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Abstract
Using a maximum entropy technique, we estimate the market shares of each firm in an

industry using the available government summary statistics such as the four-firm concentration
ratio (C4) and the Herfindahl-Hirschmann Index (HHI). We show that our technique is very
effective in estimating the distribution of market shares in 20 industries. Our results provide
support for the recent practice of using HHI rather than C4 as the key explanatory variable in
many market power studies, if only one measure is to be used.
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Estimating the Size Distribution of Firms
Using Government Summary Statistics

I. Introduction

Using published government summary statistics about the size distribution of firms and

a maximum entropy approach, we can estimate the market share of each firm in an industry. For

each of the 20 industries we examine, the average squared errors and the correlation between

estimated and actual shares show a close fit, and Kolmogorov-Smirnov tests cannot reject the

hypothesis that the estimated and actual distribution are the same at the 0.05 level. For recent

years, where the U. S. Bureau of the Census provides the Herfindahl-Hirschman Index (HHI),

our estimates are more accurate than for earlier years when only concentration ratios were

available. As we discuss, even more accurate estimates could be obtained using our maximum

entropy approach if the U. S. Government published one or two additional summary statistics.

Knowing the size distribution of firms is important to economists who study industrial

organization, to government regulators, and to courts. Courts use firm and industry measures of

market share in a variety of antitrust cases, and structure-conduct-performance studies still

commonly use firm-size measures (Carlton and Perloff [1994]). Under the merger guidelines of

the U. S. Department of Justice and the Federal Trade Commission, whether mergers are

challenged depends on the relative sizes of the firms involved and the degree of concentration

in the industry. In recent years, for example, the Department of Justice challenged mergers in

railroads, soft drink, and airline industries using data on concentration and relative firm size.

Concentration measures, such as the four-firm concentration ratio (C4) and the HHI, are used as

explanatory variables in many industrial organization studies of market power and mergers.



For many purposes, summary statistics are not as useful as detailed information on

individual firms. For example, traditional structure-conduct-performance studies regress a

measure of performance (price or profits) on a number of variables including a measure of

concentration such as C4 or the HHI. If, instead of regressing the performance measure on C4,

one uses the individual shares of the four largest firms, these four coefficients differ significantly

and may have different signs. Using this approach, Kwoka [1979] shows that three (relatively

equal-size) firms are much more competitive than two firms. Similarly, Isaac and Reynolds

[1989] provide empirical and simulation evidence on the competitiveness of markets with two

or four firms.

II. The Problem

Our problem is to determine the share, 0 <pi ≤ 1, of the value of total industry shipments

of each firmi = 1, . . .,N in the industry using summary statistics such as were published in the

U. S. Department of Commerce, Economics and Statistics Administration, Bureau of Census in

Concentration Ratios in Manufacturing, 1987 Census of Manufactures. The government knows

the actual shares and orders the index of firms such thatp1 is the share of the largest firm and

pN is that of the smallest. Each share is positive,pi > 0, and the shares sum to one:

(1)
N

i 1

pi 1 p 1 ,

where1 is a (N × 1) vector of ones andp = (p1, p2, . . ., pN) is a vector of the market shares.
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II(i). Government Measures

The Bureau of the Census publishes five summary statistics for most four-digit SIC

manufacturing industries.1 For decades, the Bureau of the Census has published four concentra-

tion measures -- C4, C8, C20, and C50 -- for most industries. Each of the measures Ci, i = 4,

8, 20, or 50, is the sum of the market shares of the firsti firms in the industry. For example,

C4 = p1 + p2 + p3 + p4.

In the two most recent surveys (1982 and 1987), the Bureau of the Census also published

the Herfindahl-Hirschmann Index (HHI), which is the sum of the squares of the shares of each

firm (up to a maximum of 50 firms):2

(2)
50

i 1

(pi )
2 HHI .

For both the concentration measures and the HHI, higher values mean greater seller concen-

tration.

II(ii). Formal Statement of the Problem

We start by stating the problem of estimating market shares using data prior to 1982, a

period for which we only have the concentration measures. These data are linear functions of

the market shares of the firms. Later we generalize the problem to include the HHI measure,

which is a nonlinear function of the shares.

In vector notation, the four concentration measure identities are
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(3.a) C4
4

i 1

pi (11, 01) p (1 , 1, 1, 1, 0, , 0) p ,

(3.b) C8
8

i 1

pi (12, 02) p ,

(3.c) C20
20

i 1

pi (13, 03) p ,

(3.d) C50
50

i 1

pi (14, 04) p ,

where, for example,11 is a vector of 4 ones, and01 is a vector ofN - 4 zeros. If the number of

firms in the industry,N, is less than or equal toi, the Ci concentration measure is 1.

These definitions can be summarized as

or written compactly as



















11 01

12 02

13 03

14 04





















p1

p2

p3

pN

















C4
C8
C20
C50

(4) Z p c .

Our problem is to determineN > 4 unknown parameters (the market shares,pi) using only

four data points (c). Because the known linear operatorZ is noninvertible, Equation 4 is an ill-

posed, underdetermined pure inverse problem that cannot be solved by direct mathematical

inversion. If we were to attempt to recoverp by traditional mathematical or statistical

procedures, we must consider the entire class of solutions that contain (N - 4) arbitrary
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parameters. Without a criterion function, we have no basis for picking a particular solution

vector forp.

II(iii). A Maximum Entropy Formulation

One way of solving underdetermined problems is to use the maximum entropy approach

proposed by Jaynes [1957a,b] and Levine [1980]. Jaynes suggests using the Shannon [1948]

entropy measure,

(5) H
N

i 1

pi ln pi p ln p ,

which represents a measure of the uncertainty of a collection of events, as the criterion for

choosing a solution. To recover the unknown probabilities (market shares),pi, Jaynes proposes

an optimization problem where we maximize this entropy measure, Equation 5, subject to our

consistency conditions or data (the concentration constraints), Equation 4, and the adding up

constraint (the market shares sum to one), Equation 1.

Under this formulation, we have converted our problem from one of deductive mathe-

matics to one of inference involving the use of an optimization procedure. Through the use of

the principle of maximum entropy, we have a basis for using the data (the restrictions implied

by the concentration ratios) to estimate the market share distribution. There are an infinite

number of such possible solutions. A rationale for using the maximum entropy approach is that

it chooses the particular set of shares that is the one that could be generated in the greatest

number of ways consistent with what we know (Jaynes [1957a,b]). One desirable property of

the maximum entropy approach is that it is a fully-efficient information processing rule (Zellner
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[1988]).

The analytical solution to the problem of maximizing Equation 5 subject to Equations 1

and 4 can be obtained by specifying the Lagrangean function

(6) p ln p µ (c Z p) λ (1 p 1) ,

and deriving the corresponding optimal conditions:

(7.a) ∂
∂p

ln p̂ 1 Z µ̂ λ̂ 1 0,

(7.b) ∂
∂µ

c Z p̂ 0,

(7.c) ∂
∂λ

1 p̂ 1 0.

Based on the system of Equations 7, we can solve forµ̂, λ̂, and thenp̂, to obtain

or

(8) p̂ exp 1 Z µ̂ λ̂1

(9) p̂ W 1 exp Z µ̂ ,

whereW = 1 exp(-Z µ̂). The second-order Hessian matrix is negative definite, which assures

a unique global solution.

II(iv). More Powerful Alternatives

This approach gives us a simple method for calculating market shares. Lacking any

additional information (constraints), our maximum entropy criterion forces the estimates toward
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equal shares. That is, the estimate of the shares of each of the first four firms equals C4/4; the

estimate of the share of the next four firms equals (C8 - C4)/4; and so forth. Because researchers

are usually interested especially in the shares of the first four or eight firms, we want estimates

that allow the shares of (especially the first few) firms to differ.

To achieve this objective, we impose two additional restrictions. First, we add the

information contained in the nonlinear HHI restriction. Our new problem is to maximize entropy,

Equation (5), subject to the adding up constraint, Equation 1, the concentration ratio restrictions,

Equation 4, and the HHI restriction, Equation 2. We find that imposing this HHI restriction

always results in a more accurate estimate (according to the criteria we discuss below).

Second, we restrict the estimated distribution (the probabilities) to be a smooth function,

pj = f(j), of the firm index,j. From inspection of a large number of industries, we find that the

f(·) function is almost always well approximated by a negative exponential or a low-order

polynomial. Any structural form may be easily imposed in our framework. In the work

discussed below, we use a cubic

(10) pj α0 α1 j α2 j 2 α3 j 3.

Below, we develop two criteria that allow us to infer whether this restriction will help.

II(v). Noise

In some cases (mainly when we require that the estimated distribution be smooth), we

cannot obtain a pure solution to these maximum entropy problems. In those cases, we follow

Judge and Golan [1992] and generalize the pure consistency relations, Equations 2 and 4, to

include a noise component:
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(11.a) c Z p Ze,

(11.b)
50

i 1

(pi ei )
2 HHI ,

wheree is a noise vector of dimension (1 ×N). If we are to use the information in the inverse

relations (11a) and (11b) with the entropy framework, the unknownp and e must have the

properties of probabilities. The elements ofp are already in the form of probabilities, and the

ei may range over the interval no larger than [-C4/4, C4/4]. Because the noise is not in a

probability form, we reparameterize the elements ofe. To do so, we define a set ofJ ≥ 2

discrete pointsvi = (vi1, vi2, . . . , viJ) such thatei ∈ [vi1, viJ], whereei = v iwi = Σj vijwij , andwi

= (wi1, wi2, . . ., wiJ) is an unknown vector of probabilities such that

That is,

(12) 1 wm 1.

(13) e















v 1

v 2

v N















w1
w2

wN

V w .

Consequently, we may rewrite Equations 11 as

and the generalized maximum entropy problem becomes

(14.a) c Z p ZVw ,

(14.b)
50

i 1

(pi v i w i )
2 HHI ,

(15) max
p , w

p ln p w ln w ,
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subject to Equations 1, 12, 14a, and 14b. Forming the Lagrangian and maximizing with respect

to p and w yields the optimal solutionp̃ and w̃, where the second-order Hessian is, again,

negative definite, which assures a unique global solution.

III. A Measure of Diversity

The solutionp̂ (or p̃) to the maximum entropy problem suggests a measure of firm-size

diversity (cf, Jacquemin and Berry [1979]). If all the firms were of the same size, each would

have a market share of 1/N, which maximizes the Shannon entropy measureH. Consequently,

the ratio of the estimated Shannon entropy measure,H(p̂), to the Shannon measure if each firm

is the same size, 1/N, is

(16) S (p̂)

N

i 1

p̂i ln p̂i

N

i 1

1
N

ln 1
N

N

i 1

p̂i ln p̂i

ln N
.

If the firms are equal in size,S(p̂) = 1. As the size distribution of firms becomes less uniform

(more diverse),S(p̂) approaches 0. Thus, 0 <S(p̂) ≤ 1.

IV. Applications

How well can we recover firm shares using the maximum entropy approach? To answer

this question, we apply our method to actual data. Because we do not know the true distribution

of shares for the four-digit SIC industries that the Bureau of the Census analyzes, we conduct our

experiments using data from industries for which we do have data. Many trade journals collect

data on market shares. This information is summarized inMarket Share Reporter(Detroit, MI:
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Gale Research, 1992, 1994). For our experiments, we restrict ourselves to 20 industries for

which there are at least 8 firms and the shares reported constitute a substantial majority of the

total industry.

IV(i). An Example

We start by using one industry, Telecommunication Equipment Firms Worldwide, to

illustrates the difference among our various estimates, as shown in Figure 1. The actual shares

lie along a moderately smooth, downward-sloping line.

According to our "simple" estimator that uses information only about concentration mea-

sures, shares of the first four firms are equal, the shares of the next four firms are equal, and the

shares of the last two firms are equal. Although this estimate is uninformative about the relative

shares of the largest firms, it fits the overall distribution surprisingly well. The correlation,ρ,

between the actual shares,p, and the estimated shares,p̂, is 0.84. The average squared errors,ASE 1
N

N

i 1

(p̂i pi )
2 ,

is 0.0007.

We can do substantially better, however, by also making use of information about the HHI

as well as the concentration measures, which we call our "base" estimate. The base estimate of

the share of the first firm is almost exactly right (p̂1 = .229,p1 = .213). The estimated shares of

the next three firms are roughly (but not exactly) equal, the shares for the next four firms are

roughly equal, and the shares for the last two firms are roughly equal. The fit is substantially

better than for the simple estimate. The correlation,ρ = 0.95, is 11 points higher than for the

simple estimate, and the average squared errors, ASE = 0.0003, is less than half as large.

10



Moreover, by including the HHI measure, we insure that the variance of the estimated

distribution equals the variance of the actual distribution.

Our third, "cubic," estimate uses the restrictions from the concentration and HHI measures

and imposes smoothness by requiring the shares lie along a cubic curve. We use the noise

formulation (Equations 15, 1, 12, 14) withvi = (-0.01, 0, 0.01) for alli = 1, 2, . . .N. The

estimated parameters of the cubic areα̂0 = 0.261,α̂1 = -0.053,α̂2 = 0.0043,α̂3 = -0.00013. The

cubic estimate shows greater diversity of firms,S(p̂) = 0.93, than does the basic estimate,S(p̂)

= 0.94.

The cubic estimate is almost identical to the actual distribution:ρ = 0.996 and ASE =

0.00002. The estimate is very accurate for the first four shares — the ones that are of particular

interest. The difference between the estimated and actual share of the first firm,D1 = |p1 - p̂1|,

is only 0.00002; and the sum of the absolute differences for the first four firms,D2 =

, is 0.013, or only a little more than a percentage point.
4

j 1

pj p̂j

IV(ii). Twenty Industries

Is our method’s ability to fit the size distribution for the Telecommunications Equipment

Manufacturing industry unusual? To answer this question, we look at the base and cubic

estimates for this industry and for 19 other industries, as shown in Table I. The first column of

the table shows the number of firms for which we have data for each of the industries.3 The

next two columns show summary statistics — 1,000 × ASE andρ — for our base estimate. The

next two columns show the same summary statistics for our cubic estimate. The final two
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columns showD1 andD2 for the best estimate (the cubic for all but three industries). Which of

the two estimates fits better for a given industry is indicated by bold numbers (a lower ASE is

better and a higherρ is better).

The ASE,ρ, D1, andD2 measures show that the fit is very close for at least one of the

two estimates for each industry. Using a Kolmogorov-Smirnov test of the hypothesis that the

actual and estimated distribution are the same, we cannot reject the hypothesis at theα = 0.05

level for any of our 40 estimates.

For all industries, the base estimate is reasonably good:ρ ≥ 0.88 for all 20 industries, and

ρ ≥ 0.91 for 18 industries. In 17 out of 20 (85 percent) of our industries, the cubic estimate is

superior to the base estimate. If we use the best estimate for each industry, the minimum

correlation is 0.96, the correlation is at least 0.98 for 17 industries (85 percent), and the

correlation is at least 0.99 for 11 of our industries (55 percent). Our best estimate of the share

of the largest firm is never off by more than 2.5 percentage points, and for 11 industries, the

estimate is well within one percentage point. Similarly, for 16 of the industries, the sum of the

error for the first four firms is five percentage points or less.

How do we know whether to use the base estimate or the cubic? We find that the cubic

dominates the base estimate when a pure cubic solution exists or we only have to add less than

one percent or less noise [that is,vi = (-0.01, 0, 0.01) for alli] to obtain a solution. For the three

industries where the cubic was inferior, we had to allow for a substantial amount of noise (4

percent). Thus, if we only use the cubic estimate when little noise is required and a solution

exits, the cubic estimator is superior to the base estimator (at least for our sample of 20 indus-

tries).
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We also conducted Monte Carlo experiment where we allowed the total number of firms

to grow. We find that the accuracy of the firm share estimates for the first 10 firms (the ones

we care most about) does not change with the total number of firms. When there are many

firms, we always estimate the shares of the small firms accurately, of course, because those

shares are very small and virtually identical.

IV(iii). Extra Measures of Information (Constraints)

As we illustrated for the Telecommunications Industry, when the Bureau of the Census

started providing the HHI, our method’s ability to fit the distribution of firm sizes accurately

increased substantially. If the government supplied a few more measures (without violating

confidentiality), we could estimate the firm sizes even more accurately.

We experimented with several measures, including C2, the share of the top two firms, and

a measure of the third moment of the distribution, HHI3 =Σ p3
i (the concentration measures

provide information about the first moment, and the HHI is a measure of the second moment).

For two-thirds of the industries, the HHI3 improves the fit (as measured by the ASE andρ), in

many cases markedly. If the government would supply C2 and HHI3, we could recover virtually

all the information about the size distribution of firms; however, we doubt if the government

would ever provide C2 for reasons of confidentiality. The less uniform the shares, the higher the

contribution of these additional measures.

As a final experiment, we removed information. Using the three summary measures as

criteria, dropping either C4 or HHI substantially reduces our ability to fit the distribution.

Dropping C8 and higher concentration measures, however, has relatively little effect on our

ability to fit the distribution.
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If we drop all measures save one, we find that the HHI contains more information [in

terms of ASE,ρ, and S(p̂)] than C4 or the other concentration measures. Many industrial

organization researchers have recently switched from using C4 to the HHI as an explanatory

variable in their performance equations, which is consistent with our results concerning using a

single measure. We recommend, of course, using all the available measures.

V. Summary and Conclusions

Using a maximum entropy approach, we can recover estimates of the market shares of

individual firms based on only a handful of government summary statistics. Because the number

of unknown parameters exceeds the number of data points provided by the Bureau of the Census,

this problem is ill-posed, and traditional statistical approaches are not feasible. Nonetheless, our

method allows us to use all the available information to predict market shares that are highly

correlated with the actual shares. For the 20 industries we studied, the minimum correlation was

0.96; and, the correlation was 0.99 or above for 11 industries. This technique is easy to

implement with any optimization software (such as GAMS or MATLAB).

Our results have implications for industrial organization research. They suggest that the

recent switch of most researchers to using the HHI instead of C4 is reasonable (if only one

measure is to be used). Both measures, however, contain useful information. If the government

would provide even one or two pieces of additional information, the two firm concentration

measures or a variation on the Herfindahl-Hirschman Index, HHI3 =Σi p3
i , a nearly perfect fit

of the distribution is possible for virtually every industry using our maximum entropy approach.

Amos Golan, George Judge, and Jeffrey M. Perloff
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Department of Agricultural and Resource Economics, 207 Giannini Hall, University of

California, Berkeley, CA 94720.
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1. For industries with very few firms, some summary statistics are suppressed for reasons of
confidentiality.

2. For simplicity, our probabilitiespi lies between zero and one whereas the Bureau of the
Census uses percentages. As a result, our concentration measures equal the Bureau’s divided by
100, and our HHI measure equals their’s divided by 1002 = 10,000.

3. If the shares do not add to 100 percent, we renormalize them so that they do.
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Table I
Accuracy of Two-Firm Size Estimates for 20 Industries

Number
of Firms,

N

Base Estimate Cubic Estimate

1,000
× ASE ρ

1,000 ×
ASE ρ D1 D2

AC and Refrigeration Worldwide 1990 12 .16 .94 .09 .97 .004 .029

Airlines 1991 12 .45 .94 .04 .99 .011 .038

Apples and Pears 1990 21 .03 .97 .02 .98 .014 .030

U. S. Builders 1992 15 .03 .997 2.40 .75 .0008 .014

General Building Contractors 1992 10 .56 .88 .13 .97 .018 .063

European Electronics Producers 1991 15 .30 .96 .06 .99 .005 .028

Facsimile Machines 1990 12 .90 .92 .23 .98 .011 .060

Urban Fiber Systems Producers 1990 10 1.30 .93 .16 .99 .011 .073

Furniture Makers 1991 25 .15 .98 .56 .92 .010 .043

Oil and Gas Producers 1992 15 .53 .90 .19 .97 .005 .073

Paper Companies in Japan 1990 11 .20 .94 .01 .998 .003 .014

Ethical Pharmaceutical Worldwide 1990 20 .37 .92 .004 .99 .003 .007

Polyethylene 1990 11 .31 .95 .07 .99 .001 .020

Shampoo 1990:4 21 .29 .91 .07 .98 .007 .043

Software 1989 47 .02 .99 .45 .79 .006 .038

Stone, Clay, Glass and Concrete 1992-3 8 1.50 .88 .18 .99 .021 .043

Telecommunications Eqp. Worldwide 1988 10 .30 .95 .02 .996 .000 .013

Tissues 1990 13 .66 .93 .14 .99 .020 .048

Turkey Meat Products, 1993 (est.) 28 .04 .97 .03 .98 .021 .047

Veterinary Drug Worldwide 1990 19 .09 .95 .07 .96 .025 .050

Note: ; D1 = |p1 - p̂1| andD2 = , for the superior estimate.ASE 1
N

N

i 1

(p̂i pi )
2

4

j 1

pj p̂j
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Figure 1
Size Distribution of Telecommunication Equipment Firms Worldwide
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