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Abstract

Given measurements on the nutrient content of the U.S. food supply and a coherent reduced form

empirical model of the demand for foods, we can analyze the effect of agricultural farm and food

policy on nutrition. Using unpublished documents from the HNIS, estimates of the percentages

of seventeen nutrients supplied by twenty-one foods were compiled for the period 1952-1983.

The Bayesian Method of Moments is applied to this data set to obtain a proper prior for the pur-

pose of drawing year-to-year inferences about the nutrient content of the U.S. food supply for the

period 1909-1994. Information theory and the Kullback-Leibler cross entropy criterion are used

to formalize the inference problem.
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Inferring the Nutrient Content of Food with Prior Information

U.S. farm and food policy is being transformed. Direct cash payments and a movement toward a

more open market is replacing many farm-level price and income support programs. Welfare,

food stamps, Women, Infants and Children, Aid to Families with Dependent Children, and

school lunch programs are being reduced in scope at the federal level and replaced by block

grants to states. All of these changes will influence prices and quantities consumed of foods, and

therefore the nutritional intake of U.S. consumers. But it is unclear what the overall nutritional

effects of these policy changes might be. Food stamps provide direct in-kind subsidies for food

consumption, with the goal of increasing the nutritional status of the poor. In contrast, federal

milk marketing orders increase the price of fresh milk and lower the prices of manufactured dairy

products (Heien; Ippolito and Masson), creating incentives to substitute away from fresh milk

and toward butter and cheese. Other farm level policies also create consumer incentives at odds

with those created by food subsidy programs.1 Though food aid recipients spend more on food,

they eat less healthy foods due to price distortions. Other consumers, who pay the taxes needed to

finance farm and food programs, have lower disposable incomes, food expenditures, and nutri-

tional intakes. For this group, policy-induced price distortions also create incentives for less

healthy diets.

I have been interested in the interplay of farm and food policy on consumer choice and

nutrition for several years. A central focus of this research has been an effort to establish a direct

economic link between food consumption choices and nutrition. Therefore, before getting to the

main subject of this paper, I would like to briefly motivate its undertaking. Suppose that we have

a stable, theoretically consistent reduced form empirical model of the demand for foods, which

might be written in the form E m mx y
x

x y( | , , , ) ( , , , )x p p s h p p s= , where x is the nx-vector of
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foods, px is the corresponding vector of market prices, py is the vector of market prices for all

other goods, m is disposable income, and s is a vector of demographic variables and other de-

mand shifters.2 It is well-known that weak integrability of the subsystem of demands is necessary

and sufficient for virtually all economically relevant analyses in such a model, including, inter

alia, exact welfare measurement of the price and income effects of farm and food policies (La-

France and Hanemann).

Moreover, given measurements or estimates on the nutrient content matrix transforming

the available supply of foods into the available supply of nutrients, say z = Ax, where z is the K-

vector of nutrients consumed by the household and A is the K×nx matrix of nutrient contents per

unit of foods, we also can analyze policy effects on nutritional intakes. This follows from the

simple fact that the conditional mean for nutrients, given prices, income, demographics and other

demand shifters and A satisfies E m mx y
x

x y( | , , , , ) ( , , , )z p p s A Ah p p s= . For example, nutrient

price elasticities satisfy ε εp
z

ij p
x

j
n

k

i

k

jx w= =∑ 1 , where εp
z

k i i kk

i p z z p≡ ⋅( ) ∂ ∂  is the price elasticity of

the ith nutrient with respect to the kth price, ε p
x

k j
j

kk

j p x x p≡ ⋅( ) ∂ ∂  is the price elasticity of the jth

food with respect to the kth price, and w a x zij ij j i≡  is the share of the ith nutrient supplied by the

jth food.

The matrix A is the rub, however. My primary data set consists of annual time series for

the period 1909-1995 on retail prices for and per capita U.S. consumption of twenty-one foods

(fresh milk and cream; butter; cheese; ice cream and frozen yogurt; canned and powdered milk;

beef and veal; pork; other red meat; fish; poultry; fresh citrus fruit; other fresh fruit; fresh vegeta-

bles; potatoes and sweetpotatoes; processed fruit; processed vegetables; fats and oils excluding

butter; eggs; cereal and bakery products; sugar; and coffee, tee and cocoa) and the total availabil-
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ity of seventeen nutrients (food energy; protein; carbohydrates; fat; cholesterol; calcium; magne-

sium; phosphorous; iron; zinc; vitamins A, B6, B12, C and E; niacin; riboflavin; and thiamin),

plus a set of age distribution and ethnicity variables, per capita disposable personal income, and

the consumer price index for all items excluding food. But year-to-year measures of the nutri-

tional content of food items at this level of disaggregation are neither published by the USDA nor

readily available from other sources for this sample period.

Nearly ten years ago, with the generous assistance from Nancy Raper of the Human Nu-

trition Information Service, using unpublished handwritten documents I was able to compile an-

nual estimates of the percentages of the seventeen nutrients supplied by the twenty-one foods for

the period 1952-1983. Each of these percentages was multiplied by the total supply of the corre-

sponding nutrient and divided by the per capita consumption of the corresponding food to gener-

ate year-to-year estimates of the nutrient content per pound of each food - e.g., grams of protein

per pound of beef. These original percentage contribution estimates were recorded with only two

or three significant digits, suggesting a fair amount of measurement error. Even so, only small

changes in the elements of the nutrient content matrices occurred between 1952-1983. Figure 1,

which depicts the resulting estimated time paths for the energy content of U.S. foods, is fairly

representative of the types of fluctuations that occur for all seventeen of the nutrients over this

period. A third problem has been that, at least until the present, obtaining updated or back dated

disaggregated nutrient content estimates has proven to be untenable. As a consequence, in previ-

ous work I calculated the average nutrient content matrix over the entire 32-year period as a first

guess for the nutritional content of the U.S. food supply. This has obvious problems, especially in

light of recent policy and research emphases on nutritional reporting, health education, and im-
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proved diets, not to mention the simple fact that a hog in 1909 was a very different creature than

the typical barrow or gilt of today.

This leads us to the main focus of this paper. Suppose we wished to make inferences

about the likely values of a number of unknown quantities based on a single data point. This is an

impossible task using classical statistical methods, unless one is willing to live with infinite un-

certainty about the precision of the estimates obtained. But, if a source of reasonable prior infor-

mation exists, such inference problems can be addressed readily with Bayesian methods. This

situation describes quite precisely the nutrient content question I want to address. I have annual

observations on the total disappearance of foods from the U.S. food supply and the total avail-

ability of nutrients from those foods for the entire period from 1909-1994. I also have a sample of

estimates for the individual nutritional content of each of these food items for the period 1952-

1983. However, the food quantity and nutrient availability data has been updated several times by

the USDA since the sample of 32 observations was originally constructed. Hence, the nutrient

content estimates obtained from the extraneous sample are not entirely consistent with the avail-

able data on total annual food and nutrient consumption. The shorter 32-year data set can be used

to draw inferences about the likely behavior of the joint distribution of the elements of the nutri-

ent content matrix. Given this “post data” information, which we will assume has the form of a

prior distribution, the longer, incomplete, data set can be used to make forecasts outside of the

sample data and to draw inferences on the reasonably likely ranges of values for the elements of

the nutrient matrix. The primary question, then, is how “best” to proceed? In this paper, I outline

one possible strategy and apply it to estimating the year-to-year energy content of food com-

modities in the United States food supply over the period 1909-1994.

Inferring the Nutrient Content of the U.S. Food Supply
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My initial point of departure is an ingenious approach to ill-posed inference problems known as

generalized maximum entropy recently developed by Golan (1994), Golan, Judge, and Miller

(1996), and Golan, Judge, and Perloff (1996). Although I ultimately pursue a somewhat different

strategy for reasons that should become clear below, it is useful to briefly summarize this ap-

proach as it relates to the present problem.

Consider the problem of estimating the nutritional content of food items in a given year

from aggregate per capita disappearance data and estimates of the total nutrients available in the

food supply. Let zt
K∈ +Å  be the K-vector of nutrients available for consumption per capita in the

food supply in year t, let xt
nx∈ +Å  be the nx-vector of food quantities consumed per capita, and

write the linear relationship between food and nutrients as

(1) z A xt t t t T= =, , ,1 L ,

where At is a K×nx matrix of positive parameters to be estimated in each year. Suppose that we

have an average estimate of the nutrient content matrix, say Ao, obtained independently of the

current inference problem. But we do not have data on the nutrient content matrices on an indi-

vidual year-to-year basis. Let’s focus on the case of a single nutrient to simplify the discussion,

specifically, the energy content of foods, and omit the time subscripts whenever this is not con-

fusing. The inference problem is to find a vector, α ≥ 0  satisfying z = ′α x , given a prior estimate

of the nutrient content vector, αo, and observations on z and x. We first specify a compact inter-

val of support for each αi containing the prior estimate, α α αi i i i Ko K∈ =[ , ], , ,1 , say, divide

each interval into N subintervals,

N n
N
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and write the αi’s as weighted averages of the N+1 endpoints,

(2) α α α α α α αi i i i i i i i iN i iNp
N

N N
p

N
N

N
p p= + −F

HG
I
KJ + F
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I
KJ

L
NM
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QP + + F
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I
KJ + −F
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I
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QP +−0 1 1

1 1 1 1
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= + =
=
∑ α δi i ij
j

N

j K p i Kb g
0

1, , ,L ,

where δ α αi i i i≡ − ∀ , pij ≥ 0 ∀  i, j and pijj
N
=∑ =0 1. The GME choice for α solves

(3) max log( )−
==
∑∑ p pij ij
j

N

i

nx

01

 subject to

p i jij ≥ ∀0 , ,

p iij
j

N

=
∑ = ∀

0

1 ,

α δi i ij
j

N

i
i

n

j K p x z
x

+ =
==
∑∑ b g

01

.

This is a straightforward constrained optimization problem with a strictly concave objective

function and linear constraints, and a unique solution is guaranteed to exist. Moreover, the loga-

rithmic transformation strictly bounds the solution away from zero, so the non-negativity con-

straints are slack at the optimal solution. The GME solution can be written in the form

(4) p p x j N j N i nij i i i x= − ∀ = ∀ =0 0 1exp , ,..., , ,...,λδ b gm r ,

with the normalizing condition

(5) p x j Ni i ij

N
0 0

1= −
=∑ exp λδ b gm r ,

which ensures that the probabilities add up to one for each i. Finally, the optimal posterior

choices for the αi’s are the means of the posterior discrete probability distributions,
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(6) α α δ
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while the Lagrange multiplier for the mean constraint is defined by

(7) x
j

N
x j N

x k N
zi i i

i i

i ik
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This approach always produces a well-defined, unique answer to even highly ill posed in-

ference problems, including the present one. However, the GME algorithm raises some issues, at

least for this application. First, what form does the prior information really take? In the standard

GME solution, the choice for the compact support for the coefficients seems to me largely sub-

jective and not necessarily the result of truly prior information. However, with regard to the nu-

tritional content of foods, we do know (with probability one) that any given food item can not ac-

count for less than zero nor more than 100 percent of a given nutrient’s total availability. This

gives us a natural choice for the support of the elements of α. But without looking at any data, I

have no other prior knowledge about the percentage of the total energy available in the U.S. food

supply that comes from beef, for example. While this level of ignorance is not inconsistent with

the standard GME assumption of a discrete equally likely (i.e., uniform) prior, the proper post-

data distribution for the elements of α may not, and in most cases will not, be uniform.

A second issue is that each choice for the discrete number of subintervals, N, generates a

different solution for the optimal probability weights and therefore for the elements of α. One

way to overcome this subjectivity is to let N → ∞  and use a continuous density function for both

the prior and the posterior. This is useful for another reason. If we consider the GME solution

formally as minimizing the Kullback-Leibler cross entropy criterion function relative to a uni-

form prior, then the indirect objective function has the form − ∑ = + +p p Ni ii
N * *ln( ) ln( )0 1 , where
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pi
*  is the optimal choice for the ith probability weight. Artificially considering N as a continuous

variable, the envelope theorem implies that the optimal entropy level is strictly increasing in N,

and that the slope (i.e., the rate of increase) decreases at the rate 1/ (N +1)2. Thus, an asymptotic

approximation will become accurate quite rapidly.

To derive the GME approach’s limiting distribution, for s ∈ [ , ]0 1  let [sN] be the largest

integer no larger than sN and for each i = 0, 1, … , N, define pi(s) ≡ pi[sN]. For given i, N, and 0 ≤ j

≤ N, let s satisfy j/N ≤ s < (j+1)/N. Then, uniformly in s ∈ [ , ]0 1 , the ith cumulative probability

distribution function satisfies

(8) F s
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which is a truncated exponential cumulative distribution function, with the Lagrange multiplier λ

now defined by the mean condition

(9) λ δ λδ λδ
i i

x s x

i

n

x se ds e zi i i i

x
− −

=
−z =∑ ( )10

1

1

.

It is straightforward to verify, using methods from optimal control theory, that this distribution is

the continuous GME solution (e.g., Golan, Judge, and Miller, p. 40). Finding the continuous

GME posterior leads naturally to the question, What are appropriate choices for a pre-data prior

distribution, a post-data posterior distribution, which becomes the pre-forecast prior distribu-

tion, and/or a loss function?
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I began this process quite ignorant of all of these matters, except perhaps for a small

amount of introspection regarding the logical support for the unknown nutrient content quanti-

ties. In addition, visual inspection of figure 1 (and similar plots for the other nutrients) suggests

that the short but complete data set for the years 1952-1983 does not contain very much informa-

tion about a systematic structure beyond perhaps the first and second moments of the underlying

distribution. However, based on the work of Csiszár, Gokhale and Kullback, Jaynes (1957a,

1957b, and 1984), Kullback, and Shannon, the Kullback-Leibler cross entropy function seems a

logical choice for the criterion function. Since it is well known that the GME solution is equiva-

lent to minimizing the Kullback-Leibler cross entropy function relative to a uniform prior (Go-

lan, Judge, and Perloff; Gokhale and Kullback), this choice remains logically consistent with the

GME approach. However, the Kullback-Leibler criterion can be applied to any prior. I also am

comfortable with uniform priors on compact intervals before undertaking any data analysis.

Thus, the one thing I remain reticent to impose is a specific assumption about the likeli-

hood function for the shorter, but more complete data set. Given this, a particularly attractive

method is the Bayesian Method of Moments (BMOM), which yields post-data densities for

model parameters without the use of an assumed likelihood function (Tobias and Zellner; Zell-

ner; and Zellner, Tobias, and Ryu). In particular, it is known that the proper maximum entropy

density given first and second moments is a multivariate normal density (see, e.g., Zellner, To-

bias, and Ryu). We generate the sample estimates for the mean vector, say $α , and variance-

covariance matrix, say $Σ , by simply applying the method of moments to the 32-year data set. In

this instance, this produces a post-data density in the form

(10) f D N n( | ) ~ $ , $α α Σ1d i,
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where $α  is the nx-vector of sample means and $Σ  is the nx×nx matrix of sample variance-

covariance terms. To illustrate, table 1 presents the sample means and estimated standard errors

of the means for the energy content of foods for the sample period 1953-1982.

Thus, for the post-data inference problem, we assume a multivariate normal density

function as the prior distribution for each year’s observations on total food and nutrient quanti-

ties available in the food supply,3

(11) f n
n

nx
0

2 1
1 2

2
12( ) ( ) $ exp ( $ ) $ ( $ )α α α α α= − − ′ −− − −π Σ Σn s .

For the Kullback-Leibler criterion, the objective is to

(12) minimize L Lz z f f f dy d yN1 1 0 0( ) log ( ) ( )y y y , subject to

L Lz z =f dy dyN1 0 1( )y ,

x y f dy d y zi
i

N

i N
=
∑ z z =

1
1 0L L( )y .

Using techniques from optimal control theory, it can be shown that the optimal choice for f1( )α

also is multivariate normal with an updated mean and the same covariance matrix,

(13) f n
n

nx
1

2 1
1 2

2 1
1

12( ) ( ) $ exp ( ) $ ( )α α α α α= − − ′ −− − −π Σ Σn s ,

(14) α α α1
1= + ′ − ′−$ ( $ ) $ ( $ )x x x xΣ Σ z .

Figure 2 displays the results of the mean calculations for the energy content of each food in year

in the period 1909-1994. We end up with a very simple least squares rule as the solution to what

started out as a difficult and highly ill posed inference problem. I find this quite delightful!

Conclusions

The BMOM and GME solution to the nutrient inference problem produces the same algebraic re-

sult as the following classical approach. First we would use a simple least squares procedure to
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estimate the sample means and variance-covariance terms. We then would take these sample es-

timates to be the “true” parameter values and calculate a single generalized least squares step in

each year to minimize the distance between $α  and α1 relative to the quadratic norm 1
n
$Σ . But

there is a significant difference in both the interpretation and the logic behind these approaches.

In finite samples, the Bayesian classical solutions only coincide when the likelihood function is

multivariate normal, and this is known a priori to be the case. Other likelihood functions gener-

ate very different results for the two approaches. In addition, the Bayesian information methods

applied here basis for inference on the likely values of the nutrient content elements on a year-to-

year basis. As an illustration, figure 3 depicts 99 percent confidence intervals for the four nutrient

content elements that are the most volatile in the 32-year complete information data set – butter,

ice cream and frozen yogurt, pork, and sugar and other sweeteners. The distributions for these

estimates could easily be incorporated into calculations of standard errors or confidence intervals

for such entities as price elasticities of nutrient consumption as a way to obtain reasonable

bounds on the likely response of nutritional intake levels to changes in farm and food policy.

This is a set of very powerful tools that should become common in the economic analysis of ag-

ricultural problems and issues.
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Table 1. Sample Means and Standard Errors, Energy Content of U.S. Foods, 1952-1983.
                                                                                                                                                            

Food Item                                                       Sample Mean                 Standard Error                 

Fresh Milk and Cream 279.853 2.27135

Butter 3193.76 21.3308

Cheese 1290.95 8.86004

Ice Cream and Frozen Yogurt 683.073 22.0997

Canned and Powdered Milk 869.336 15.7867

Beef and Veal 1029.37 5.88297

Pork 1925.22 25.4956

Other Red Meat 822.742 8.22912

Fish 887.037 10.9005

Poultry 630.447 8.17579

Fresh Citrus Fruit 104.220 2.39075

Fresh Non-Citrus Fruit 247.969 2.03088

Fresh Vegetables 199.849 3.69462

Potatoes and Sweetpotatoes 326.975 2.71337

Processed Fruit 218.810 4.38049

Processed Vegetables 691.288 4.52930

Fats and Oils, Excluding Butter 3754.19 8.39000

Eggs 866.313 22.7001

Cereals and Bakery Products 1682.45 4.87875

Sugar and Sweeteners 1636.86 3.90332
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Figure 1. Energy Content of U.S. Food, 1952-1983.
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Figure 2. Predicted Energy Content of U.S. Food, 1909-1994.
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Figure 3. Energy Content of Select Foods, 99% Confidence Intervals.
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Endnotes

1 Target prices, deficiency payments, and nonrecourse loans increase supplies of feed grains,

lower market prices of feed, and increase supplies and lower retail prices of red meat, which is

high in cholesterol. Marketing orders and agreements for many fruits, nuts and vegetables contain

regulations that lead to higher prices for fresh products and lower prices for manufactured prod-

ucts, which are less nutritious and contain relatively large amounts of salt (Jamison).

2 See, e.g., LaFrance for one example of this type of empirical model.

3 In actuality, the compact support for the elements of the nutrient content vector implies a trun-

cated multivariate normal distribution, However, given the sample estimates, the probability of

being on or outside the boundary was always on the order of 10-9 or smaller, so I ignored it.


