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Abstract

Forecasts of Chinese carbon dioxide (CO2) emissions are critical to any global agreement
on mitigating possible global climate change. We provide such forecasts through 2050 using
a reduced form model selected using a general to simple search strategy. These estimates are
the first based upon provincial-level data (1985-2000). The model chosen by the information
criterion is one that melds the standard approach taken in the science and engineering literature
with the environmental Kuznets curve approach popular in the economics literature whereby
per capita emissions can first rise and then fall with increases in income. Other aspects of the
model allow for the possibility that the rate of technological change varies across provinces
and the possibility of population density effects. We find statistical support for the presence
of an inverted U shaped environmental Kuznets relationship with the projected turning point
being not too far above Shanghai’s current income level. Our model suggests lower estimates
of CO2 emissions given similar GDP and population growth assumptions than those based
on aggregate national level data such as the quasi-official Intergovernmental Panel on Climate
Change (IPCC) estimates. However, in contrast to conventional wisdom, uncertainty over
demographic changes is likely to dominate uncertainty over changes in per capita GDP. It
also predicts that province specific per capita emissions are likely to follow very different
income/pollution trajectories. This in turn suggests that province specific policies to reduce
CO2 emission levels may be desirable.
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1 Introduction

’The Kyoto Protocol was fatally flawed in fundamental ways. [...] This is a challenge that
requires a 100 percent effort; ours, and the rest of the world’s. The world’s second-largest
emitter of greenhouse gases is China. Yet, China was entirely exempted from the requirements
of the Kyoto Protocol.

George W. Bush,
Rose Garden Press Conference,

June 11th 2001

This remark by President Bush summarizes one of the most potent arguments made by the United
States against reducing their greenhouse gas emissions: a multilateral agreement regulating global green-
house gas emissions is a pointless undertaking unless China and other large developing countries like India
agree to substantial limits on their future emissions.1 Forecasts of Chinese greenhouse gas emissions play
a central role in discussions concerning what policies can or should be adopted concerning global climate
change. China is currently the second largest emitter of greenhouse gases. By most current forecasts
China will pass the United States by the year 2020 (Intergovernmental Panel on Climate Change, 2000;
Siddiqi, Streets, Zongxin and Jiankun, 1994; Panayotou, Sachs and Zwane, 2002). Developing countries
are adamant about negotiating reductions relative to the level of emissions that would be projected to
occur normally as they industrialize.2 Kyoto Protocol Annex I 3 countries, in contrast, agreed to reduce
emissions relative to their 1990 base-line emission levels. Determining this baseline level of projected
emissions is crucial to any climate agreement involving commitments by both the United States and
China to reduce greenhouse gas emissions.

The literature forecasting Chinese CO2 emissions has taken three distinctly different approaches. The
first approach explains annually observed aggregate emissions data. This is sometimes done in a univariate
time series model but more typically done using population, income and some measure of technology as
predictors. Forecasts following this approach are common in the science and engineering literature (e.g.,
Yang and Schneider, 1998) and in the policy arena form the basis for the quasi-official estimates of
the Intergovernmental Panel on Climate Change (IPCC). Models with an explicit economic orientation
usually add policy variables that allow for fuel switching, induced technological change, and emissions
trading.4 The second approach taken in the literature addresses this obvious limitation of using aggregate
country level data by looking at emissions data by industry sector (Sinton and Levine, 1994; Zhang, 1998;
Garbaccio, Ho and Jorgenson, 1999a; Garbaccio, Ho and Jorgenson, 1999b). This has been done with both
aggregate sectoral level data and with random samples of firms stratified by sector. The third approach
gives up the nationally representative nature of the second approach but gains considerable detail by doing
case studies of the factors influencing the performance of specific plants (e.g., Zang, May and Heller, 2000).

We pursue a fourth approach, disaggregating emissions and other possible predictor variables at the
1This argument is also embedded in a 1997 U.S. Senate Resolute (Byrd-Hagel) by which the U.S. Senate went on record

as stating that they would not ratify the Kyoto Protocol until there was meaningful participation by developing countries.
2China has justified its policy of ”no targets and time-tables” by arguing that Chinese responsibility for historic greenhouse

gas emissions on a per capita basis is very low compared to that of other countries, and particularly compared to industrialized
countries (Qu, 1990). In 1990, on a per capita basis, China’s emissions were one tenth of US per capita emissions and about
half the world average.

3The Kyoto Protocol defines Annex I countries as developed countries and other nations which have committed themselves
to reductions in carbon emissions. These are essentially the OECD plus the Eastern European countries including Russia.

4See for instance the 1999 special issue of the Energy Journal edited by John Weyant on the cost of the Kyoto Protocol.
The economically oriented models are typically identified by exploiting cross-sectional or panel variation across countries.
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spatial level by looking across China’s provinces. China’s provinces differ greatly in land area.5 The
largest province by area, Xinjiang, is only 15% smaller than Mexico while the smallest province, Shanghai,
is approximately twice the size of Luxembourg. The largest province in population terms is Sichuan,
counting 115 million inhabitants. Tibet, with the fewest inhabitants, has 2.6 million. Thus the Chinese
provinces span much of the range of the country level datasets used with respect to area and population.
Exploring variation in CO2 emissions across provinces will allow us to explore the sensitivity of these
emissions to the spatial distribution of population, income and technological changes.

2 Background

Our starting point is the classic IPAT model (Ehrlich and Holdren, 1971; Holdren, 2000):

I = P ·A · T (1)

where I stands for impact, typically measured in terms of the emission level of a pollutant, P is population
size, A represents a society’s affluence and T represents a technology index. Conceptually, this model has
long dominated science and engineering oriented discussions of the pollution generation problem at the
country and regional level including those underlying most of the IPCC’s emission scenarios. There
are many empirical variants of the model. They often involve specification in per capita terms, which
eliminates P , and implicitly assumes that the elasticity of emissions with respect to population equals
one. The inclusion of coefficients on one or more of the variables is justified under the guise that the
researcher at best has an income proxy for A and that the use of time or energy intensity as a proxy
for technology will require an estimated scale parameter to convert it into the technology index needed
for IPAT. Transformations of the basic IPAT model such as taking logs or working in terms of percent
change are also frequently seen. The common empirical implication underlying all of the IPAT family of
models is that pollution should be monotonically increasing in P and A and monotonically decreasing for
improvements in T .

With respect to China, Zhang (2000) has decomposed past CO2 emissions along the IPAT lines and
found that increasing income has been the main factor increasing emissions, while changes in aggregate
population size have had a much lesser impact. His estimates show that changes in technology as proxied
by energy intensity are between those of the income and population effects in terms of absolute magnitude
and work in the opposite direction.

Economists working on the relationship between pollution levels and income have frequently found an
empirical relationship known as the environmental Kuznets curve (EKC) that suggests that pollution first
rises with income up to some point and then falls after some threshold level, forming an inverted U-shape
relationship (Barbier, 1997). This possibility of an inverted U-shaped relationship with a downward side
where increases in income lead to decreases in pollution clearly contradict one of the key assumptions
underlying the IPAT model. One obvious way around this difficulty is to allow for the possibility that the
level of technology is dependent upon the affluence level. This greatly complicates the interpretation of
the IPAT relationship but makes it much more interesting from an economic and policy perspective. In
the case of China, anecdotal evidence suggests that better technology, in the sense of more energy efficient
and cleaner capital stock, is found in the wealthier provinces. Separating the two effects in an empirical

5The literature on economic growth uses data at this level of disaggregation to test for convergence of per capita incomes
across political subdivisions of countries (Barro and Sala-i-Martin, 1992; Bernard and Jones, 1996). Such studies provide
significant insight as to the behavior of national aggregates by allowing the researcher to holding constant factors that are
hard to control for across countries.
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study is crucial for designing correct policy solutions. There is some empirical work (e.g., Kalirajan and
Zaho, 1997) suggesting that technology development in the wealthy coastal provinces has far outpaced
that of many of the poorer inland provinces.

There is also a difficulty in the IPAT formulation with respect to population. Most empirical for-
mulations assume that each person makes the same contribution. This restriction can easily be relaxed
by including some measure of population as a predictor variable so that increasing or decreasing scale
effects with respect to total population size are possible. Perhaps more fundamental though is that the
IPAT formulation does not distinguish between people living in different locations.6 After accounting for
the large increase in overall population this century, the major demographic change that has occurred
worldwide is large scale rural to urban migration that now seems to be occurring at an accelerating rate
in developing countries (United Nations, 1996). To the extent that a Chinese farmer living in a rural
area uses less fossil fuel based energy than a Chinese factory worker with similar income, the degree of
urbanization or population density may be an important determinant of emission levels.

Our modelling framework will modify the IPAT framework in three basic ways. First, we will allow
for an EKC relationship with the possibility of income having a non-monotonic effect on CO2 emissions.
Second, we allow for the possibility of province specific technology effects both with respect to the usual
time trend but also with respect to initial conditions at the beginning of our sample period. Third, we
will allow for the possibility of both overall population scale effects and population density scale effects.
Each of these modifications are taken up in turn.

2.1 Generalizing the IPAT Model

The inverted U-shaped environmental Kuznets curve was first identified by economists at the World
Bank (Shafik and Bandyopadhyay, 1992) and became an important part of the NAFTA debate (Grossman
and Krueger, 1995). The nature of the relationship has been controversial ever since (Barbier, 1997; Lieb,
2001). There are a number of reasons for the controversy. First, the existence of such an empirical
relationship tends to fuel the belief that all one needs in order to solve the pollution problem in developing
countries is to increase income rather than focusing attention on the need for good environmental policies
(Arrow et al., 1995). Second, while theoretical justifications for the existence of an EKC relationship have
been put forth, there is not yet agreement on the nature of the underlying mechanism and, in particular,
whether it is mainly preference or technology driven.

Third, the empirical relationship is somewhat suspect and to some extent may be an artifact of the
juxtaposition of data from more and less developed regions (Vincent, 1997). Much of the issue here
stems from data quality being correlated with development level and the fact that there is data from
substantially fewer developing countries than one would like to see. Fourth, some researchers (Moomaw
and Unruh, 1997) have argued in favor of more general pollution-income relationships than an inverted U-
shape. Fifth, it is sometimes argued that the empirical evidence in favor of an EKC for stock pollutants like
solid waste and CO2 is substantially weaker than for flow air pollutants like SO2, NOx, CO, TSP and many
flow water pollutants. In particular, some previous cross-country estimates for CO2 emissions suggest that

6The original Ehrlich and Holdren (1971) contains a short discussion of population density but invokes an early notion
of the ”environmental footprint” and suggests focusing more on better modelling of the affluence factor is more important.
While population projection play a large role in the IPCC emissions scenarios there has been surprisingly little work on
the secondary effects of population such as population density and urbanization on greenhouse gas emissions (Gaffin, 1998).
Murthy, Panda and Parikh (1997) provide one of the few analyses in the economics literature. Looking at rural-urban
differences in India, they find on a per rupee basis that urban dwellers are responsible for about 25% higher CO2 emissions
than rural dwellers. The inclusion of population density has long been common in studies dealing with deforestation (Cropper
and Griffiths, 1994), since more densely populated areas require more farming land to support consumption in the absence
of technological change and has been looked at in at least one EKC study (Panayotou, 1997) with mixed results.
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the income turning points for CO2 emissions are quite high (Schmalensee, Stoker and Judson, 1998) or
non-existent (Holtz-Eakin and Selden, 1995).

Some of these issues are addressed in this paper, which is the first study estimating the shape of the
relationship between an environmental pollutant and income solely within a developing country. First, by
using data for a single country which are collected using consistent definitions and procedures, we avoid the
data comparability issue. In this sense our study represents the developing country counterpart of Carson,
Jeon and McCubbin (1997), who found evidence in support of the EKC hypothesis for air pollutants,
including CO2, across the 50 U.S. states by showing that per capita emissions fell with increasing income.
China has considerably more variation across provinces both in per capita emissions (a factor of 50) and
income levels (a factor of 8) than there is across the U.S. states. Since China’s per capita income is
relatively low compared to that of industrialized countries, we would expect China to be on the upside of
the EKC inverted U, that is per capita emission levels should be rising with income. The income levels
in the richest provinces are sufficiently high that a lower rate of increase in emissions per capita might be
observed if an EKC turning point holds for CO2 emissions at a level that is meaningful for the purpose of
a climate agreement.

Second, we will test for more general functional forms of the pollution income relationship using a third
order polynomial in income, which is popular in the literature (Sengupta, 1996; Moomaw and Unruh, 1997),
effectively allowing emissions to plateau and then increase again at higher levels of income. Furthermore,
we allow for an even more flexible functional form in the semi-parametric Generalized Additive Model
(GAM) framework (Hastie and Tibshirani, 1990). Third, we move away from the simple income-pollution
EKC models by starting to explicitly model technology impacts in a more realistic manner. The traditional
model specification of EKC type relationships hypothesizes a purely contemporaneous relationship between
per capita income and emissions, implicitly assuming that one can adjust per capita emissions immediately.
Emissions in the industrial and power generating sector largely depend on the quality speed of replacement
of the capital stock. In an ideal setting one would like to model and estimate the emission process much
like a dynamic production model, popular in the Macroeconomics literature. Such a model would require
quality data on capital stock and other inputs to production across time and provinces, which is not
available. Since we believe that it does take time to adjust the capital stock/technology we employ a
dynamic model. We proxy for differential rates of capital replacement by allowing for lagged emissions to
influence current emissions, which one would expect, unless the capital stock could instantaneously adjust,
and by allowing the nature of this adjustment process to differ across provinces.7

We further introduce dynamics by allowing for changes in population and population density over
time. This will later allow us to examine the possibility of differential population growth and migration
scenarios that cannot be looked at in models based on aggregate national data. Finally, in order to help
capture exogenous technological and resource endowment effects, we include a commonly used variable
on composition of industry across China’s provinces. This industry composition variable is defined as the
share of heavy/primary goods processing industry in total output. Though admittedly a rather broad
definition, it is likely to be useful for the purposes of this paper. Primary/heavy industry (e.g., steel
mills) concentrate around deposits of these natural resources, since transportation of unrefined ore is
extremely costly. Provinces with high deposits of natural resources such as coal and iron ore tend to
have a higher concentration of heavy industry. Provinces with higher initial shares of heavy industry are

7To our surprise, the only empirical paper we have found that allows for a dynamic adjustment process is Agras and
Chapman (1999), who find clear evidence in support of such a relationship using a sample of 34 countries from 1971-1989.
They correctly perceived the issue as one of a capital adjustment process. In their model, the dynamic adjustment process
is assumed to be the same for all countries in the sample and they allow for the possibility of a price response to the two
large oil shocks in the time period they model and for trade related effects.
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likely to produce a significantly larger amount of per capita CO2 emissions - after adjusting for income
and other factors. As time and the development process continue, one would expect a shift of industry
composition towards lighter industries. We use a simple time trend to adjust for exogenous technological
change through time. There may still be other forces driving emission differences across provinces such
as province specific pollution control regulations that do not work through the technology adjustment
process. We can test for such effects to some extent by allowing for provincial level fixed effects.

The next section describes China from a provincial perspective. In order to estimate a model with valid
parameter estimates and meaningful policy conclusions, it is essential that there be a sufficient degree of
time-series and cross-sectional variability in the data. A discussion of our data set, empirical specification
and estimation of the model appear in subsequent sections.

2.2 China’s Provinces

China’s modern economic growth has largely been fuelled by the exploitation of its massive coalfields.
Coal made up 76% of China’s total energy consumption in the 1990s. The burning of coal for electricity
and heating causes more than 90% of air pollution. Most coal deposits are located in the north and
northwest regions such as Inner Mongolia and Shanxi. Of these, Shanxi is the largest producer with
nearly 30% of the total coal output in China. Coal is shipped south by boat and rail for further processing
and consumption. Figure 1 shows the share of total waste gas emissions across China’s provinces. The
coal producing provinces contribute a disproportionate share of waste gas emissions.

Figure 1: Provincial Shares of Total Waste Gas Emissions (in 2000)
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China’s population has increased by 234% since 1950, making it the world’s most populous country by
a margin of about 285 million people, which is roughly the current size of the US population. The past two
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decades have been characterized by increased urbanization and efforts by the Chinese government to locate
people in less densely populated areas - essentially trying to offset migration to urban centers. Per capita
emissions depend greatly on the scale of industrial activity, which is highly concentrated in the coastal
areas and urban centers. The simple linear correlation coefficient between provincial population density
and per capita waste gas emissions is 0.46 for our sample. It might be more desirable to include a measure
of urbanization, such as share of urban population in a province, yet for political and jurisdictional reasons
a good measure does not exist. Population density is a reasonable proxy for urbanization, since for the
existing measures, differences in population density are highly correlated with differences in urbanization
across provinces. This suggests density scale effects which we will formally explore in Section 4. Only
6.50% of the total Chinese population live in the six Northwest regions8 accounting for 54% of total
Chinese territory. Fourty-two percent of the population live in the relatively small coastal provinces.
While the current population distribution remains much the same from the records of the 1930s (Lin and
Huang, 1997), current population growth rates vary substantially across provinces. For instance, in 1999,
the natural growth rate of the population in Tianjin was 0.21% while Beijing, Anhui, and Guangxi had
average annual growth rates of 0.85%. In contrast, Guizhou, Tibet, and Guangdong have growth rates of
more than 1.5% per annum. Population migration is increasing and now averages between 50 million to
80 million people annually. There is evidence of population net outflow from the Northwest provinces of
Tibet, Qinghai, Xinjiang, Sichuan, Guizhou, Yunnan, Shaanxi and Gansu (Lin and Huang, 1997).

Changes in per capita income are the driving force behind the EKC hypothesis. Figure 2 displays per
capita income for 1985 and for 2000 (the first and last year of our sample) in terms of per capita 1985
RMB. Provinces are ordered by compound annual growth rate of per capita income over the fifteen-year
period. Two things to note from the figure are: (a) the very large increases in per capita income over this
fifteen-year period, and (b) substantial differences in the growth rates between provinces.

Further note that (b) reflects the many changes in the provincial income ranking over the fifteen-year
period even though the three initially wealthiest provinces, Shanghai, Beijing, and Tianjin have retained
their earlier rankings. The large increase in Chinese per capita income appears to be due in large part
to the reforms that started in 1979. Over time progressively more reforms with respect to foreign direct
investment (FDI), joint ventures, and imports were allowed. China’s per capita wealth is now heavily
concentrated in the coastal provinces, which contain all of the special economic zones (SEZs). Figure
3 underlines the importance of provincial access to trade as well as the implications of trade and FDI
liberalization.

While China’s government has been cautious about making any commitment to carbon emissions re-
duction, China has paid considerable attention to energy efficiency improvements and has achieved notable
successes in the past decades (Sinton, 1996). The energy intensity of the Chinese economy (measured by
primary energy consumption per unit of national income) has decreased steadily since 1977. According
to Chinese energy analysts, the major factors driving down the energy intensity have been the increasing
share of light industries and investment in energy conservation (Sinton and Levine, 1994). More recent
work (Garbaccio et al. 1999b) has tended to assign more of the responsibility for the drop in Chinese
energy intensity to technological change. Pollution control, especially in coal fired power plants, is focused
more on improving the efficiency of coal furnaces (e.g., increasing the furnace temperature) than installing
end of pipe technologies such as scrubbers. This is due to the large fixed investment necessary to install
scrubbers as well as the increased output of electricity per unit of coal. Due to the inefficiency of most
current coal fired Chinese power plants, this trend is expected to continue well into the future.

Investments in non-coal energy generation capacity, such as hydro- and nuclear powered plants, have
8Inner Mongolia, Ningxia, Xinjiang, Tibet, Gansu and Qinghai.
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Figure 2: Provincial Per Capita Income (1985 RMB) and Annual Growth in 2000
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increased in recent years. The biggest and most well known project of this sort is the Three Gorges Dam,
which will drastically increase the total amount of electricity generated from hydro sources. Due to the
tremendous increase in the overall quantity of energy demanded, however, the shares of energy inputs have
remained almost constant over the past 10 years. We find that projections of this trend make a change in
the composition of inputs seem unlikely. The overall outcome is apt to be a large scale increase in electric
generating capacity with a mix of energy sources similar to the present, where coal is used to provide the
bulk of the electric power supplied.

In the mid-1970s, China established the National Environmental Protection Agency (NEPA) with a
network of environmental protection departments, bureaus and offices at provincial, municipal, and county
levels. Under the leadership of NEPA, China has developed ”by far the largest application of a market
based regulatory instrument in the world” (Wang, 2000). In the late 1990s the demand for environmental
quality emerged in major cities. Due to differences in public concern and to devolution of responsibili-
ties from Beijing, provincial and city governments have become important from an environmental policy
making perspective. The individual leadership of the local governments and the severity of pollution im-
pact affect implementation at these levels (Wang and Wheeler, 1996; Wang, 1999). Some provinces/cities
adopted air pollution emission permit policies even before the implementation of any national legislation.
Examples are Shanghai, Tianjin, and Xuzhou City of Jiangsu Province (National Environmental Protec-
tion Agency, 1996). These cities are high-income cities with high degrees of trade openness. By 1983 all
provinces except for Tibet9 had established an implementation system. In this sense, environmental policy

9Tibet began pollution charges in March 1991.
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Figure 3: 2000 Provincial Per Capita Income in 1985 RMB
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making in China, once characterized by a top-down model, is now being moved down to the province and
city level.

3 Data

We will estimate a set of models using a province-level panel data set for 30 Chinese provinces during
the period 1985-2000. Most of the provincial data used in this study have been collected from the China
Statistical Yearbooks of the corresponding years. For 25 of the provinces we have one observation for
every year of the sample period (16 years), while for a few of the provinces there are only data available
for twelve, thirteen or fourteen years. The result is an unbalanced panel data set with 468 observations.

3.1 Waste Gas Emissions

The main air pollutant variable used in China is waste gas emissions (WGE), which is reported in
China’s official Environmental Yearbook. WGE are measured in billions of cubic meters and are very
heterogeneously distributed between provinces. The coastal provinces10, forming 14% of the area of the
country, account for about 54% of waste gas emissions in 2000. This largely reflects the uneven distribution
of population and economic activity in China. Per capita waste gas emissions (PWGE) also display high
variability between provinces. Figure 4 shows the ranking of provinces according to 1985 per capita waste
gas emissions. Provinces with higher PWGE tend also to be the provinces with higher income per capita.

10Coastal region provinces (from north to south) are: Liaoning, Hebei, Beijing, Tianjin, Shandong, Jiangsu, Shanghai,
Zhejiang, Fujian, Hainan, Guangdong, and Guangxi.
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The simple correlation between the two variables is 0.56. Note that the coastal provinces also tend to have
high PWGE. The average annual rate of increase of WGE during the sample period was 5.64%. However,
that rate of change differed between provinces. While WGE in Hainan increased at an annual rate of
12.73%, the corresponding change of WGE in Tianjin was -0.57%.

Figure 4: 1985 & 2000 Per Capita Waste Gas Emissions (thousands of m3)
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3.2 Proxying for CO2 emissions

Data on China’s carbon dioxide emissions are only available at a national level (Oak Ridge National
Laboratory, 1998). It would be desirable to have data on provincial CO2 emissions rather than waste
gas emissions. Country level CO2 emissions levels are calculated by using annual energy consumption
data, which are based on country level fossil fuel consumption. Waste gas emissions on a provincial level
are obtained by the local NEPA agencies in a similar way. The authorities use an estimated engineering
relationship, which allows them to convert fossil fuel usage into waste gas emissions. Since we do not
know the exact engineering relationship used by NEPA we convert WGE into CO2 (carbon equivalent)
emissions by aggregating waste gas emissions across provinces by year and using this variable to predict
CO2. The simple correlation between provincial energy consumption and waste gas emissions is 0.92 for
1989, and 0.94 for 1995 suggesting that provincial waste gas emissions are calculated in much the same
way as are national level CO2 emissions. Since province level fossil fuel and energy consumption data are
only available for a few years, we use the waste gas emissions data and convert it into CO2 instead of
constructing our own measure of province level CO2 emissions. We estimate the following equation:

9



CO2t = 8.60 WGEt + ηt (2)

The heteroskedasticity consistent (White) t-statistic is 95.55. This almost perfect linear correlation
(.982) suggests that WGE is a good proxy for CO2. This allows one to predict per capita WGE emissions
at the provincial level and then use the conversion factor above (8.60) to derive CO2 (carbon equiva-
lent) estimates. We will conduct all of our estimations using waste gas emissions and convert them for
comparison purposes in Section 5.

3.3 Socioeconomic Data

All of the data on waste gas emissions, per capita GDP, industrial composition, and population char-
acteristics have been collected from the Chinese Statistical Yearbooks (1986-2001). Our measure of GDP
was calculated by deflating provincial nominal GDP using the national consumer price index for China
as a deflator with 1985 as the base year. To get the per capita GDP measure we divide by the total
provincial population at year end. Per capita GDP shows a high degree of variability between provinces
as discussed in Section 2. Population density is calculated as total provincial population divided by total
area in square miles. Our variable for industry composition is the ratio of value added by heavy industry
over total value added by heavy and light industry per province. We only include industry composition
for the first year with available data for all provinces, since we proxy for technological improvement by
including a time trend. The Chinese Statistical Office has also changed its definition of heavy industry in
the latter part of our sample, which makes it impossible to provide a consistent variable. We include this
ratio for 1989, which is the first year for which we have observations for all provinces. We further include
a dummy variable for coastal provinces. Coastal provinces contain all of the special economic zones, and
due to their favorable location attract most of the FDI. Our dummy variable allows for the possibility
that these provinces are structurally different.

4 Empirical Models and Results

The adopted modelling philosophy has to accommodate the two main purposes of this paper, which are
to forecast China’s CO2 emissions and to understand how population, income and technological change
affect individual provinces’ emissions. As such we use a specification search based on Hendry (1985).
Within this framework we choose the Schwarz Information Criterion (SIC) as our model selection criterion.
We choose this criterion since the R2 will always prefer a less parsimonious model and it can be shown that
the adjusted R2 does not sufficiently penalize models for the inclusion of too many parameters. We choose
the SIC over the Akaike Information Criterion, since it punishes the inclusion of additional parameters
more heavily (Diebold, 2001). Thus, we prefer and will ultimately use a parsimonious model to forecast
China’s CO2 emissions.

4.1 Specification Search

Equation 3 below is our most general model. It includes fixed time and province effects as well as a
longer (two-period) lag structure. It is given as:

ln(PWGEit) = γt + ηi + f(GDPit) + f(GDPit−1) + β1ln(Pdensit) +
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30∑

i=1

β1+iln(PWGEit−1) +
30∑

i=1

β31+iln(PWGEit−2) + (3)

δZit + εit

where i is a province index, t is a time index, γi is a province fixed effect, αt is a year fixed effect and
εit is the usual Gaussian error term. PWGEit measures per capita waste gas emissions (100 thousand
m3); GDPit is per capita gross domestic product in real terms (RMB 1985). We search over higher order
polynomial specifications, which allow for per capita emissions to taper off at some level of income and
then later increase at higher levels of income, as has been suggested by some studies. f(·) is a higher
order polynomial in income, where in our most general specification we use a fifth order polynomial.
The variable PDENSit is the population density for province i at time t. Zit is a vector of exogenous
variables defined here as COMPito

, industry composition in 1989 and COASTi is a dummy variable for
the coastal provinces. We include one and two-period province specific lagged dependent variables in
the initial specification allowing provinces to track their emissions at different rates. As discussed in the
previous section we adjust for differences in initial industry composition. We do this to capture differences
in the initial pollution intensity of industry - assuming that heavy industry is more pollution intensive
than light industry.

The time fixed effects adjust for shocks to preferences and technology common to all provinces. The
province specific fixed effects, if significant, will capture differences in ”starting point” emissions not
captured by the coastal dummy or initial industry composition. The province specific dummy variables in
conjunction with the province specific lags create econometric issues that are addressed in the literature
on dynamic panels. An estimation problem arises, since the fixed effects are no longer independent of the
error terms requiring an estimation technique other than least squares. If one believes that all provinces
follow the same autoregressive process, which in this context is equivalent to ∨i, jε[1, 30]β1+i = β1+j ,
Arellano and Bond (1991) and Arellano and Bover (1995) provide a GMM estimator that allows consistent
parameter estimation. If one relaxes this restriction, estimation of such a dynamic heterogenous panels
relies on Bayesian techniques or parametric approaches (e.g., Pesaran and Smith, 1995). We limit the
space of dynamic panel specifications to equation 3 without lagged income and estimate both the dynamic
heterogenous panel as well as the simpler dynamic panel.

The model selection criterion prefers a model with no province specific fixed effects, both for the
dynamic heterogenous and the simple dynamic specification. We therefore limit the most general model
to:

ln(PWGEit) = γt + f(GDPit) + f(GDPit−1) + β1ln(Pdensit) +
30∑

i=1

β1+iln(PWGEit−1) +
30∑

i=1

β31+iln(PWGEit−2) + (4)

δZit + εit

We first estimate equation 4, and compare it to a model with a common intercept, no fixed effects and
include COASTALi as well as COMPito . This model with no fixed effects has a slightly lower SIC than
the model with time fixed effects only. This is a good indicator that the coastal dummy and initial industry
composition capture most of the structural differences in ”starting point” emissions.11 This model with a

11We also estimated a model with province specific time trends. The SIC was higher and hence the results added no
additional insight when compared to a model with a time trend common across provinces.
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simple logarithmic time trend has the lowest SIC. Section 4.3 addresses the role of time in greater detail.
We then adopt this model and test the restriction that ∀jε[32, 61]βj = 0, which suggests an AR(1) over
an AR(2) specification. The SIC suggests an AR(1) specification over an AR(2). We then estimate the
model without lagged dependent variables where the SIC strongly prefers the AR(1) specification. This
finding suggests that technology, and therefore, per capita emissions do not adjust contemporaneously. The
information contained in a one period lag suggests that provinces adjust their per capita emissions rather
slowly. The finding that the AR(2) does not provide a significant improvement over the AR(1) specification
further suggests that the non-immediate past does not contain any additional information valuable for
forecasting purposes. We discuss the information contained in the province specific lag parameters in more
detail in Section 4.5.

We further test for pooling of the province specific lags, which amounts to testing the restriction
∨i, jε[1, 30]β1+i = β1+j . This restriction implies that all provinces have the same elasticity of current
emissions with respect to past per capita emissions. We find that this elasticity varies across provinces.
We test for whether our specification is preferable to a pooled model and reject pooling at the 1% level.

This is quite a strong result, since we would gain 29 degrees of freedom by pooling. The inclusion of
the province specific lags is quite different from a traditional fixed effects model from a conceptual as well
as econometric perspective. The fixed effects model implies that provinces follow a similar trajectory at
a level offset by the province specific fixed effect. The lag parameter model implies that a province follow
a different shaped trajectory through time, which may also differ in level or starting point, depending
on differences in initial industry composition and coastal location. From an econometric perspective, one
would expect that, given a moderate sized sample, the inclusion of province specific lag parameters might
absorb most of the variation and make the remaining parameter estimates statistically insignificant. This
is not the case here, which we take as further evidence in favor of our final specification given in equation
5.

The SIC further rejects the inclusion of the higher order polynomial term for all models, but does
suggest the inclusion of population density and the coastal dummy variable. Model 5 below minimizes
the SIC.12

ln(PWGEit) = α + β1ln(GDPit) + β2(ln(GDPit))2 + β3ln(COMPito) + β4ln(PDENSit)

+β5COASTi +
30∑

i=1

β5+iln(PWGEit−1) + β36ln(TIMEt) + εit (5)

We test for serial correlation in the error terms and fail to reject the null hypothesis of no serial correlation
after including the first order province specific lags.13

The estimated model implies that there are no spatial spillover effects across provinces. We estimated
equation 5 using the STAR estimator recently proposed by Giacomini and Granger (forthcoming), which
allows for first order spatial correlation in a VAR model. Essentially, this estimator allows for spillover ef-
fects of first order neighbors, which are provinces sharing a direct border.14 A likelihood ratio test rejected

12The SIC picked a ln(TIME) specification of the time trend over a simple linear time trend as well as a Box-Cox
transformation. When replicating these results, it matters what the starting value of the time trend is. In our case,
1985 = 1. Section 4.3 addresses this issue further.

13A Shapiro-Wilk test for normality of the studentized residuals of the model rejects the null hypothesis of a normal
distribution. Since non-normal error terms may produce biased parameter estimates, we estimate the model using a robust
regression algorithm. The parameter estimates on the lagged dependent variables are uniformly higher, which is offset by
a larger negative parameter estimate on the time trend. The model produces initially higher forecasts, but the aggregate
forecasts converge to values similar in magnitude to the ones reported in the next section. The robust regression forecasts
are available upon request from the authors.

14The spatial effect is somewhat stronger, yet still insignificant when omitting the explicitly spatial variable COASTi from
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such effects at the 5% level, providing further evidence in favor of the chosen level of disaggregation.
There has been considerable interest in the literature on whether the shape of the pollution income

relationship is more general than an inverse U. We turn to this topic in the next section. Since we assumed
a rather restrictive parametric form of the pollution income relationship, we estimate equation 5 via a
Generalized Additive Model.

4.2 Generalized Additive Model

The Generalized Additive Model (GAM) given in equation 6 is estimated using a smoothing spline
as well as a Loess data smoother (Cleveland and Devlin, 1988). The model below puts no parametric
restrictions on the shape of the pollution income relationship. The smoothers will give us an indication
of the functional form without any ex ante imposed restrictions.

ln(PWGEit) = α + g(ln(GDPit)) + β1ln(COMPito
) + β2ln(PDENSit)

+β3COASTi +
30∑

i=1

β3+iln(PWGEit−1) + β34ln(TIMEt) + εit (6)

The shape of the pollution income relationship is depicted in Figure 5, which suggests a functional form
resembling the rising slope of an EKC type relationship. Since China is a developing country, most of the
observations are well below the turning point. The shape is consistent with the rising section of an EKC
relationship. We note that the power of this method, given our sample, relies on observations from the
left rather than the right tail of the income distribution as is typical of most cross country studies. When
using our model selection criterion, we find that the parametric specification in equation 5 is preferred to
the GAM model. The in sample predictions are, however, almost identical.

4.3 The Role of Time

The most general model uses time specific fixed effects in order to capture exogenous technological
change common across all provinces. Our preferred model specifies this change as a ln(TIMEt). The
literature traditionally includes time linearly. A linear time trend produces very different forecasts from
a logarithmic time trend over the long time horizon considered in this study. Including the time trend
as a natural log creates an issue, since any scaling of TIMEt now changes the magnitude of technolog-
ical change, essentially decreasing its impact on aggregate emissions the longer the forecasting horizon.
Schmalensee et al. (1998) use a linear as well as a log linear forecast of time specific fixed effects. In order
to test for the validity of the chosen model, we ran our model with time fixed effects and regressed these
fixed effects on several different specifications of time. The logarithmic specification explained 69% of the
variation in the fixed effects. A linear time trend explained 13% and a square root explained 32% of the
variation in the time fixed effects.15

This non-linearity in time is likely due to a slowing of technological change over time. It is widely
believed that technological progress was very rapid in the years following the 1979 reforms. This was the
case since replacing the least efficient old technology was often cost effective and produced relatively large
reductions in emissions. This phenomenon cannot continue linearly into the future, since these increases

the STAR estimation.
15A Box-Cox transformation of Timet resulted in a lambda of -0.38, which lies between a logarithmic and a square root

specification of the time trend. When testing the specification of square root time trend versus a logarithmic time trend in
the full model, a likelihood ratio test does not reject either specification, but clearly rejects the linear specification.
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Figure 5: Predicted PWGE from Income using GAM
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in energy efficiency and therefore cleaner technology become more expensive at the margin. One would
therefore expect a slowing of this notion of technological change, which is what our results suggest. This
slowing down of technological change is amplified by a change in the composition of goods produced
towards more energy intensive goods.

4.4 Preferred Model Results

Table 1 reports the estimation results from our preferred model.16 Of particular importance are the
signs and magnitudes of β1 and β2 in Table 1. In this particular case, emissions and per capita GDP
will show an inverted-U shape relationship given that β1 > 0 and β2 < 0. The turning point for the
model reported in Table 1 is at 11,278 RMB, which is not too far above Shanghai’s current income. The
inclusion of the population and technological change variables has significantly decreased the expected
level of income at which the turning point occurs. The confidence interval on the estimate of the turning
point, exp(−β1/2β2) is rather large.17 We check our specification by comparing the model predictions in
sample versus the predictions from the generalized additive model of equation 6. The in sample predicted
values of this GAM estimation are highly correlated (ρ=0.999) with the in sample predictions of the
parametric model providing further evidence in support of our specification.

The parameter estimate on initial industry composition is positive as expected, yet statistically in-
significant in both models. We conducted a likelihood ratio test and failed to reject the omission of

16We estimated this model using the traditional specification without lags and population density and obtain LPWGEit =
−2.08+1.10 ·ln(GDPit)−0.02 ·(ln(GDPit))

2−0.24 · ln(Time). When we include population density, we obtain LPWGEit =
−3.77+1.75 · ln(GDPit)− 0.07 · (ln(GDPit))

2− 0.20 · ln(Time)+0.10 · ln(PDENSit). The R2 is 0.47 and 0.45 respectively.
17The 80% confidence interval is RMB 5,906 to RMB 44,250. The 90% confidence interval is from RMB 5,180 to RMB

93,370. We use a simple parametric residual based bootstrap to obtain these values empirically, since the distribution of a
ratio of two normals is fat-tailed.
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Table 1: Parameter Estimates
Lag Robust

Model Standard
Parameter Estimate Error

Constanti 0.815 0.863
ln(GDPit) 0.745 0.199**

(ln(GDPit))
2 -0.040 0.012**

ln(Compito) 1.707 0.707**
Coastalit -0.371 0.286

ln(Pdensit) 0.305 0.064**
ln(Time) -0.061 0.019**

Beijing 0.642 0.048**
Tianjin 0.649 0.045**

Hebei 0.669 0.052**
Shanxi 0.562 0.055**

Inner Mongolia 0.794 0.035**
Liaoning 0.629 0.069**

Jilin 0.620 0.044**
Heilongjiang 0.601 0.046**

Shanghai 0.642 0.045**
Jiangsu 0.663 0.042**

Zhejiang 0.785 0.047**
Anhui 0.565 0.069**
Fujian 0.757 0.040**

Jiangxi 0.520 0.060**
Shandong 0.662 0.046**

Henan 0.496 0.065**
Hubei 0.555 0.057**
Hunan 0.508 0.061**

Guangdong 0.778 0.044**
Guangxi 0.760 0.039**
Hainan 0.819 0.059**
Sichuan 0.544 0.056**
Guizhou 0.605 0.052**
Yunnan 0.671 0.064**

Tibet 0.528 0.152**
Shaanxi 0.558 0.052**

Gansu 0.617 0.050**
Qinghai 0.756 0.041**
Ningxia 0.634 0.046**

Xinjiang 0.797 0.041**

R2 0.9854
Observations 468

** Significant at 1% level.
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industry composition from the estimation. The parameter has the expected sign, indicating that a 1%
higher value of the initial heavy to light ratio of industry results in a 1.7% increase in per capita waste
gas emissions.

The parameter estimate on population density is positive and significant. Our approach differs from
the IPCC forecasts in this aspect. Our estimation suggests that increased population density will result
in significantly higher per capita waste gas emissions. This finding is consistent with work by Murthy et
al. (1997) on rural-urban differences in India based on an input-output modelling perspective. Migration
and aggregate population growth will separately affect per capita and aggregate emissions. Murthy et
al. (1997) suggest that the population density effect works through a uniform increase in energy demand
across income groups as individuals relocate from agricultural areas to the cities. This is thought to be
due to changes in lifestyle, such as the increased use of electricity, public transportation and hot water.
Therefore, increases in population of a province, whose land area is fixed, will have scale effects on per
capita emissions of its inhabitants. A province with low immigration and high natural population growth
may experience similar emissions as a province with high immigration and very low natural population
growth. We will incorporate this effect when producing forecasts and demonstrate that different scenarios
will have very strong consequences on the path of China’s aggregate emissions.

The parameter estimate on the dummy variable COASTi is negative and marginally statistically
significant. The coastal provinces attracted 89% of the total FDI in 1999. Influx of FDI is tied to an
influx of foreign technology, which replaces older and less efficient capital stock accumulated throughout
earlier years. This structural difference, as well as the location of China’s special economic zones, which
provide these provinces with the access to foreign technology, may account for this lower per capita
emission level. The parameter estimate on the time trend, ln(TIMEt), indicates that as time progresses
and technology common to all provinces improves, per capita emissions decrease slightly each year. This
time trend captures a combination of technology improvements as well as shifts in preferences towards
better environmental quality. It carries the expected sign and is significant.

4.5 Exploring the Lag Parameters

In another specification we allowed the AR(1) parameters to change in the middle of the sample (1993)
and only three provinces show a statistically significant change using standard testing in levels. The lag
parameter estimates on Beijing and Shanghai decrease mildly, whereas the parameter estimate on Guizhou
increases slightly. Even though these changes are significantly different from zero, they are rather small
in absolute magnitude. When adjusting for the fact that multiple comparisons are being made by using a
sequential test proposed by Holm (1979), we fail to reject the null of parameter stability. We also allowed
for separate break dates for coastal and non-coastal provinces. Again. there is no significant evidence of
separate structural breaks for the two groups. This result contradicts a popular argument hypothesizing
a ’new China’ in the sense of a dramatic structural changes on every level of society resulting in improved
environmental quality across all provinces. The distribution of the lag parameters, with the exception of
Tibet, which is fundamentally different from the rest of China, suggests a group of provinces which can be
classified as the ’new China’, namely the coastal provinces. The ’new China’ does not have a magical split,
nor is there any evidence that the ’old China’ has started moving towards it. The structural break tests
further suggest that the lag parameter estimates are somewhat stable and warrant further investigation
as to what drives differences in the parameters.

There is considerable variation in individual provinces’ elasticities with respect to the previous period’s
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emissions, as indicated by the parameters on the province specific lagged emissions.18 Figure 6 plots the
parameter estimates for the provinces from the lag-model in deviation form.19 Generally speaking, these
estimates suggest that a smaller relative parameter estimate on a province’s lagged per capita waste
gas emissions indicates faster speed of adjustment. Correspondingly, a larger (closer to one) parameter
estimate would indicate a relatively slower rate of adjustment.

Upon casual inspection, the provinces with lagged parameter values that are substantially below the
average tend to be the coastal provinces that have received substantial FDI, whereas the provinces with
substantially higher lagged parameter values tend to be provinces which are large coal producers with
substantial concentrations of heavy industry. Figure 7 demonstrates the impact of differing lag parameter
estimates on projected per capita emissions. We simulate a stylized province assuming a GDP growth rate
of 5.02% per period, identical starting conditions (per capita income, industry composition, population
density) and allow the lag parameter to vary from the highest to the lowest estimated value.

Small changes in the lag parameter have tremendous implications for the turning point of per capita
emissions. A province with a parameter estimate of 0.80 will have a drastically higher turning point
of predicted per capita emissions than a province with a parameter estimate of 0.70 on its lag, ceteris
paribus. This argument carries even more weight when considering the fact that the area under the
curves in Figure 7 represent the sum of an individual’s emissions over the forecasting horizon. The
sample high lag parameter implies drastically larger lifetime emissions, compared to even the median lag
parameter. For comparison purposes, Figure 7 shows the predicted per capita emissions of the estimated
contemporaneous EKC fixed effects model using a solid line. The EKC model implies a drastically different
trajectory compared to our preferred model since it restricts each province to follow an identical trajectory
offset by differences in the intercepts.

Table 2 shows results from regressing the lag parameters on a set of province specific characteristics
and may provide some insight as to what factors drive these lag parameters. The regressions explore
variation in three sets of lag parameters that are obtained from estimating equation (5) with and without
Coastali and Compito as indicated in the first two rows of the Table.

Models (1) and (2) address the issue of whether province differences in coal prices drive the magnitude
of lag parameters. Spot market coal price data are available only sporadically for some provincial capitals
from China Price, a Chinese Trade publication specializing in monitoring resource and other input prices.
The Spearman correlation coefficient between prices available for 1994 and 1997 is 0.93. This suggests
that relative coal prices across provinces are fairly stable. Inspecting the available data, the differences
in coal prices are positively correlated with the distance of the province to the large coal deposits. This
suggests that transportation costs may be responsible for a large share in the across province variation
in coal prices. Model (1) shows that price is significant in a regression without the inclusion of industry
composition in the original estimation. Model (2) shows that the inclusion of industry composition in the
original estimation makes the parameter estimate on coal price not significantly different from zero.20 This
suggests that relative coal prices may have influenced initial industry composition, but are not needed
once it is controlled for in the forecasting equation.

The question of interest to policymakers is what factors, which can be changed through policy, deter-
18All of our provincial lagged emission coefficients except one (Qinghai) are smaller, that is more responsive, than the

0.84 estimate that Agras and Chapman (1999) obtain from their sample of countries. When we pool the lagged dependent
variable, we obtain a lag parameter estimate of 0.66.

19The parameter estimates given in Figure 6 are obtained from an estimation omitting the coastal dummy as well as initial
industry composition to extract the overall differences in technological progress.

20In addition to an indirect effect on CO2 emissions via industry composition there may also be a direct price effect. It
is possible to take the residuals from the waste gas forecasting equation for the years in which coal price data are available
and regress the residuals on these prices. We found a significant effect, but it is small relative to the price effect via initial
industry composition. Still it is likely to be desirable to explore the direct impacts of a coal tax.
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Figure 6: Lag Parameter Estimates (Deviation from Mean)
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Figure 7: Traditional EKC vs. Lag Specification
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Table 2: Lag Parameter Regressions
Model (1) Model (2) Model (3) Model (4) Model (5) Model (6)

Coastali No Yes Yes Yes Yes Yes
Compito No No Yes No Yes Yes

Coal Price 0.0002 0.0003
(3.95)** (0.87)

%∆2000,1985FDI -0.002 -0.002 -0.002 -0.002
(2.14)* (2.39)* (2.22)* (2.47)*

Ambient SO2(1995) -0.0002
(1.00)

%∆2000,1990Electricity 0.09
(1.69)

%∆2000,1985Pdens 0.386
(1.94)

Constant 0.813 0.597 0.631 0.641 0.704 0.69
(46.59)** (11.96)** (16.57)** (16.48)** (25.66)** (28.86)**

Observations 26 26 30 30 30 30
R2 0.39 0.03 0.28 0.25 0.21 0.18

** Significant at 1% level * Significant at 5% level.

mine the magnitude of the lags. There are two different possible scenarios. The first scenario suggests
that as population density increases in some provinces, the increased demand for electricity and goods
will spark new construction in generating and production capacity. This would in turn decrease average
capital vintage. If the installed new capacity is more energy efficient and therefore cleaner, one would
expect a relatively large decrease in the lag parameter.

Model (3) suggests, however that increased population density does not have a negative effect on
the lags. The suggested effect is positive and approaching statistical significance at the 5% level. This
would suggest that provinces with proportionately larger increases in population density have higher lags,
providing some evidence working against a decreasing capital vintage story. Further, model (4) suggests
that increases in provincial electricity production have a significant and positive effect on the lags. This
again suggests that the added new capacity does not decrease the lags through the decreasing capital
vintage.

Models (3) - (6) suggest that FDI has a significant and negative impact on the lag parameters. Different
jurisdictions compete over FDI since it provides not only a source of new financial capital, but spillover
effects such as new jobs and access to better technology. There two general ways of replacing or adding
to the existing power supply. The traditional way is to put in place status quo Chinese technology, which
largely is a derivative of older Russian technology. These plants have slightly increased thermal efficiency
compared to the oldest plants currently in operation. The second option is to put in place state of the
art Japanese technology power generating capacity. Since FDI is explicitly tied to access to advanced
technology this source of investment capital could be the source of a second order effect decreasing the
magnitude of the lags. Overall our results suggest that the slow and automatic replacement of China’s
capital stock in response to meeting a growing energy demand will not decrease the lag parameters and
consequently per capita emissions trajectories. Our results suggest that there is a large role for province
level pollution control policy coupled with an influx of FDI and state of the art technology. As labor costs
in the coastal provinces rise, the uneven distribution of FDI across provinces is expected to shift towards
the interior in the future (Wei, Lio, Parker and Vaidya, 1999). Further, if provinces do compete over FDI
by providing tax breaks (Barros and Cabral, 2000), lower performance requirements for multinationals
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(Davies and Ellis, 2001) or by providing better infrastructure such as roads and reliable power generation
(Cheng and Kwan, 2000) these provide potentially meaningful policy tools for increasing the inflow of
foreign capital and technology.

There are two caveats which may change the magnitude of the lag parameters over time; both are
driven by the nature of fundamental structural change currently taking place in China.

The first stems from China’s changing transportation sector, namely a dramatically non-linear increase
in the number of cars, which may cause some bias in our forecasts. Our sample period captures the large
increase in the number of cars over the last five years. If the rates of growth in the number of automobiles
per province change at different rates during the forecasting horizon, the lag parameter estimates, while
valid in sample, may not provide correct out of sample predictions.

Another source of potential bias of our long term forecasts stems from the fact that China’s power
generators have focused on increasing thermal efficiency. This has reduced both CO2 and other air
pollutants. Model (5) includes ambient SO2 concentrations in the provincial capital for 1995. This variable
has the expected sign, in the sense that higher ambient SO2 levels are associated with lower lagged emission
parameters although the effect is not large and is insignificant. It is possible that the link between CO2

and other air pollutants could be broken in the future if China moves away from improvements in thermal
efficiency as the primary means of reducing all air pollutants and moves towards investments in scrubber
technology, which would reduce only local and regional air pollutants. To date, investments in scrubbing
technology have been small in magnitude and a shift in pollution control strategy towards scrubbing by
most estimates is not expected to happen in the moderate term future. This is not surprising, since the
cost of a scrubber for a small capacity coal fired power plant starts at about US$ 150 million (2002 US
dollars). The larger power plants require an investment of about US$ 500 million for a scrubber. Since
these scrubbers cannot remove CO2 from the emitted waste gas stream, the amount of CO2 emitted per
ton of coal is not changed by installing a traditional scrubber. The implication of installing scrubbers on
a large scale would likely be an increase in the lagged emission coefficients because local and regional air
pollution could still be improved through the use scrubbers.

5 Forecasting CO2 Emissions

To forecast CO2 emissions, we will forecast waste gas emissions using the lag specification presented
in the previous section. Those waste gas emissions are then converted into CO2 (carbon equivalent)
emissions using the conversion factor estimated in Section 3.2. To make use of the models estimated
in Section 4.4, we need to make assumptions about the time paths of the predictor variables in each
model. The independent variables, whose future values are unknown, are provincial per capita GDP and
population density. We provide forecasts combining different scenarios for each of those two variables. The
provincial population forecasts are based on the projections by Chesnais and Minglei (1998). The GDP
growth scenarios are based on IPCC projections as well as one scenario using in-sample historical GDP
growth. We choose a model of no population growth and constant 5.02% growth of per capita GDP, which
corresponds to the assumption for our medium GDP growth scenario, as the baseline forecast. We then
examine the sensitivity of the results to differences in assumptions about the paths of predictor variables.
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5.1 Alternative Scenarios

The EKC and the lab model only require assumptions about future levels of per capita GDP and
population since the land area of provinces is fixed. 21 Different assumptions about the future trends
of the explanatory variables are likely to imply very different per capita and aggregate emissions levels.
Rather than be inclusive about all possible sets of assumptions, we will attempt to illustrate the impact of
the range of assumptions typically made concerning Chinese GDP and population growth rates. We limit
our analysis to only three GDP growth scenarios. The three different scenarios demonstrate the sensitivity
of our forecasts to changes in the assumptions regarding GDP growth rates. The three alternative sets of
assumptions are a slow growth case, a medium growth case, and a high growth case. We consider a special
case of the third scenario, which assumes that the EKC type pollution income relationship does not hold
beyond the turning point. In this model we let provincial per capita GDP grow up to the estimated turning
point and hold it fixed at that level for the remaining forecasting time periods, similar to Panayotou et
al. (2002).

To make use of our model for forecasting purposes we require province level population projections.
Official estimates of population are only available at a national level. A recent demographic study by
Chesnais and Minglei (1998) provides province level population forecasts through the year 2050. Four
scenarios are considered that incorporate internal migration and natural population growth. The four
scenarios can be characterized as follows: Scenario A is characterized by constant natural birth and
mortality rates across provinces. Scenario B is characterized by decreasing natural birth rates and constant
mortality rates. Scenario C is characterized by decreasing mortality and constant birth rates. Scenario
D is characterized by decreasing birth and mortality rates. Chesnais and Minglei (1998) provide a very
detailed account regarding the assumptions underlying the population model. The model incorporates the
current and future age structure of the single provinces, which indirectly incorporate migration patterns
within China.

We assume that the GDP growth rate (ξt) and population growth rate (φt) are jointly distributed
as f(ξt, φt) ∼ N2[µξ, µφ, σ2

ξ , σ2
φ, ρ] and in and out of sample population and GDP growth rates can be

characterized by this bivariate normal distribution. The distribution is parameterized by using the in
sample mean and standard deviation of the population growth rate as well as its correlation coefficient
with aggregate GDP growth for µφ, σφ and ρ respectively. Three different pairs of values for µξ and σξ

for our out of sample predictions are used as we consider a slow, medium and high GDP growth scenario.
The parameters for the slow growth scenario are derived from a distribution based on Scenario IS92a of
the quasi official IPCC forecasts. The IPCC provides two possible values for this scenario, which we take
to be the upper and lower 5th percentile of the marginal growth rate distribution. The mean of the GDP
growth rate for the medium growth scenario is only 0.5% larger than the mean of the low growth scenario.
Although this seems to be a small difference, a 0.5% higher GDP growth rate over a 50 year horizon has
a drastic impact on per capita income. The high growth scenario uses China’s in sample aggregate GDP
growth rate and variance of provincial aggregate GDP. These values are admittedly very high; and by
most forecasts, China’s economy is not expected to follow the high growth path it has in the years covered
by our sample. The results using these parameters do show the drastic impact of the income effect in the
upper regions of the future provincial income distribution on CO2 emissions.

We do not forecast the population growth rate, as the four scenarios provided by Chesnais and Minglei
(1998) are used. We calculate φt∀ t ε [2001,2050] from these forecasts and use the conditional marginal
distribution g(ξt|φt) = N [α+βφt, σ

2
ξ (1−ρ)2], where α = µξ−βµφ and β = ρσξσφ

σ2
φ

to obtain realizations of

21This is also true for the most simple IPAT specifications, yet a more involved modeling of technology under IPAT usually
requires data on energy intensity and carbon intensity of GDP.
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Table 3: Assumptions Concerning GDP and Population Growth Rates
A-Slow B-Slow C-Slow D-Slow

Mortality Rate Constant Constant Decreasing Decreasing
Birth Rate Constant Decreasing Constant Decreasing

GDP Growth Mean 4.46% 4.46% 4.46% 4.46%
GDP Growth StDev. 0.47% 0.47% 0.47% 0.47%

A-Medium B-Medium C-Medium D-Medium
Mortality Rate Constant Constant Decreasing Decreasing

Birth Rate Constant Decreasing Constant Decreasing
GDP Growth Mean 5.02% 5.02% 5.02% 5.02%

GDP Growth StDev. 0.77% 0.77% 0.77% 0.77%

A-Fast B-Fast C-Fast D-Fast
Mortality Rate Constant Constant Decreasing Decreasing

Birth Rate Constant Decreasing Constant Decreasing
GDP Growth Mean 8.90% 8.90% 8.90% 8.90%

GDP Growth StDev. 4.66% 4.66% 4.66% 4.66%

the aggregate GDP growth rate. Table 3 summarizes the scenarios in consideration. Since we only consider
three scenarios of GDP growth, a total of twelve different population/GDP scenarios for forecasting
purposes are considered.

5.2 Sensitivity To Alternative Scenarios

In this section we look at how the different scenarios defined in Table 3 influence forecasts of CO2

emissions using the same model. Figure 8 displays aggregate forecasts of Chinese CO2 emissions based
on the conservative slow and medium GDP growth assumptions for all four population scenarios until the
year 2050. The forecast in Figure 8 under the assumption of slow and medium rate of growth of GDP
depend critically on the assumption about the rate of growth of population (Scenario A vs. Scenarios B,
C, and D). These results suggest that changes in population density patterns will have a large impact on
CO2 emissions. The solid line indicates the median point forecast for each population growth scenario,
while the shaded area around the point forecast indicates the 90% confidence interval with respect to the
uncertainty about realizations of the GDP growth rate. The thick dashed lines indicate the upper bound
of the 95% overall confidence interval for scenario C, and the lower bound of the overall confidence interval
for Scenario B.22 The baseline scenario is indicated by the dotted line. It is noteworthy how similar the
forecasts for the same population scenario and differing GDP growth scenario are. Our forecasts, however,
suggest that the distribution of population across China’s provinces may have a drastic impact on the
PRC’s aggregate CO2 emissions.

22We have constructed confidence intervals for each scenario, yet plotting these makes the picture uninformative. We
therefore report only the upper bound of the highest forecast and the lower bound of the lower forecast.
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Figure 8: Aggregate Forecasts of China’s CO2 Emissions - Slow and Medium GDP Growth
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Figure 9: Aggregate Forecasts of China’s CO2 Emissions - High GDP Growth
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The top panel of Figure 9 depicts forecasts allowing for an EKC type relationship. This scenario
reflects historical GDP growth for the PRC for the past 15 years. These years have been a period of
high growth and it is expected that GDP growth will slow down in the near future. As one can see from
Figure 9, the higher levels of GDP growth push per capita income past the estimated turning points,
and depending on the population growth scenario, suggests an aggregate ’Kuznets’ type pollution income
relationship. In this high growth scenario, the income effect offsets the population growth effect. The
bottom panel of Figure 9 shows our forecasts using the high GDP growth scenario, not allowing GDP to
rise above the turning point level. The forecasts are only mildly higher than the ones obtained using the
IPCC scenarios.23 The aggregate emission forecasts by population scenario for China’s CO2 emissions are
almost identical for all panels until the year 2030. The last panel shows a quite drastic departure of the
predictions for the unrestricted EKC model.

IPAT models based on national aggregates are likely to attribute the population density/urbanization
effects to income. Even if such a model forecasts well, it is likely to lead to an incorrect understanding of
what is driving emission changes hence faulty policy prescriptions.

The obvious alternative to policies designed to reduce the lagged provincial emission parameters are
population policies. Such policies could influence aggregate population (through influencing birth rates)
or the location of population. China has implemented such policies in the past with varying degrees of
success. The issue raised in this paper with respect to CO2 is the tradeoff between technology policies
and population policies.

5.3 Out of Sample Performance

Since the chosen model selection criterion selects models based on in-sample performance, we compare
the out-of sample performance of model 5 to that of two basic EKC and IPAT specifications. Figure Table
4 lists the one step ahead mean square forecasting error (MSFE) using all available information in the year
1999 and forecasting one step ahead. The last row in the table reports the ratio of a models MSFE to that
of the lag specification. Since we are constructing long range forecasts, it would be helpful to compare i.e.
10 step ahead forecasts across models, but since we only have 15 years of data for each province, it limits
the range of possible comparisons.

Table 4: Out of Sample Forecast Performance of Selected Models
IPAT IPAT EKC EKC Lag
ln(time) Linear time with Pdens Specification

MSFE 760,448 4,237,674 691,706 251,032 250,796
MSFE/
MSFE(Lag Spec) 3.0321 16.8969 2.7580 1.0009 1.0000

The first two IPAT models restrict emissions to be linear in income and model technology as a log
and linear time trend respectively. The third model estimates a simple EKC model with province fixed
effects and a log time trend. All three of these models are clearly outperformed by the lag specification.
It is noteworthy, however, that including population density in the basic EKC framework improves out of
sample performance drastically. We take this as further evidence in support of the argument that including
population scale effects is crucial when constructing emissions forecasts. Even though the chosen model
does not outperform the EKC model with population density in a statistically significant way, we argue

23We do not show the income confidence interval for this scenario, since we assume that income is equal to the threshold
level if the actual realization is greater than it. This provides income confidence intervals that are too small.
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that the dynamic nature of the proposed model will most likely provide better long term forecasts than
the static EKC model.

5.4 Comparison With Other Studies

The projections of CO2 emissions from this study are subject to a great deal of uncertainty, as are
any forecasts over such a long time horizon. It was our initial goal to provide a set of forecasts based on
a different level of aggregation to those provided by the studies cited in Section 1. Below we compare our
forecasts to those of previous studies. Table 5 summarizes those comparisons.

Table 5: Range Of CO2 Emission Point Forecasts from Different Studies (billion metric tons of carbon)
Year IPCC* Yang and Ho et al. Garbaccio et Panayotou Lag-

(2000) Schneider (1998) al. (1999) et al. Specification***
(1998) (2002)**

2020 1.73 - 2.50 —– —– 2.13 2.34 1.40 - 1.93
2022 —– —– —– 2.30 1.41 - 2.03
2025 —– 1.16 - 1.80 —– —– 1.43 - 2.17
2050 2.32 3.90 1.54 - 3.14 2.84 - 4.66 —– 1.71 0.50 - 3.44

Note: * Projected values for China have been obtained by using CO2 emissions for the year 1999 and the rates of growth

calculated for the region ”China and centrally planned Asia”. **Projected flow of CO2 emissions from fossil fuels 1996-2050

***Due to its unrealistic nature, the baseline model was not included in our prediction band.

First, we compare our estimated CO2 emissions and the values obtained according to the average annual
growth rates of CO2 estimated by the IPCC (Intergovernmental Panel on Climate Change, 2000) for the
period 1990-2050. However, when making the comparison, one needs to keep in mind that the annual
growth rates estimated by the IPCC represent an average for the region ”China and centrally planned
Asia”. We have made the projections by applying those rates of growth to the Chinese CO2 emissions
of 1997. Table 5 shows the range of values of the projected CO2 emissions for the year 2020 under the
A1B, A2, B1 and B2 marker scenarios of IPCC, and our projections.24 We note that, in the medium
term, our range of forecasts is lower than that provided by the IPCC. The information contained in the
spatially disaggregated data should contain more information than the national aggregate data. Our point
forecasting prediction band is slightly narrower, even after considering a wide variety of population and
GDP growth scenarios. This is also true for the point forecasts made for the final year in our forecasting
horizon (2050). It is important to note, however, that our forecasts start to diverge drastically from the
IPCC forecasts if we adopt higher GDP growth rates, such s the observed in-sample 8.9% p.a. growth
rate. Due to the nonlinearity in our model, growing income has a smaller marginal effect as provinces
become wealthier, suggesting even lower emissions if one believes in drastic income growth.

Yang and Schneider (1998) provide a set of estimates for the region ”China and centrally planned
Asia” by using a different analytical IPAT type framework.25 Their projected carbon emissions for the
year 2050 range between 1.54 and 3.14 billion metric tons - depending on the considered assumptions
about the evolution of the main determinants. This range of values is very similar to the estimated range
of values of CO2 emissions by using our model. Our range of point forecasts is similar, but slightly wider
compared to the point forecasts provided by Yang and Schneider (1998). This is mostly due to the income

24We compare the values for the year 2020 because the IPCC estimated rates of growth apply until that year.
25In the framework used by Yang and Schneider (1998), emissions are decomposed into four factors which, when multiplied

together, determine the magnitude of emissions in one year. These factors are population size, GDP per capita, energy
intensity, and carbon intensity.
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effect in the fourth, unrestricted EKC model. Our forecasts are systematically lower when compared to
Garbaccio et al. (1999a). The point forecasts provided by their study lie outside the interval spanned
by our estimates and are considerably higher. This is also true when considering the projected CO2

emissions found by Ho, Jorgenson and Perkins (1998). According to their work, Chinese CO2 emissions
by the year 2050 will range from 2.84 and 4.66 billion metric tons. Our projections for the same year
suggest somewhat lower levels. Overall, our forecasts provide somewhat lower forecasts, than all of these
models, when adopting the same assumptions as the individual papers.

6 Conclusion

Conventional wisdom holds that China will soon be the largest emitter of CO2 and that increases
in China’s emissions will largely be driven by increases in China’s per capita income. This poses a
clear dilemma. No greenhouse gas agreement can effectively work without China’s active participation
but China is unlikely to agree to cutbacks in projected CO2 if it comes at the expense of substantial
reductions in the per capita GDP growth rate.

Our work using provincial level Chinese data suggests that the conventional wisdom as reflected in the
IPAT type models used in the quasi-official IPCC reports is wrong. While it is true that increases in per
capita income have been the major driving force behind increases in Chinese CO2 emissions in the past,
this is unlikely to be true in the future, due to a strong environmental Kuznets curve effect. In the past,
most Chinese provinces were on the steeply upward sloping part of that inverted U, whereby per capita
emissions first increase rapidly with income, then are flat and eventually decline. Now many provinces
appear to be near the flat part of the inverted U, so that increases in income will have little direct impact
on per capita CO2 emissions.

Our work instead points to population factors as being the dominant force driving increases in Chi-
nese CO2 emissions in the future. The range of reasonable uncertainty over changes in the size of the
overall population as reflected in mortality rates, and more importantly, fertility rates, exceeds current
CO2 emissions for the European Union. Rural to urban migration is also an important component to
understanding the path of Chinese CO2 emissions.

The other major contribution of our work is to start separating a technology effect from the simple
income driven environmental Kuznets curve story. Even after accounting for an environmental Kuznets
curve relationship operating across provinces there remains a large province specific technology effect. It
is easy to show that the ”average” environmental Kuznets curve story fails to account for dynamics and
that small differences in the way that provinces track their past emissions can result in very different
cumulative emissions paths. Our initial efforts here suggest that the technology effect is to some degree
explainable and we see a number of useful directions that such efforts might take.

Clearly, our results point to more optimistic possibilities for China and climate change agreement.
Since our estimates are lower than those of the IPCC for the same assumptions, China might be well
advised to accept those estimates as their baseline from which to negotiate. A key question for Chinese
participation in any agreement to reduce its CO2 emissions is the tradeoff between national and province
level environmental and industrial policy. There are national policies that if implemented everywhere
could substantially reduce China’s CO2 emissions (Garbaccio, Ho and Jorgenson, 1999a). Two issues
arise in thinking about such regulation. The first is their efficiency relative to spatially decentralized
implementation and the second is their feasibility given the devolution of much of the environmental
regulatory apparatus to the provincial level (Wang and Wheeler, 1999). The issue of national versus
provincial coordination becomes a particularly interesting one if, as our results suggest, the problems of
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lagging technological change are concentrated in a small number of provinces that are large coal producers.
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