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1. INTRODUCTION

We develop a method for estimating oligopoly strategies subject to restrictions implied

by a game-theoretic model. Using this method, we estimate the pricing strategies of American

and United Airlines.

Unlike most previous empirical applications, we do not assume that firms use a single

pure strategy nor do we make the sort of ad hoc assumptions used in conjectural variations

models.1 Our method allows firms to use either pure or mixed strategies consistent with game

theory.

First, we approximate a firm’s continuous action space (such as price, quantity, or

advertising) with a discrete grid. Then, we estimate the vector of probabilities — the mixed or

pure strategies — that a firm chooses an action within each possible interval in the grid. We use

these estimated strategies to calculate the Lerner index of market structure.

The main advantage of our method is that it can flexibly estimate firms’ strategies subject

to restrictions implied by game theory. The restrictions we impose are consistent with a variety

of assumptions regarding the information that firms have when making their decisions. Firms

may use different pure or mixed strategies in each state of nature. Firms may have private or

common knowledge about the state of nature, which is unobserved by the econometrician. For

example, a firm may observe a random variable that affects its marginal profit and know the

distribution (but not the realization) of the random variable that affects its rival’s marginal profit.

Each firm may choose a pure strategy in every state of nature and regard its rival’s action as a

1 Breshnahan (1989) and Perloff (1992) survey conjectural
variations and other structural and reduced-form "new empirical
industrial organization" studies.
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random variable. Alternatively, there may be no exogenous randomness, but the firm uses a

mixed strategy. To the econometrician, who does not observe the firm’s information or state of

nature, the distribution of actions looks like the outcome of a mixed strategy in either case. The

econometrician is not able to determine the true information structure of the game. Nevertheless,

the equilibrium conditions for a variety of games have the same form, and by imposing these

conditions we can estimate strategies that are consistent with theory.

There have been few previous studies that estimated strategies based on a game-theoretic

model. All of the studies of which we are aware (Bjorn and Vuong 1985, Bresnahan and Reiss

1991, and Kooreman 1994) involve discrete games. For example, Kooreman estimates mixed

strategies in a game involving spouses’ joint labor market participation decisions using a maxi-

mum likelihood (ML) technique. Our approach differs from his in three important ways. First,

Kooreman assumes that there is no exogenous uncertainty. Second, he allows each agent a

choice of only two possible actions. Third, because he uses a ML approach, Kooreman assumes

a specific error distribution and likelihood function. Despite the limited number of actions, his

ML estimation problem is complex.

Our problem requires that we include a large number of possible actions so as to analyze

oligopoly behavior and allow for mixed strategies. To do so using a ML approach would be ex-

tremely difficult. Instead, we use a generalized-maximum-entropy (GME) estimator. An impor-

tant advantage of our GME estimator is its computational simplicity. With it, we can estimate

a model with a large number of possible actions while imposing inequality and equality

restrictions implied by the equilibrium conditions of the game. In addition to this practical

advantage, the GME estimator does not require strong, arbitrary distributional assumptions, unlike
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ML estimators. However, a special case of the GME estimator is identical to an ML estimator.

In the next section, we present a game-theoretic model of firms’ behavior. In the third

section, we describe a GME approach to estimating this game. The fourth section contains esti-

mates of the strategies of United and American Airlines, and sampling experiments that illustrate

the small sample properties of our GME estimator. In the final section, we discuss our results

and possible extensions.

2. OLIGOPOLY GAME

Our objective is to determine the strategies of oligopolistic firms using time-series data

on prices, quantities, and, when available, variables that condition the cost or demand relations.

We assume that two firms,i and j, play a static game in each period of the sample. (The

generalization to several firms is straightforward.)

Firm i (and possibly Firmj), but not the econometrician, observes the random variable

εi(t) in periodt. For notational simplicity, we suppress the time variablet. The set ofK possible

realizations, {ε1, ε2, ..., εK}, is the same every period and for both firms. This assumption does

not lead to a loss of generality because the distribution may be different for the two firms. The

firms, but not the econometrician, know the distributions ofεk. We consider three possible

stochastic structures: (1) Firms face no exogenous randomness (K = 1); (2) εk is private informa-

tion for Firm i; (3) εk is common-knowledge for the firms. Because the econometrician does not

observeεk, even if the firms use a pure strategy in each period, it appears to the econometrician

that they are using a mixed strategy whenever their actions vary over time.
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2.1 Strategies

The set ofn possible actions for either firm is {x1, x2, ..., xn}. The assumption that the

action space is the same for both firms entails no loss of generality because the profit functions

can be specified so that certain actions are never chosen. The notationxi
s means that Firmi

chooses actionxs. We now describe the problem where the random state of nature is private

information and then discuss alternative assumptions of a single state of nature or common

information.

In determining its own strategy, Firmi forms a prior,βi
sk, about the probability that Firm

j will pick action xj
s when i observesε i

k. If the firms’ private information is correlated, it is

reasonable for Firmi to base its beliefs aboutj’s actions onε i
k. If the private information is

uncorrelated, Firmi form priors that are independent ofε i
k. We do not, however, assume

independence. In statek, Firm i’s strategy isαk = (α i
k1, α i

k2, ..., α i
kn), whereα i

ks is the probability

that Firmi chooses actionxi
s. If Firm i uses a pure strategy,α i

ks is one for a particulars and zero

otherwise.

The profit of Firm i is πi
rsk = πi(xj

r, xi
s, ε i

k), wherer indexes the strategies of Firmj ands

indexes the actions of Firmi. In statek, Firm i choosesαk to maximize expected profits,Σr

βi
rkπrsk, where the expectation is taken over the rival’s actions. IfYi

k is Firm i’s maximum

expected profits whenε i
k occurs, thenLi

sk ≡ Σr βi
rkπrsk - Y i

k is Firm i’s expected loss of using action

xi
s in k. BecauseYi

k is the maximum possible expected profit, the expected loss when Firmi uses

actions must be nonpositive,

(2.1) L i
sk ≤ 0.
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For αk to be optimal, the product of the expected loss and the corresponding probability must

equal zero:

(2.2) L i
sk α i

sk 0.

Equation 2.2 says that there is a positive probability that Firmi will use actions only if the

expected profits when actions is used are equal to the maximum expected profit.

This problem may have more than one pure or mixed strategy. Our estimation method

selects a particular pure or mixed strategy consistent with these restrictions and the data.

2.2 Econometric Implications

Our objective is to estimate the firms’ strategies subject to the constraints implied by

optimization, Equations 2.1 and 2.2. We cannot use these constraints directly, however, because

they involve the unobserved random variablesε i
k. By taking expectations, we eliminate these

unobserved variables and obtain usable restrictions.

Using the expectations operator Ek, we defineβi
r ≡ Ek βrk, Yi ≡ Ek Yi

k, αi
s ≡ Ek αi

sk, πi
rs ≡ Ek

πi
rsk, and Ek Li

sk ≡ Li
s. If we defineθi

sk ≡ Li
sk - (Σrβi

rπi
rs - Yi) and take expectations, then Ek θi

sk = Σr

cov(βi
rk, πi

rsk) ≡ θi
s. Thus,Li

s ≡ Ek Li
sk = Σr βi

rπi
rs - Yi + θi

s. Taking expectations with respect tok

of Equation 2.1, we obtain

(2.3)
r

βi
r πi

rs Y i θi
s ≤ 0.

Taking expectations with respect tok of Equation 2.2, we find that

(2.4) 





r

βi
r πi

rs Y i αi
s δ i

s 0 ,
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whereδi
s ≡ θi

sαi
s + cov(θi

sk, αi
sk). We can estimate the observable (unconditional) strategy vectors

αi, i = 1, 2, subject to the conditions implied by Firmi’s optimization problem, Equations 2.3

and 2.4.

For the general case of private information, we cannot determine the sign ofθi
s and δi

s.

However, if Firm i does not condition its beliefs about Firmj’s actions on its own private

information (as would be reasonable if the private information is uncorrelated), thenβi
rk is

constant overk. Here,θi
s = 0 andδi

s = cov(θi
sk, αi

sk) = cov(Li
sk, αi

sk) ≥ 0. This last relation holds

with strict inequality if and only if the number of states in which it is optimal for Firmi to use

actionxi
s, with positive probability, is greater than 1 (so thatαi

s > 0) and less thanK (so thatLi
s

< 0). If firms have no exogenous uncertainty but use mixed strategies, thenθi
s = δi

s = 0. Thus,

private, uncorrelated information impliesθi
s = 0 andδi

s ≥ 0, whereas the absence of exogenous

uncertainty impliesθi
s = 0 andδi

s = 0.

If the information that is unobserved by the econometrician is common knowledge to the

firms, Firm i’s beliefs and actions may be conditioned on the random variableε j
m that Firm j

faces. If so,βi
rk is replaced byβi

rkm, andαi
sk is replaced byαi

skm, but restrictions 2.1 and 2.2 are

otherwise unchanged. Taking expectations overk andm, we obtain restrictions of the same form

as Equations 2.2 and 2.3. Again, in general we cannot signθi
s andδi

s.

We have assumed that the econometrician observes the actions that firms choose, but not

the information they use to condition these actions,ε i
k. This assumption simplifies the estimation
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problem, because it means that the strategies,αi, are numbers.2

We view 2.3 and 2.4 as stochastic restrictions that hold approximately due to an additive

error in each equation. We already have additive parameters (θi
s andδi

s), so we are able to esti-

mate the sum of those parameters and any additive error, but we cannot identify the two

components. Thus, for notational simplicity, we call the sum of the systematic and random

componentsθi
s andδi

s (rather than add new random variables). We also include an additive error,

µi
s ∈ [-1, 1], associated withαi

s. That is, we replace 2.4 with

(2.5) 





r

βi
r πi

rs Yi αi
s µi

s δi
s 0 .

We have an analogous set of restrictions for Firmj.

The Nash assumption is that agents’ beliefs about their rival’s actions are correct so that

for i ≠ j. We henceforth maintain the Nash assumption.

(2.6) βi
r α j

r ,

If we tried to estimate this model — Equations 2.3, 2.5 and 2.6 — using traditional

techniques, we would run into several problems. First, with conventional sampling theory

estimation techniques, we would have to specify arbitrarily an error distribution. Second,

2 If the firms’ strategies are conditioned on a variable ζ
that the econometrician observes, the econometrician may need to
estimate functions αi ( ζ) rather than numbers, αi . Suppose, however,
that Firm i ’s profits can be written as f i ( ζ) πi

rsk , where f i is a
positive function. For example, Firm i chooses price pi , and faces
demand Di ( pi , pj ) f i ( ζ). Given this multiplicative form, f i ( ζ) merely
rescales the restrictions 2.3 and 2.4 [we can divide each
restriction by f i ( ζ)], and the equilibrium strategies, αi , are
independent of ζ. Throughout the rest of this paper, we assume
that any variables such as ζ enter the profit functions multipli-
catively so that restrictions 2.3 and 2.4 are correct. We will
discuss the more general problem in a future paper.
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imposing the various equality and inequality restrictions from our game-theoretic model would

be very difficult if not impossible with standard techniques. Third, as the problem is ill posed

in small samples (there are more parameters than observations), we would have to impose

additional assumptions to make the problem well posed. To avoid these and other estimation and

inference problems, we propose an alternative approach.

3. GENERALIZED-MAXIMUM-ENTROPY ESTIMATION APPROACH

We use generalized maximum entropy (GME) to estimate the firms’ strategies. In this

section, we start by briefly describing the traditional maximum entropy (ME) estimation proce-

dure. Then, we present the GME formulation as a method of recovering information from the

data consistent with our game. This GME method is closely related to the GME multinomial

choice approach in Golan, Judge, and Perloff (1996). Unlike ML estimators, the GME approach

does not require explicit distributional assumptions, performs well with small samples, and can

incorporate inequality restrictions.

3.1 Background: Classical Maximum Entropy Formulation

The traditional entropy formulation is described in Shannon (1948), Jaynes (1957a;

1957b), Kullback (1959), Levine (1980), Jaynes (1984), Shore and Johnson (1980), Skilling

(1989), Csiszár (1991), and Golan, Judge, and Miller (1996). In this approach, Shannon’s (1948)

entropy is used to measure the uncertainty (state of knowledge) we have about the occurrence

of a collection of events. Lettingx be a random variable with possible outcomesxs, s = 1, 2, …,

n, with probabilities αs such thatΣs αs = 1, Shannon (1948) defined theentropy of the
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distributionα = (α1, α2, ..., αn)’, as

(3.1) H ≡
s

αs ln αs ,

where 0 ln 0≡ 0. The functionH, which Shannon interprets as a measure of the uncertainty in

the mind of someone about to receive a message, reaches a maximum whenα1 = α2 = … = αn

= 1⁄n. To recover the unknown probabilitiesα, Jaynes (1957a; 1957b) proposed maximizing

entropy, subject to available data consistency relations, such as moments from the observed data,

and adding up constraints.

To use this approach for our game problem, we need to incorporate the data from our

sample. Letni
s be the number of timesxi

s is observed, out ofT total observations. The observed

frequency in the sample isn*s ≡ ns/T. [We henceforth suppress the firm superscript for notational

simplicity whenever possible.] For each firm, the observed frequency equals the true strategy

probability, αs, plus an error term:

(3.2) ns ≡
ns

T
αs es,

where the noise termes ∈ [-1, 1].

The traditional ME approach sets es in Equation (3.2) equal to zero,

(3.3) ns αs

and maximizes the Shannon measure (3.1) subject to Equation 3.3. The solution to this problem

is trivial in the sense that the constraint 3.3 completely determines the parameter estimate. This

ME estimator is identical to the ML estimator, when thex’s have a multinomial distribution.
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3.2 The Basic Generalized Maximum Entropy Formulation

The GME formulation, which uses restriction 3.2, is a more general version of the ME

formulation, which uses restriction 3.3. We obtain the basic GME estimator by maximizing the

sum of the entropy corresponding to the strategy probabilities,α, and the entropy from the noise,

e, in consistency condition 3.2 subject to that data consistency condition.

In general, the GME objective is a dual-criterion function that depends on a weighted sum

of the entropy from both the unknown and unobservableα ande = (e1, e2, ..., e)’. By varying

the weights, we can put more weight on estimation (accuracy of theα coefficients) or prediction

(assignment of observations to a category). The ME estimator is a special case of the GME, in

which no weight is placed on the noise component, so that the estimation objective is maximized

(thus maximizing the likelihood function). As a practical matter, our GME objective weights the

α ande entropies equally because we lack any theory that suggests other weights.

The arguments of the entropy measures must be probabilities. The elements ofα are

probabilities, but the elements ofe range over the interval [-1, 1]. To determine the entropy of

e, we reparameterize its elements using probabilities. We start by choosing a set of discrete

points, called the support space,v = [v1, v2, ..., vM]’ of dimension M ≥ 2, that are at uniform

intervals, symmetric around zero, and span the interval [-1, 1]. Each error pointes has corre-

sponding unknown weights ws = [ws1, ws2, ..., wsM]’ that have the properties of probabilities: 0≤

wsm ≤ 1 andΣm wsm = 1. We reparameterize each error element as

es Σ
m

vmws m.

For example, ifM = 3, thenv = (-1, 0, 1)’, and there existsw1, w2, andw3 such that each noise
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component can be written ases = w1(-1) + w3(1). Given this reparameterization, we can rewrite

the GME consistency conditions, Equation 3.2, as

(3.4) n α e α Wv ,

where rows of the matrixW is the vector of probabilitiesws, andv, the support space, is the

same for alls.

No subjective information on the distribution of probabilities is assumed. It is sufficient

to have two points (M = 2) in the support ofv, which converts the errors from [-1, 1] into [0, 1]

space. This estimation process recoversM - 1 moments of the distribution of unknown errors,

so a largerM permits the estimation of more moments. Monte-Carlo experiments show a

substantial decrease in the mean-square-error (MSE) of estimates whenM increases from 2 to

3. Further increases inM provides smaller incremental improvement. The estimates hardly

change ifM is increased beyond 7 (Golan, Judge, Perloff, 1996; Golan, Judge, Miller, 1996).

If we assume that the actions,x, and the errors,e, are independent and definew ≡ vec(W),

the GME problem for each firm is

(3.5) max
α, w

H α , w α′ ln α w′ ln w,

subject to the GME consistency conditions, Equation 3.4, and the normalization constraints

(3.6a,b) 1 α 1 1 w
s

1

for s = 1, 2, …,n.
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The Lagrangean to the GME problem is

(3.7)

L λ , ρ , η
s

αs ln αs
s m

wsm ln wsm

s

λs ns αs v w
s

ρ (1 1 α )

s

ηs (1 1 w
s

) .

whereλ, ρ, andη are Lagrange multipliers. Solving this problem, we obtain the GME estimators

(3.8) ᾰs

exp λ̆s

j

exp λ̆j

≡
exp λ̆s

Ω λ̆
,

and

(3.9) w̆sm

exp λ̆s vm

m

exp λ̆s vm

≡
exp λ̆s vm

Ψs λ̆
,

(3.10) ĕ W̆v .

The Hessian is negative definite (the firstn elements on the diagonal are -1/αs, the rest are

-1/wsm, and the off-diagonal elements are 0) so the solution is globally unique.

Following Agmon et. al (1979), Miller (1994), and Golan et al. (1996), we can reformu-

late the GME problem as a generalized-likelihood function, which includes the traditional
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likelihood as a special case:

(3.11)

L λ
s

αs λ ln αs λ
s m

wsm λ ln wsm λ

s

λs ns αs v w
s

s

αs λ λs ln Ω λ
s m

ws m λ λs vm ln Ψs λ

s

λs ns αs v w
s

s

λs ns ln Ω λ
s

ln Ψs λ .

Minimizing Equation 3.11 with respect toλ — setting the gradient,∆L(λ) = n* - α - e, equal to

zero — yields the same estimates as from the original formulation, Equation 3.8. One advantage

of this dual formulation, Equation 3.11, is that it is computationally more efficient.

3.4 Generalized Maximum Entropy Formulation of the Nash Model

We can also use the GME approach to estimate the strategies subject to the game-

theoretic restrictions. Here, we require the estimates to satisfy the optimality conditions,

Equations 2.3 and 2.5, and the Nash condition, Equation 2.6.3 Thus, our objective is to recover

the strategies,α, for each firm given theT observations and our knowledge of the economic

generating process. We first assume that the econometrician knows the parameters of the

functional form ofπi
rs, and we later discuss how the problem is changed when some parameters,

3 Equations 2.3 and 2.4 are not standard econometric
restrictions, as each includes an additional unknown parameter: θi

s

in Equation 2.3 and δ i
s in Equation 2.4. Therefore, it might appear

that the added degree of freedom caused by the new parameter
cancels the added information in the restriction. However, when
these restrictions are imposed, the parameters θi

s and δ i
s appear in

the criterion function. As a result, imposing these restrictions
causes the estimates of all the parameters to change and improves
the estimates, as we show below.

13



such as the demand coefficients, must be estimated.

Equation 2.3 includes the noise componentsθi, and Equation 2.5 includes the noise

components µi andδi, i = 1, 2. Our first step is to reparameterize these six vectors in terms of

probabilities. Letvd be a vector of dimensionJ d ≥ 2 with corresponding unknown weightsωd
k

such that

(3.12)
j

ωd
sj 1,

(3.13) v d ωd d,

for d = µi, θi, andδi, i = 1, 2. The support spaces vd are defined to be symmetric around zero

for all d. The natural boundaries for the errors µi and µj are [-1, 1]. We do not have natural

boundaries forθi or δi, so we use the "three-sigma rule" (Pukelsheim, 1994; Miller 1994; Golan,

Judge, and Miller 1996) to choose the limits of these support spaces, where sigma is the

empirical standard deviation of the discrete action space of prices or quantities.

To simplify the notation, letn* = (n*i ’, n*j ’)’, α = (αi’, αj’)’, w = (wi’, wj’)’, and

As above, we assume independence between theω ( ωµi , ωµ j , ωθ i , ωθ j , ωδ i , ωδ j ) ′ .

actions and the errors. The GME problem is

(3.14) Max
α,w,ω

H α, w, ω α′ ln α w′ ln w ω ln ω

subject to the data consistency conditions 3.4, the necessary economic conditions 2.3 and 2.5, the

Nash condition 2.6, and the normalizations forα, w, andω. The errorsθi
s, µi

s, andδi
s in 2.3 and

2.5 are defined by Equations 3.12 and 3.13. Solving this problem yields estimatesα̃, w̃, andω̃.

If we do not know the parameters of the profit or demand functions, we simultaneously

14



estimate the profit or demand parameters and the strategy parameters using GME estimation

procedures. To do so, we need to modify the objective function 3.14 and add the profit (or

demand) functions for each firm as additional constraints in the GME-Nash model. This model,

for the unknown profit/demand parameters, is described in Appendix 1.

3.5 Properties of the Estimators and Normalized Entropy

All three different estimators, the ME-ML, GME, and GME-Nash, are consistent, but they

differ in efficiency and information content. The ML estimator is known to be consistent.

Because the ME and ML estimators are identical, as we noted above, the ME estimator is also

consistent. Under the assumption that a solution to the GME-Nash estimation problem exists for

all samples and given an appropriate choice of the bounds of the error in the data consistency

constraint 3.2, we show in Appendix 2 that the GME and GME-Nash estimators are also

consistent.

The GME estimator ofα has smaller variance than the ME-ML estimator (Golan, Judge,

and Perloff 1996). Given that the game-theoretic constraints are correct, the possible solution

space for GME-Nash estimate ofα is a subset of the solution space of the GME estimate ofα.

Thus, we conjecture that the GME-Nash estimator has a smaller variance than the GME. In the

sampling experiments reported below, this conjecture is always confirmed.

We can compare the different estimators empirically using the normalized entropy (infor-

mation) measureS(α) = -(Σs αs ln αs)/(ln n), which measures the extent of uncertainty about the

unknown parameters. If there is no uncertainty,S(α) = 0. If there is full ignorance, in the sense

that all actions are equally likely,S(α) = 1. All else the same, additional information reduces

the uncertainty in the data analyzed, resulting in a lower normalized entropy measure. Thus, to
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the degree that the constraints 2.3, 2.5, and 2.6 bind, the GME-Nash normalized entropy measure

is lower than is the GME measure:S(α̃) ≤ S(ᾰ).

4. AIRLINES

We estimated the strategic behavior of American and United Airlines using the ME-ML,

GME, and GME-Nash approaches. We assume that the airlines set price. We allow for the

possibility that American and United provide differentiated services on a given route and assume

that the demand curve facing Firmi is

(4.1) qi ai bi pi di pj ui ,

whereai and di are positive,bi is negative, andui is an error term.4 In Appendix 1, we show

how to reparametrize 4.1 so that it can be estimated along with the other parameters in the GME-

Nash model.

If firms choose prices, the necessary conditions 2.3 and 2.5 become

(4.2)
r

βi
r p i

s c i q i
r s Y i θi

s ≤ 0,

(4.3) 





r

βi
r p i

s c i q i
r s Y i (αi

s µi
s ) δi

s 0 .

The Nash condition 2.6 is unchanged.

The data include price and quantity and cost data for 15 quarters (1984:4-1987:4, 1988:2,

4 We experimented with including various additional right-
hand-side variables such as measures of income, population, or
economic conditions. None of these variables, however,
significantly affected the fit of the equation or the parameters
ai , bi , and di .
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1988:4) for various routes between Chicago and other cities.5 We calculated marginal costs

using the formula in Oum, Zhang, and Zhang (1993), and we used the average of these for the

parametersci. The nominal data are deflated using the Consumer Price Index.

On each of these routes, these two firms had no (or trivial) competition from other firms.

We restrict our attention to two city pairs: Chicago-Providence and Chicago-Wichita. We did

not estimate our model for the other city pairs in the data set because of two problems. For the

Chicago-Las Vegas and Chicago-Sacramento routes, the average marginal cost was higher than

the average observed price, hence we were unwilling to make the assumption that the firms were

engaged in single-period maximizing behavior. On the basis of economic theory, we require that

bi < 0 (demand curves slope down) anddi > 0 (the services are substitutes) for each demand

curve. For the remaining routes, the demand curves estimated using ordinary least squares

violated these properties.

4.1 The Airline Model Specification

To determine the price space for each city, we first specify the upper and lower bound

of the price space. The lower bound is the smallest observed price for both airlines minus 10%

and the upper bound is the largest observed price for both airlines plus 10%. We then divide the

price space into 20 equal increments.

Because we do not know the true demand curve parameters, we simultaneously estimate

linear demand curves for each firm and a price-strategic choice model. As we have a measure

5 The data were generously provided by James A. Brander and
Anming Zhang. They used these data in three excellent papers:
Brander and Zhang (1990, 1993) and Oum, Zhang, and Zhang (1993).
See these papers for a description of the data.
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of the average marginal costs, we did not have to estimateci.

4.2 Airline Estimates

In the GME-Nash model, the correlation between the actual and estimated quantities in

the demand equations are 0.1 for the American demand equation and 0.2 for the United equation

for Providence and 0.5 for both Wichita equations. For Providence, the demand coefficients (ai,

bi, and di) are 1,865.8, -12.1, 4.7 for American Airlines and 1,571.7, -10.2, 4.8 for United

Airlines. Given these parameters, the own-demand elasticities at the sample mean are -2.6 for

American and -2.1 for United, and both the cross-elasticities are 0.95. In Wichita, the demand

coefficient are 694.0, -3.8, and 2.4 for American and 668.7, -4.1, and 2.8 for United. The own-

demand elasticities are -1.6 for America and -1.4 for United, and the cross-price elasticities are

0.82 in the American equation and 0.92 in the United equation. Estimating these demand curves

using ordinary least squares yields estimates of the same sign and magnitude.

On the Providence route, the estimated strategy parameters,α, for American Airlines are

shown in Figure 1a and for United are shown in Figure 1b. The corresponding distributions for

Wichita are shown in Figures 2a and 2b. The ME-ML estimates are the observed frequencies.

The GME distribution is more uniform than that of the ME-ML model because the GME

consistency conditions 3.2 allow the estimates to differ from the actual frequency. In attempting

to maximize entropy, the GME estimator pushes the probability estimates toward uniformity.

The GME-Nash distribution is smoother than the other two models and has one peak for

American and two peaks for United in both cities. The global maximum of the GME-Nash

distribution is closer to the average price based on a standard Bertrand model than to a Cournot

or Collusive model. [The Cournot — $227 for American and $223 for United — and collusive
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— $286 and $274 — means are too large to appear in Figure 2 for Wichita.]

Based on Kolmogorov-Smirnov tests, we cannot distinguish between the ME-ML, GME,

and GME-Nash distributions. The normalized entropy measure,S(α), for Providence are 0.66

for American and 0.67 for United for the ME-ML model. The corresponding normalized entropy

measures are both 0.90 for the GME model and 0.61 and 0.65 for the GME-Nash model. The

normalized entropy measures for Wichita are, respectively, 0.73 and 0.77 for the ME-ML, 0.93

and 0.94 for the GME, and 0.70 and 0.68 GME-Nash. The drop in the entropy measure when

we switch from the GME to the GME-Nash shows that the theoretical restrictions contain

substantial information.

The estimated expected rents,Ỹ, are $420,000 for American and $435,000 for United on

the Providence route, and $500,000 for each airline on the Wichita route. These rent calculations

are based on the assumption that the average cost equals the marginal cost. These numbers do

not include fixed costs. Unless the fixed costs are large, these number suggest that the airlines

were making positive profits during this period. The estimated expected rents are consistent with

the magnitudes of the prices and quantities observed.

For both airlines for both cities, the average value ofθ̃ is practically zero. The average

value of δ̃ is positive. For example, in Providence, only 2 out of the 40 values ofδ̃ were

negative. This sign pattern is consistent with firms having private, uncorrelated information.

This pattern is inconsistent with the hypothesis that firms use mixed strategies despite the absence

of exogenous randomness.
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4.3 Comparing Estimators

How does our approach compare to traditional methods?6 For the purposes of

comparison, we estimated a traditional conjectural variations (CV) model given our heterogenous

demand equations. The CV model consists of four equations: the two demand curves and two

optimality (first-order) conditions.7

Figures 3a and 3b show how the conjectural variations distribution compares to the GME-

Nash and ME-ML for Providence. The CV distribution has multiple peaks, with its global

maximum slightly higher than the GME-Nash. The CV distribution is significantly different than

the ME-ML for United on the Chicago-Providence route based on a Kolmogorov-Smirnov test.

Similarly, for United on the Chicago-Wichita route, the CV distribution differs from the GME-

Nash strategy distribution.

The estimated market power of these firms differs across the estimators. Table 1 shows

how the average Lerner Index of market power (the difference between price and marginal cost

6 We cannot directly compare our results to those in Brander
and Zhang (1990, 1993) and Oum, Zhang, and Zhang (1993), because
they assume that the services of the two airlines are homogeneous,
whereas we estimate demand curves based on differentiated services.
Moreover, two of their papers estimate pure strategy models, where
we permit mixed or pure strategies. The other paper, Brander and
Zhang (1993), estimates a supergame (trigger price) model. If
there are punishment periods during the sample, our estimates may
show two or more peaks in the distribution of α. If, however, the
firms are using such supergames, we should modify our repeated
single-period game model accordingly.

7 When we tried to estimate the four equations
simultaneously, some of the demand parameters took on theoretically
incorrect signs. Consequently, we estimated the demand curves and
then estimated the optimality conditions treating the estimated
demand parameters as exact. Both methods produced similar
estimates of the conjectures. Figures 3a and 3b use the second set
of estimates where we used the marginal cost in each period to
generate a distribution of estimates.
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as a percentage of price) varies across the estimators. The ME-ML Lerner Index is identical to

the index based on the observed data. The GME indexes are virtually the same or slightly lower

than the ME-ML indexes. The average GME-Nash and CV estimates are virtually identical and

slightly higher than the sample-based index.

Using the demand parameters from the GME-Nash model, we also calculated the average

Bertrand, Cournot, and collusive Lerner Indexes. The average Bertrand index is virtually the

same as the average GME-Nash and CV indexes. The Cournot and collusive indexes are much

higher.

4.4 Sample Size Sensitivity Experiments

The squared-error loss of each of our three estimators differs as sample size changes. We

can demonstrate these properties using sensitivity experiments, where we assume that the

estimated demand equations for the Chicago-Wichita route hold with an error term that is distrib-

uted N(0, 1). We assume that Firmi has informationεi about its marginal cost and that this

information is private and uncorrelated (as is consistent with our estimates), so that Firmi’s

beliefs,βi
r, do not depend onε i

k. The marginal cost for each firm in each period is drawn from

a normal distribution N(60, 5), which closely approximates the distribution of marginal costs for

Wichita. We approximate this continuous distribution using a finite grid and use the probabilities

associated with the resulting discrete distribution,ρk, to determine the Nash restriction that beliefs

are correct in equilibrium. This restriction requires thatΣk αj
rkρk = βi

r. We then generate Nash

equilibrium strategiesα using this restriction and the necessary conditions 2.1 and 2.2. (We

establish by means of sensitivity studies that this equilibrium is unique.) We use the resulting

equilibrium probabilitiesα to generate samples of actions by drawing a uniform random number
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on the unit interval and using that to assign an action for each observation. We generated 200

samples forT (the number of observations in each sample) = 10, 20 and 40, withn (the number

of possible actions for each firm) = 20.

According to our analytic results, the GME estimator has lower variance than the ME-ML.

We conjecture that the GME-Nash has a lower variance than the GME. These superior finite

sample properties of the GME-Nash and GME over the ME-ML are confirmed by our sampling

experiments in terms of the empirical mean square error (MSE(α̃i) = Σs,t (α̃i
st - αi

s)
2/200 (where

the indext denotes the sample) and the correlation coefficient between the estimated and trueαi
s

for each of the models (Table 2). The table shows two sets of results depending on whether the

econometrician knows the demand coefficients or has to estimate them. In the latter case, we

generate quantities demanded by adding a N(0, 1) term to the demand equation.

The ME-ML and GME perform better (in terms of MSE and correlations) as the number

of observations increases. The GME-Nash, however, performs well (relative to the other

estimators) for a small number of observations, and the GME-Nash estimates do not improve as

the number of observations increases beyond 20. This latter result is very attractive if, as usual,

one has relatively few time-series observations. Finally, the GME-Nash estimator yields superior

estimates even when the demand coefficients are unknown, without assuming knowledge of the

error distributions.

5. CONCLUSIONS

Our generalized-maximum-entropy-Nash (GME-Nash) estimator can estimate firms’

strategies consistent with game theory and the underlying data generation process. It is free of

parametric assumptions about distributions and ad hoc specifications such as those used in
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conjectural-variations models.

Our simplest approach to estimating strategies is to use the maximum-likelihood (ML) or

maximum-entropy (ME) estimators. These approaches produce the same estimates, which are

the observed frequencies in the data. These estimators do not make use of demand or cost

information and do not impose restrictions based on theory.

We also estimate two GME models. The basic GME estimator allows greater flexibility

than the ML-ME estimator, but does not use demand, cost, or game-theoretic information. We

show analytically and through simulations that this GME estimator is more efficient than the ME-

ML estimator in terms of mean-square error, correlation, and other measures of variance. The

GME-Nash estimator uses all available data, and game-theoretic information. In our sampling

experiments, the GME-Nash estimator is more efficient than the basic GME and ME-ML

estimators.

In future papers, we plan three generalizations of our approach. First, we will examine

whether a price-choice or quantity-choice model is appropriate. Here, we have assumed that the

firms chose price. Second, we will estimate more complex games where firms choose price or

quantities simultaneously with advertising. Third, we will generalize the model so that strategies

may vary with variables the econometrician observes.

We believe that this approach to estimating games can be applied to many problems in

addition to oligopoly, such as wars and joint decisions by husbands and wives. To do so only

requires replacing profits with some other criterion.
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Appendix 1: GME-Nash with Unknown Demand Coefficients

In order to use the GME-Nash estimator when the parameters of the demand curves are

unknown, we estimate the demand curves simultaneously with the rest of the model. For

example, let the demand curve facing Firmi be

(A1.1) q
i

ai bi p
i

di p
j

u
i

≡ Xi β
i

u
i
,

whereqi is the quantity vector,pi is the price vector,ai anddi are positive scalars,bi is a negative

scalar,ui is a vector of error terms,Xi is a matrix, andβi is a vector of parameters. To use an

entropy approach, we need to map the unknown parametersβi and ui into probability space.

Following Golan, Judge, and Miller (1996), we model these unknown parameters as discrete

random variables with finite supports. Letβ be in the interior of an open, bounded

hyperrectangle,Z ⊂ ℜK, and, for eachβk, let there be a discrete random variablezk, with M ≥

2 possible realizationszk1,..., zkM and corresponding probabilitiespk1,..., pkM such that

(A1.2) βk

M

m 1

pkm zkm.

Letting Z be theM-dimensional support forzk, any β ∈ Z may be expressed as

(A1.3) β Z p
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,

whereZ is a (K × KM) matrix andp is a KM-vector of weights such thatpK >> 0 andpK 1M =
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1 for each demand parameter fork = 1, 2, 3. The upper and lower bounds ofzk, zk1 andzkM, are

far apart and known to containβk. Further, we use our knowledge of the signs of the unknown

parameters from economic theory when specifying the support spaceZ.

The unknown and unobservable errors,uit, are treated similarly. For each observation,

the associated disturbance,uit, is modelled as a discrete random variable with realizationsvu
1,...,

vu
J ∈ vu with corresponding probabilitiesωu

t1,..., ωu
tJ. That is, each disturbance may be modelled

as

(A1.4) uit

J

j 1

ωu
t j v

u
j ,

for eacht = 1,...,T. The elements of the vectorvu form an evenly spaced grid that is symmetric

around zero.

Given a sample of dataqi, a simple way to determine the upper and lower bound ofvu

is to use the three-sigma rule together with the sample standard deviationσq. For example, if

J = 3, thenvu = (-3σq, 0, 3σq). Golan, Judge, and Miller (1996) has a detailed discussion of the

statistical implications of the choice of bounds and sampling experiments forvu andZ.

Having reparametrized the system of demand equation in this manner, the GME-Nash

model with unknown demand parameters is

(A1.5) max
α, w,p,ω

H (α, w, p, ω) α ln α w ln w p ln p ω ln ω ,

subject to the consistency conditions 3.4, the necessary economic conditions 2.3 and 2.5, the

Nash conditions 2.6, the two demand equations for Firmsi and j, Equations A1.1, and the
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normalizations forα, w, p, andω, whereω ( ωµi , ωµ j , ωθ i , ωθ j , ωδ i , ωδ j , ωu i , ωu j ) ′ .

The bounds of the error supports for the demand equations ±3σq.
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Appendix 2: Consistency

Call the GME-Nash estimates of the strategiesα̃, the GME estimatesᾰ, and the ME-ML

estimatesα̂. We make the following assumptions:

Assumption 1: A solution of the GME-Nash estimator (α̃, w̃, ω̃) exists for any

sample size.

Assumption 2: The expected value of each error term is zero, its variance is finite,

and the error distribution satisfies the Lindberg condition (Davidson and

MacKinnon, 1993, p. 135).

Assumption 3: The true value of each unknown parameter is in the interior of its

support.

We want to prove

Proposition: Given assumptions 1-3, and lettingall the end point of the error

support spaces vand vd be normed by , plim(α̃) = plim(ᾰ) = plim(α̂) = α.T

When the profit parametersβ are unknown, the GME-Nash estimatesβ̃ are

consistent.

According to this proposition, the GME-Nash estimates,α̃, GME basic estimates,ᾰ, and the ME-

ML estimates,α̂, are equal to each other and to the true strategies in the limit as the sample size

becomes infinite,T → ∞. That is, all the estimators are consistent.

Proof:

i) The ME-ML estimates are the observed frequencies: AsT → ∞, the observed

frequencies converge to the population frequencies, so the ME-ML estimates are consistent: plim

α̂T = α.
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ii) The GME is consistent: Let the end points of the error supports ofv, v1 andvm, be

- and respectively. AsT → ∞, ψs → 1 for all s in the dual-GME, Equation 3.12.1 / T 1 / T

Thus,Σs ln ψs(λ) → 0 and plimᾰT = α.

iii) The GME-Nash with known profit parameters is consistent: By Assumption 1, after

we have added the restrictions 2.3 and 2.5, we still have a solution. The argument in (ii) together

with Assumption 2 implies that plimα̃T = α.

iv) The GME-Nash with unknown profit parameters is consistent: The normed moment

version of the linear statistical model, Equation A1.1, is

(A2.1) X q

T
X X

T
β

X u

T
.

Given Assumption 3, the GME is a consistent estimator ofβ in Equation A2.1 (Golan, Judge,

and Miller, 1996, Ch. 6): plimβ̃T = β. By the argument in (iii), plimα̃T = α.

31



Table 1: Average Lerner Indexes, (p - MC)/p

Providence Wichita

American United American United

ME-ML: Observed 0.35 0.37 0.62 0.62

GME 0.34 0.35 0.62 0.61

GME-Nash 0.37 0.40 0.65 0.65

Conjectural Variation 0.37 0.40 0.65 0.64

Bertrand 0.37 0.40 0.66 0.65

Cournot 0.40 0.43 0.74 0.73

Collusive 0.45 0.48 0.79 0.78
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Table 2: Sample Size Sampling Experiment(n = 20)

MSE(α1) MSE(α2)
Correlation,

Firm 1
Correlation,

Firm 2

T = 10

ME-ML .285 .145 .68 .79

GME .137 .068 .66 .77

GME-Nash1 .086 .037 .79 .89

GME-Nash2 .110 .060 .66 .76

T = 20

ME-ML .263 .104 .69 .84

GME .132 .050 .66 .81

GME-Nash2 .075 .023 .77 .91

T = 40

ME-ML .245 .091 .70 .86

GME .124 .049 .67 .80

GME-Nash2 .075 .026 .78 .90

1 Known demand coefficients.
2 Unknown demand coefficients.
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