Among other implications for fish-

ery policy, we find that uncertainty in measurement may have the greatest potential

to affect policy. When uncertainty is sufficiently high, we find a general rejection of
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the “constant-escapement” policy suggested by deterministic models (Gordon 1954),

models of only growth uncertainty (Reed 1979), and other more heuristic approaches

to fishery modeling from the biological community (Roughgarden and Smith 1996). In

particular, when uncertainty in measurement is high, the optimal escapement policy

increases in the measured stock.

The paper is organized as follows. In section 2 we provide a background of eco-

nomic and biological models of fishery management under uncertainty. We then turn

to our approach of integrating the two types of models, and discuss its relevance in

section 3. The formal characterization is presented in section 4, and results in section

5. We conclude in section 6.

2 Background

There exists a large economic and biological modeling literature addressing manage-

ment of renewable resources under uncertainty (Reed 1978; Clark and Kirkwood 1986;

Roughgarden and Smith 1996; Costello, Polasky, and Solow 2001; Weitzman 2002).

Economists typically pose allocation questions, pushing biological realism only to the

extent that it permits clean analytical solutions. Although this approach often re-

veals the salient characteristics of a system, biological modelers often criticize such

models for their inadequate treatment of realistic biological uncertainties. Although

they incorporate more biological realism, biological models are often criticized by

economists because they either ignore economic considerations such as harvest costs,

prices, or time preference, or because they fail to solve for an optimal intertempo-

ral allocation. We briefly describe the main approaches in each discipline, and then

present our method of integrating the important elements of each into a stochastic

dynamic decision-making framework.

2.1 Economic Models

The work of Beverton and Holt (1957) and Schaefer (1957) assumed a determin-

istic environment and provided analytically tractable models of renewable resource
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exploitation. In this framework, the optimal policy is “bang-bang”: the optimal

escapement level occurs where the rate of return from harvesting the last fish and

investing the money from doing so just equals the rate of return from letting that

last fish grow to the next period. If the stock is lower than the optimum level for

any reason, the fishery is closed until it builds itself up. Whenever the stock is higher

than the optimum level, the catch quota is simply the difference between the current

and the optimum levels. Though this simple framework provides numerous useful in-

sights, it has been criticized on several grounds. Most notably, it ignores the inherent

environmental variability and managerial uncertainty faced by fishery managers.

The main results in the economics literature on stochastic fishery management

have been developed in two papers: Reed (1979) and Clark and Kirkwood (1986).

Both of these papers model one source of uncertainty for purposes of tractability.

Reed introduces unpredictable environmental variability into a model of fishery man-

agement by recognizing stochastic fluctuations in recruitment. He assumes the stock

of fish from one period to the next is governed by a deterministic, “compensatory”

growth function, but that a random multiplicative shock disturbs this growth every

period. The manager knows the stock at the beginning of the period and she chooses

the level of escapement, but because of a random growth shock at the end of the

current period she does not know future stock. Reed assumes a constant price per

unit harvest, and a marginal cost function which decreases in stock. Reed concludes

that despite uncertainty about future stocks, the optimal policy is to allow a constant

escapement every period, regardless of stock at the beginning of the period (provided

the initial stock is larger than the desired escapement). Since the stock of fish is

known every period, management policy can never lead to accidental extinction in

this model.

Clark and Kirkwood (1986) modify Reed’s model by noting that fishery managers

can rarely measure stock levels accurately and typically have confidence intervals of

±50%. With this practical motivation in mind, Clark and Kirkwood alter Reed’s

model by changing the timing of the shock. In their model, the manager knows the

escapement in the previous period but is uncertain about stock in the current period.
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To simplify the analysis, Clark and Kirkwood eliminate fishing costs and price from

the profit expression, since costs and prices have no qualitative effect on results in

which they are interested. Clark and Kirkwood obtain results very different from

those of Reed. When managers cannot perfectly measure current stock, the optimal

policy is no longer one of constant-escapement. Perhaps somewhat surprisingly, the

optimal policy is less cautious (for some levels of expected initial stock) than the

constant-escapement policy. Furthermore, in rare cases it turns out to be optimal

to harvest the population to extinction. This result is in direct contradiction to the

constant escapement policy which, provided the intrinsic growth rate is sufficiently

high, guards the population from extinction in perpetuity.

2.2 Management With Multiple Uncertainty

Roughgarden and Smith (1996) approach the issue of uncertainty from a biological

perspective. Their model is motivated by the danger facing many of the world’s

fisheries, and the belief that harvesting as if the resource growth and measurement

were deterministic, when in fact it is stochastic, can lead to unintended extinction.

With this observation in mind, Roughgarden and Smith extend Reed’s and Clark

and Kirkwood’s models by introducing two additional sources of uncertainty, stock

measurement error and harvest implementation error. In their model the fishery

manager enters the period and measures the stock with some error. She must then

make a harvest announcement knowing that the true harvest will be imprecisely

implemented. Like the previous literature, Roughgarden and Smith’s model allows the

multiplicative growth shock to vary from year to year. Within a year, however, growth

occurs on a daily basis, where daily growth shocks are equal every day within a year.

A stock measurement is made once every year and an annual quota is announced.

Harvest occurs throughout the year so that daily harvest equals 1
365

th
of the annual

harvest, which may deviate from the quota because of implementation error.

The significant increase in complexity of the Roughgarden and Smith model as

compared to the Clark and Kirkwood model preclude them from obtaining analytical

results. Although they frame their problem as a bioeconomic exercise of net revenue
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maximization, to solve it they employ a rule-of-thumb. The authors locate the con-

stant ‘target stock’ that maximizes the fishery value, where the target stock may be

thought of the end-of-season stock in the absence of uncertainty. In a discrete-time

model such as ours, the target-stock policy is equivalent to a constant-escapement

policy. The authors provide no evidence that the optimal policy, that is, the one that

maximizes expected present value of the fishery, would lie within the class of constant

target stock (or constant escapement) policies.

3 This Research

From the perspective of the fishery manager, both biology and economic behavior

appear to be stochastic processes that complicate decision-making. Biologically, the

importance of different forms of uncertainty has to do largely with the risk of ex-

tinction. In the Reed model, the population cannot go extinct, unless by human

design, because the manager always knows the stock level and chooses escapement

precisely. In the Clark and Kirkwood model, extinction is only possible in the un-

likely case in which there is such extreme miscalculation in stock measurement that

the manager sets the harvest too high and drives it to extinction. Under assump-

tions in the Roughgarden and Smith model, extinction is much more likely because

of the implementation error (now creating the possibility of both over-estimating

the stock size and over-harvesting in the same period). Economically, the increase

in uncertainty affects the optimal decision-making by the manager; as the number

of sources of uncertainty increase, the manager must base her expectations on less

precise information.

We solve for optimal fishery management under uncertainties in growth, measure-

ment, and implementation. In the spirit of the questions posed by fishery modelers

and managers, we address the following questions within the context of our multiple

uncertainty model:

1. Given three sources of stochasticity (growth, measurement, implementation),

how should the total allowable catch announcement depend on the stock mea-
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surement in any given period?

2. What are the implications of optimal, and suboptimal, management for stock

survival over a fixed period, say 50 years?

3. How important is each individual source of uncertainty in determining optimal

management?

4. How should management optimally respond to changes in the magnitude of each

source of uncertainty?

The next section describes the model we develop to answer these questions.

4 The Model

In this section we state our assumptions, formalize the optimization problem, and

describe the solution technique. The general model and method below is appropri-

ate for setting up and solving any stochastic dynamic programming problem with

Markovian transitions.1

4.1 Assumptions

We make the following assumptions:

1. There are three random variables underpinning the uncertainty in period t: zg
t ,

zm
t , and zi

t (t = 0, 1, 2, ...,∞), which affect growth, measurement, and imple-

mentation, respectively. These variables are independent (of each other and of

calendar time t).2 The manager knows the statistical distribution for each of

these random variables. While we recognize a conceptual difference between zg
t

1The Markovian property is satisfied when the density of the state variable next period depends

only on the the current value of the state and control variables. In other words, past realizations of

the state and the control have no bearing on next period’s state.
2In principle, one could include nonzero covariance between variables of each type. We do not

explore correlated uncertainty of that type here.
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(which reflects uncontrollable environmental variability) and zm
t and zi

t (which

reflect potentially controllable human error), we refer to all three as sources of

“uncertainty”.

2. In each period, the growth of the stock of fish is as follows:

xt = zg
t G(st−1), (1)

where G(st−1) gives the stock xt as a function of the previous period escapement,

st−1, in the deterministic case.3

3. Stock measurement, mt is as follows:

mt = zm
t xt. (2)

The manager uses only the current measurement to form beliefs about the

current stock, xt.

4. Given an announced quota, qt, the “attempted” harvest is at ≡ zi
tqt, and the

true harvest is:4

ht = min(xt, at) (3)

5. The price of fish is p and the unit harvest cost is constant, c. In the earlier part

of the analysis, we assume that p− c is normalized to unity. However, we later

allow costs to depend on the stock.

While some of these are innocuous, some are more restrictive in the sense that

relaxing them would either make our model hard to implement or significantly affect

our results. For example, we assume full knowledge of the density functions of the

different types of uncertainty, as well as the parameter values associated with those.

We also assume independence among the three types of uncertainty, and the absence

3This is identical to the way uncertainty enters the growth function in Reed (1979). It differs

from Roughgarden and Smith, who model a shock to the parameters of the growth function.
4Note that this distribution of the implementation error assumes the absence of strategic behavior

on the part of fishermen, and that their attempts are randomly distributed around the seasonal

quotas. This assumption is consistent with that made by Roughgarden and Smith (1996).
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of strategic behavior on the part of both the manager and the fishermen. While

we recognize the pitfalls of making these important assumptions, our present aim is

simply to discover the optimal policy and investigate its properties and compare these

with the properties of a constant escapement policy.

We should also note the somewhat misleading use of the term “optimal policy” in

this context. Specifically, Assumption 3 states that the manager uses only the current

measurement when forming expectations. This assumption implies that the current

measurement is the only state variable for the manager’s problem. Past measurements

may contain some information about the current stock; a more sophisticated manager

would use that information in forming expectations. There are three reasons why we

assume that the manager ignores this information. The first is based on modelling

choice and the second two are based on practical considerations.

First, one of our objectives is to determine the robustness of previous results

to the inclusion of different (and multiple) sources of uncertainty. In order for this

comparison to be as clear as possible, we want to use a model that nests the previous

models in a simple manner. In particular, we want the nature of the optimization

problem to remain the same. In previous models, the manager conditions her decision

on a single state variable. We want to preserve this feature, because we want to be

able to compare the decision rules. This comparison would be ambiguous if, for

example, one decision rule was a function of a single piece of information and another

was a function of many pieces of information.

Second, the optimization problem for a manager who uses past measurements is

very complicated. Since all past measurements might contain some information, we

would have to make one of two choices: we could include all past measurements in

the state vector or we could treat the conditional probability distribution as a “state

variable”. In order to implement either of these methods, we would have to use an

approximation, such as truncating the history of observations to obtain a finite state

vector, or approximating the distribution (e.g. by using a finite number of moments,

and treating the moments as state variables).
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Third, Assumption 3 provides a lower bound for the value of the fishery. A man-

ager who uses more information could expect a higher payoff. Since we demonstrate

the advantage of following a non-constant escapement policy, the use of greater in-

formation would only strengthen our results.

4.2 The Fishery Manager’s Problem

The fishery manager’s infinite horizon problem can be stated as follows:

max
{qt}≥0

E

{ ∞∑
0

αtht

}
(4)

subject to

xt = zg
t G(st−1)

st = xt − ht

mt = zm
t xt

ht = min(xt, z
i
tqt).

(5)

where E is the expectations operator and the discount factor is α. We use the numer-

ical technique of value function iteration to maximize (4) subject to (5).5 The fishery

manager measures the stock each period and announces the seasonal quota on that

basis. The dynamic programming equation (DPE) for this problem is as follows:

Jt(mt) = max
qt≥0

E
{
ht + αJt+1

(
zm

t+1z
g
t+1G(xt − ht)

)}
. (6)

To numerically solve for the value function, we evaluate Jt(mt) over an evenly spaced

discrete grid of 200 measurements. We then employ cubic spline interpolation to

generate what is essentially a continuous state-space representation of J(·) and use

this to solve for the optimal quota announcement. For a given measurement, the

optimal announcement is the one that maximizes the expected fishery value over an

infinite horizon.

The maximand in equation (6) has two terms. The first of these (Eht) represents

the expected harvest in the current period, conditioned on the stock measurement in

5For more information on this technique, see Judd (1998).
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the current period. The second term is the expected future value of stock measure-

ment in the following period, conditioned on the current stock measurement, mt, and

the current quota announcement, qt. We discuss below how each of these is computed.

4.2.1 Expected Value of One-Period Return

The first term in the maximand of the dynamic programming equation (6) is the

expected current period harvest. Given any stock measurement, m, and any quota

announcement q, the expected harvest is:

E{ht|qt = q, mt = m} =

∫ ∞

0

fA(a|q)
[∫ a

0

xfX(x|m)dx + a

∫ ∞

a

fX(x|m)dx

]
da (7)

where fA(a|q) is the conditional density of attempted harvest of a given an announced

quota of q and fX(x|m) is the conditional density of true stock of x given a measure-

ment of m.

The term
∫ a

0
xfX(x|m)dx reflects the fact that an attempted harvest of at does

not guarantee a harvest of precisely at since there may not be a sufficiently large stock

of fish available (xt < at). The term a
∫∞

a
fX(x|m)dx reflects the case in which the

stock is at least as great as the attempt (xt ≥ at). Thus, the term in the brackets

represents the expected harvest when the attempt is a and the measured stock is m.

To obtain the expected harvest when the measurement is m and the announcement is

q, we multiply this term by fA(a|q) and integrate over all levels of attempted harvest,

a.

4.2.2 Expected Value of Future Returns

To obtain the optimal quota announcement we need to calculate the expectation of

the value of future returns – the second term on the right side of equation (6). Here

we provide the formula for the conditional expectation of the future payoff, given

that the function Jt+1(mt+1) is known. This expectation is taken with respect to the

unobserved variables xt and ht, and is conditioned on the measurement mt and the
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current decision qt. The expectation is

E{Jt+1(mt+1)|qt = q, mt = m} =
∫ ∞

0

(Jt+1(y)|qt = q, mt = m)

∫ ∞

0

fS(s|q, m)

∫ ∞

0

fG(x|s)fM(m|x)dx

︸ ︷︷ ︸
Term 1

ds

︸ ︷︷ ︸
Term 2

dy (8)

where fS(s|q, m) is the density of escapement of s conditional on a quota of q and a

measurement of m, fG(x|s) is the density of true stock of x conditional on previous

period escapement of s, and fM(m|x) is the density of measurement of m conditional

on true stock of x. Interpretation of equation 8 is aided by first interpreting the

underbraced terms. Term 1 is the conditional probability of next period’s measure-

ment given a current period escapement, while Term 2 is the conditional probability

of next period’s measurement given both the current quota and the current mea-

surement. Thus, the product of Term 2 and (Jt+1(y)|qt = q, mt = m) gives the

contribution to next period value when next period’s measurement is y. Integrating

over y gives the desired expected value of future returns.

4.3 Numerical Computation of the Optimal Policy

The manager’s problem can be solved by adding the current period value and the

future value of making an announcement for each stock measurement. The optimal

announcement maximizes this value for each measurement. The first order condition

for this problem equates the marginal expected value of the current harvest to the

expected discounted value of the shadow value of the state (the stock measurement)

in the next period.

We carry out the value function iteration procedure by assuming we know the value

function, J(m). Given a particular policy, q(m), we can determine the conditional

distribution of a measurement the next period given the current measurement, m.

Thus, we can choose the optimal policy q∗(m) for the assumed value function, J(m).

For an infinite horizon problem, the value of the program evaluated at q∗(m) equals

the value function, J(m). The processes of updating of the value function by selecting
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q∗(m) is repeated until the function J(m) converges. Convergence requires that J(m)

for iteration i equals J(m) for iteration i + 1 for all m. The function to which this

procedure converges is the unique value function for this infinite horizon problem.

The policy function associated with the unique value function is the optimal policy.6

The next section explains our choices of functional forms and parameter values.

4.4 Parameter Values and Functional Forms

For our base case numerical computation, we adopt the following parameter values

and functional forms:

1. Fish growth follows the logistic curve:

G(s) = rs
(
1− s

K

)
+ s (9)

where r (=1) is interpreted as the intrinsic growth rate and K (=100) is the

carrying capacity of the environment. 7

2. zg
t , zm

t , and zi
t are independent, stationary, uniformly distributed random vari-

ables of the following form:

zξ
t = 1 + (2ũξ

t − 1)εξ ξ = {g,m, i} (10)

where ũξ
t is drawn from a uniform distribution lying between zero and one, and

εξ are parameters (larger εξ, larger variance of the distribution of zξ
t ). For ex-

ample, if εm = 0.5, zm
t is distributed uniformly between 0.5 and 1.5 for all t.

Furthermore, if stock is 100, this implies measured stock is a uniform random

variable with support [50, 150]. The corresponding coefficient of variation is

6In practice, one iterates until the difference between successive J ’s is smaller than a predeter-

mined tolerance level. We ran the model until the largest absolute difference in the value function

vector was smaller than one-thousandth the carrying capacity from one iteration to the next. For

our numerical results, this implied that we stopped when the value function had changed by less

than 1.5e-003%.
7See section on Sensitivity Analysis for results based on alternative growth functions and the

different values of the parameter r.
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0.29. We will refer to εg, εm, and εg as the “uncertainty” in growth, measure-

ment, and implementation, respectively. We will refer to a realization of zg
t , zm

t ,

or zi
t as a “shock”.

3. Each continuous state and control space variable can take on any value between

0 and its upper bound. For example, with carrying capacity K = 100, and the

growth uncertainty εg = 0.5, the stock in a given season will lie between 0 and

150 (= K ∗ (1 + εg)). Likewise, if the measurement uncertainty εm = 0.5, the

measurement lies between 0 and 225 (= K ∗ (1 + εg) ∗ (1 + εm)). 8 9

5 Results

In the results that follow, we explore various combinations of the level and source(s)

of uncertainty. We refer values of ε of .1 and .5 as “low” and “high” uncertainty,

respectively. These refer to uniform random deviations of±10% and±50% around the

mean. Given our assumptions relating to the distribution of the random variables, this

uncertainty translates into coefficients of variation of 0.0577 and 0.2887 respectively.

Our references to ±50% deviations as “large” deviations are, at least roughly,

empirically based. For example, the growth (εg) in a fishery with notoriously high

variability, the Southeast Pink Salmon fishery, expresses a fluctuation about the mean

of about 53% (calculations based on Quinn and Deriso (1999)). Measurement errors

8The manager’s stock measurement is a signal received by her, and does not represent her beliefs.

Therefore, when a manager receives a measurement signal that is above 150, she interprets it as such

and updates her prior beliefs using Bayes’ rule. Given the information she has, both her prior and

posterior beliefs about the stock are bounded above by 150.
9In reality, the fish stock can take extremely large values (including values above well above the

carrying capacity) although it does so with very small probability. A possible modeling approach

would be to define the state space to include all values that we think are possible. That alternative

requires that the distribution of the measurement error is a function of the measurement. For

example, for very large measurements, most of the weight of the distribution is below one. That

generalization would greatly complicate the model. Our approach is to define the state space to

exclude extremely unlikely values, thereby making it possible to use a measurement error that is

independent of the measurement.
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of as large as ±50% were considered also by Clark and Kirkwood (1986). Because of

sparse data, we have no sound empirical basis for referring to uncertainty of ±50%

in harvest implementation. But by considering a range of coefficients of variation, we

hope to capture the magnitudes of the shocks that are likely in many fisheries.

5.1 Previous Results

For purposes of comparison, we begin by presenting the results obtained by authors

of previous work. In the presence of only growth uncertainty and when present stocks

can be measured accurately, the optimal policy is one of constant-escapement. This

result is due to Reed (1979) and is presented in figure 1. Clark and Kirkwood (1986)

note that if escapement can be measured with precision, but stock cannot, the policy

function entails non-constant escapement (see figure 1).10
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Figure 1: Optimal Policy with Growth Shocks.

There are two interesting properties of this result. First, higher uncertainty in-

creases the optimal expected escapement for large measured stocks.11 Second, higher

10Here ‘very large’ uncertainty refers to a uniform random deviation of ±90% around the mean,

the coefficient of variation of which is 0.577.
11This result breaks down if the uncertainty is excessively high; for the growth function employed
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uncertainty decreases the measured stock at which the fishery should be closed to

harvest.

When we restrict attention to the class of constant escapement policies in the

presence of all three sources of uncertainty, we find that the optimal constant escape-

ment level is about 48% of the carrying capacity when the level of uncertainty (ε) is

0.1, and 69% of carrying capacity when the level of uncertainty is 0.5; these policies

are shown in Figure 2. The former is almost identical to the deterministic optimum

escapement level (47.5% of carrying capacity). By contrast, Roughgarden and Smith

recommend that, in the face of these three sources of uncertainty, the target stock

be set at 75% of carrying capacity in order to create a buffer away from extinction

in the face of all the uncertainty. Under the constraint that a constant escapement

policy must be used, we obtain results similar to those obtained by Roughgarden and

Smith – an escapement level of 69% versus an escapement level of 75%. From the

perspective of economic optimality however, both policies are significantly inferior to

the optimal policy.

5.2 Our Results

In this section we explore various combinations of the levels and sources of uncertainty

and present numerical results and graphs of the associated optimal policy functions.

Recall that the optimal policy function exhibits the optimal announced escapement

(measured stock minus announced quota) as a function of measured stock. In par-

ticular, we explore the following cases: low uncertainty (section 5.3), a single source

of high uncertainty (section 5.4), and multiple sources of high uncertainty (section

5.5). In all cases the optimal policy function is a line of slope 1 for sufficiently low

measured stock which indicates fishery closure for low stock measurements.

by Clark and Kirkwood, optimal expected escapement is non-monotonic when the coefficient of

variation of the uncertainty is 0.46. Sethi (2001) lays down the conditions under which the optimal

control is non-monotonic. With our growth function we obtain a similar result for a larger coefficient

of variation viz. 0.52.

15



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Measured Stock

O
pt

im
al

 E
xp

ec
te

d 
Es

ca
pe

m
en

t

No Uncertainty
All Uncertainties Low
All Uncertainties High

Figure 2: Optimal Constant-Escapement Policies Under Different Uncertainties.

5.3 Small Uncertainty

In the absence of any stochasticity, the optimal policy is a “bang-bang” solution

with constant escapement level at the point where the discount rate equals the slope

of the logistic growth curve. As may be expected, small variations in the random

variables - whether considered individually or all together - lead to a policy that

is not significantly different from the deterministic rule. The solid line in figure

3 shows the graph of the optimal policy function when all uncertainty levels are

low. This policy suggests that for low uncertainty, not only is the deterministic rule

qualitatively appropriate (i.e. it suggests a constant-escapement policy), but it is also

quantitatively appropriate since the escapement target is approximately equal to the

deterministic policy.

5.4 Single Source of High Uncertainty

How does the optimal policy change when one of the sources of uncertainty is high,

while the others are low? The answer depends on which variable is highly uncertain.

The dashed line in figure 3 confirms Reed’s result that high uncertainty in growth does
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Figure 3: Optimal Fishing Policy Under Multiple Small/Single Large Uncertainty.

not alter the optimality of a constant-escapement policy. This result is qualitatively

similar to the one where only the implementation uncertainty is high. These results

suggest that if only the growth or implementation sources of uncertainty is high,

a constant-escapement policy is qualitatively appropriate since the slopes of these

policies beyond the shutdown point are virtually flat.

There is a significant change in the policy, however, when measurements are highly

uncertain (see figure 3). While higher measurement error unambiguously lowers the

level at which the fishery is shut down, optimal escapement changes ambiguously as a

function of measured stock. For example, compare the scenario of high measurement

error with the deterministic case. For measurement levels just below 47, a higher

measurement error implies a lower expected escapement, whereas for stock measure-

ments above K the optimal policy is associated with higher expected escapements

with respect to the deterministic case.

It may seem counter-intuitive that a measurement error causes lower expected es-

capements below the deterministic fishery closure threshold. In order to simplify our

explanation, we consider the case where there is no implementation error. As a further
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simplification, we compare the case with 0 measurement error and positive measure-

ment error regarding the stock. The increase in measurement error has two distinct

types of effects on the regulator’s optimization problem. First, higher measurement

error in the current period changes the current decision for a given continuation value;

second, higher measurement error in the future changes the continuation value of the

stock.

To make this distinction precise, define J̃ (zgG (x− q)) as the continuation value

in the absence of measurement error. In addition, define

B(q, x) ≡ E
zg

(q + αJ̃ (zgG (x− q)) ,

the expectation of the value of the fishery given the current stock and the current

harvest, in the absence of future measurement error. We first compare the decision

problems with and without current measurement error, in the absence of future mea-

surement error. That is, we compare the solutions to the following two optimization

problems

max
x≥q≥0

B(q, x) and max
x≥q≥0

E
x|m
{B(q, x)} .

In the absence of current measurement error, the stock at which it is optimal

to close the fishery, x∗, is the solution to Bq (0, x) = 0. With current measurement

error, the measurement at which it is optimal to close the fishery, m∗, is the solution

to E
x|m∗

{Bq(0, x)} = 0. A sufficient condition for m∗ < x∗ is that Bq(0, x) is a convex

function of x. In this case we have

E
x|m
{Bq(0, x)} > Bq

(
0, E

x|m
x

)
> Bq(0,m) =⇒ m∗ < x∗. (11)

The first inequality follows from the (assumed) convexity of Bq(0, x) and Jensen’s

inequality. The second inequality follows from two facts. First, our model states that

x = m/z, so x is a convex function of the random variable z; this implies (again,

by Jensen’s inequality) that E
x|m

x > m, i.e., the current measurement is a downwards

biased estimate of the current stock. The second fact is that Bq(0, x) is an increasing

function of x, at least in the neighborhood of x∗. If we had written the model in a

slightly different manner, so that the current measurement is an unbiased estimate of

the stock, convexity of Bq(0, x) would be both necessary and sufficient for m∗ < x∗.
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Establishing the convexity of Bq(0, x) involves evaluating a function of the first

three derivatives of both G (·) and J̃ (·), which is analytically intractable. However,

we have the following intuitive explanation for why a small amount of measurement

uncertainty would be likely to decrease the stock at which the fishery is closed, even

when m is an unbiased estimate of x. Consider a manager who faces no uncertainty at

all and makes a stock measurement just under the kink (around 45 in figure 3). In a

deterministic world, she would harvest nothing since the deterministic solution entails

fishery closure below a stock of 47.5 (at a 5% discount rate). Now suppose she makes

the same measurement but believes her measurements are prone to errors. In this

case, the true stock is distributed around the measured stock which creates a positive

probability of stocks for which the optimal quota is positive. Thus, in expectation, a

measurement error implies a positive optimal quota for stock levels to the left of the

kink of the deterministic policy. This result is consistent with Clark and Kirkwood

because it is driven by fundamentally the same factor: imprecise knowledge about

the fish stock when the manager sets the seasonal quota.

Now we briefly consider the effect of future measurement error on the optimal

closure level, x∗. Future measurement error leads to a reduction in x∗ if and only if this

measurement error causes the function Bq(0, x) to shift up. An upward shift occurs if

and only if the future measurement error decreases the shadow value of the measured

stock. Once again, we cannot analytically determine the effect of measurement error

on this shadow value. However, our model here is a special case of Theorem 2,

Chapter 2 in Laffont (1989) who shows that the direction of change in the optimal

control depends on the third derivative of the objective function. Unfortunately, it is

hard to provide much intuition for this result.

Interestingly, the optimal policy associated with the high measurement uncer-

tainty is nearly linear beyond the threshold of 30. The marginal escapement rate

beyond this point is approximately 30% of the measured stock.
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5.5 Multiple Sources of High Uncertainty

The combination of high uncertainties both in growth and implementation does not

lead to a significant change in the shape of the policy function (figure 4). However,

when measurements are also highly uncertainty, the marginal escapement rate in-

creases significantly beyond the kink (figure 4), even when compared to the situation

where the only high uncertainty is in the measurement.
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Figure 4: Optimal Policy Under Combinations of High Uncertainty.

This suggests that uncertainty about fish population growth and large random

deviations in the implementation of the seasonal quotas - by themselves or together

- do not imply a significant policy change. However, imprecise stock estimation af-

fects fishery policy significantly, both by itself and in the presence of other sources of

uncertainty. These results imply also that the optimal escapement level under uncer-

tainty: (1) is lower than the optimal deterministic escapement level when measured

stocks are sufficiently small and (2) exceeds the optimal deterministic escapement

level when measured stocks are sufficiently large. These results also suggest that an

increase in only the measurement error causes the optimal escapement level to fall,

as shown in figure 3. However, an increase in both the measurement error and the
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implementation error increases optimal escapement at large stocks, as seen in figure

4.

5.6 Sensitivity Analysis

The results obtained above are derived under specific assumptions about the func-

tional forms and parameter values. To evaluate the sensitivity of these results to

changes in model specification or inputs, we also considered the following.

• Alternative specifications of the growth function. We analyzed three popular

forms viz. the logistic, Gompertz, and Ricker functions.12

• Alternative values of the intrinsic growth parameter of the logistic growth func-

tion. The parameter r in the logistic growth function can be interpreted as the

marginal growth rate at a stock level close to zero. This parameter governs the

rate of change of stock away from equilibrium. For the purposes of sensitiv-

ity analysis, we calculate the optimal policy function for values of r = .5 and

r = .75 in order to compare with the base case policy function assuming r = 1.

• More realistic versions of the harvest cost function. To include a more realistic

“stock effect” on costs, we assume that the cost function has a simple and

intuitive form: the marginal harvest cost C is given by C = θ/x, where x is

stock and θ is a parameter of the cost function (see Reed, 1979). 13

In each of these cases, we assessed model sensitivity by comparing the optimal

policy function generated by our model to the optimal policy function generated

under the new assumption. In all cases, we found that the optimal policy is virtually

insensitive to the above modifications.

12See Conrad and Clark (1988).
13To use a reasonable value for θ, we borrow from recent ecological evidence which suggests

that less than 10% of large predatory fish (tuna, billfish, etc.) remain in the global ocean (Myers

and Worm 2003). Given that fishermen continue to target many of these species for harvest, it

is reasonable to conclude that at .1K, harvest effort remains a profitable enterprise, that is, that

θ < 10. For the purposes of this exercise, we assume θ = 5.
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5.7 Properties of the Optimal Policy

With the specification of the optimal policies under various types and combinations

of uncertainty, we are in a position to make comparisons of some of their salient

properties. To obtain these results, we assume that the policies are implemented in

a fishery where the initial measured stock equals the carrying capacity (100 in this

analysis) and that the discount rate is 5%. For each of the infinite-horizon policies,

the variables we report are (1) the net present value of the commercial fishery over a

period of 50 years and (2) the probability of extinction within 50 years.14

Level of Uncertainty Type of Uncertainty Optimal Policy Optimal CE Policy

None n/a 506 (0%) 506 (0%)

Low All 502 (0%) 502 (0%)

High Growth (others low) 502 (0%) 500 (0%)

Implementation (others low) 490 (0%) 490 (0%)

Measurement (others low) 439 (0%) 417 (2%)

All 433 (0%) 306 (57%)

Table 1: Fishery profit (probability of extinction) over 50 years.

These results are presented in Table 1. The table confirms that under low levels

of uncertainty, the constant escapement policy performs well - both in terms of com-

mercial profits and extinction risk. The same conclusion can be drawn even when

growth or implementation uncertainties are high. However, when only high mea-

surement uncertainties exist, the optimal policy performs slightly better than the

constant escapement policy - both in terms of commercial profits (a gain of 5%) and

stock viability (a gain of 2%). Our analysis shows that when all uncertainties are

high, following the optimal policy yields a commercial value of $433 compared with

14The stock level 0 is an absorbing state, and when uncertainty is sufficiently high, this state can

be reached from any other state, depending on the harvest policy pursued by the regulator. In that

case, the long run probability of extinction is 1. However, the extinction probability within a finite

number of periods differs under different scenarios. To illustrate these differences, we report the

probability of extinction within 50 years.
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a commercial value of $306 if the constant escapement policy is followed, a gain of

42%. Further, when all uncertainties are high and the optimal constant-escapement

rule is used, the extinction probability over a 50 year horizon is 57%. This result can

also be seen by comparing the cumulative densities of measured stock after 50 years

associated with each policy. Figure 5 shows these densities; the optimal policy is

generally associated with high stocks, whereas the likelihood of ending up with small

stocks is larger when the constant escapement policy is followed.
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Figure 5: 50-Year CDF of Measured Stock Under High Uncertainties.

Also note that a 3/4ths escapement policy does better than the optimal con-

stant escapement policy in terms of extinction risk (43%), but is (obviously) worse in

terms of profitability ($299). More importantly, like the optimal constant-escapement

policy, the 3/4th escapement policy does worse compared to the optimal policy on

grounds of both profitability and extinction risk.

It is useful to say a word about why we get lower extinctions even as it might

seem that the constant-escapement policy calls for a larger escapement. First, it is

useful to partition the state space into three ranges: 0 ≤ m ≤ 30, 30 < m ≤ 80,

80 < m ≤ 225. In the first of these, both policies suggest fishery closure. While the
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optimal policy suggests lower escapement in the middle range, it advocates higher

escapement in the last range (since the policy function is upward sloping).

Next, due to the fact that both policies shut the fishery down at low state values,

and the fact that each of the uncertainty structures is multiplicative, one can never

get extinction in this model for low fish stock. However, when the stock of fish is large,

the potential measurement can be significantly larger due to its multiplicative nature.

For large measurements, the optimal policy calls for a large escapement (or a small

seasonal quota) while the constant-escapement policy calls for a large quota since, by

definition, the escapement is insensitive to the measurement. It is precisely the large

quota values associated with the constant-escapement policy that make extinctions

more likely. Essentially, the strength of the optimal policy is that it recognizes that

large measurements are either misleading (if they are over 150) or very likely are

indicative of stocks above the carrying capacity, which would imply a decline in stock

in the subsequent period. The constant-escapement policy ignores this information,

making it inferior.

6 Concluding Remarks

This research addresses a global concern of increasing importance; numerous eco-

nomically and culturally important fisheries around the world are threatened with

collapse. While there are many causes, uncertainty facing fishery managers is a cen-

tral concern. In general, the economic literature has focused on stylized models at the

expense of biological realism. Biological models of fishery management are often not

solved for allocative efficiency. Instead, rules-of-thumb are calculated, mistreating the

inherent tradeoff in any allocation problem.

We frame an economic allocation problem that incorporates three sources of un-

certainty that have been identified as playing a central role in management decisions

– stock growth uncertainty, stock measurement uncertainty, and harvest implemen-

tation uncertainty. The model is solved through iteration on the value function from

the dynamic programming equation. Results include the following insights about
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management:

• Low uncertainty (±10%) has no significant effect on policy, profits, and extinc-

tion risk vis-a-vis the deterministic rule.

• Growth and implementation uncertainties have only a small effect on optimal

policy, profits, and extinction risk - even when uncertainties are high.

• Measurement uncertainty has the largest impact on fishery policy, profits, and

extinction risk - especially when combined with growth and implementation

uncertainty. This result suggests that stock surveys are important. There is

clearly scope for future work exploring the dynamics of fishery policy under

measurement error.

• Under highly stochastic environments, our results suggest fishery closure for

measurements of fewer than K
3

fish. Larger measurements should give rise to

marginal escapement levels of about 0.30-0.40 (rather than 0 as in the constant

escapement case).

• When the manager faces high uncertainty on all three fronts, the optimal policy

does better - from both the stock survival and the commercial fishery value

perspectives - than the rule-of-thumb constant escapement policy previously

proposed.

While our results appear to be robust to some key parameter and functional form

assumptions, the conditions on which they are based must be kept in mind. We as-

sume full knowledge of the density functions of the different types of uncertainty, as

well as independence among these. We also ignore age, stage, and spatial structure of

the stock, as well as other metapopulation dynamics, and treat growth as a function

only of aggregate stock. We assume non-strategic behavior on the part of both the

fishermen as well as the regulator. Most importantly, the results we present were

derived using numerical techniques, and to the extent that we did not explore the

entire parameter or model space, they may be specific to our assumptions. These
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caveats notwithstanding, this model is a step towards exploring fuller, more realis-

tic models of optimal resource policies in complex and potentially highly uncertain

environments.
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