

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Department of Agricultural \& Resource Economics, UCB CUDARE Working Papers (University of California, Berkeley)

Generalized Rational Random Errors

Jeffrey T. LaFrance

University of California, Berkeley

Generalized Rational Random Errors

Abstract

Theil's theory of rational random errors is sufficient for strict exogeneity of group expenditure in separable demand models. Generalized rational random errors is necessary and sufficient for strict exogeneity of group expenditure. A simple, robust, asymptotically normal t-test of this hypothesis is derived based on the generalized method of moments. An application to per capita annual U.S. food demand in the 20th century strongly rejects exogeneity of food expenditure in a model that in all other respects is highly compatible with the data set and with the implications of economic theory.

Working Paper No. 938

GENERALIZED RATIONAL RANDOM ERRORS

by

Jeffrey T. LaFrance

Abstract

Copyright © 2002 by Jeffrey T. LaFrance. All rights reserved. Readers may make verbatim copies of this document for noncommercial purposes by any means, provided that this copyright notice appears on all such copies.

California Agricultural Experiment Station Giannini Foundation of Agricultural Economics
 December, 2002

Generalized Rational Random Errors

Jeffrey T. LaFrance
Agricultural and Resource Economics
University of California, Berkeley

Abstract

Theil's theory of rational random errors is sufficient for strict exogeneity of group expenditure in separable demand models. Generalized rational random errors is necessary and sufficient for strict exogeneity of group expenditure. A simple, robust, asymptotically normal t-test of this hypothesis is derived based on the generalized method of moments. An application to per capita annual U.S. food demand in the $20^{\text {th }}$ century strongly rejects exogeneity of food expenditure in a model that in all other respects is highly compatible with the data set and with the implications of economic theory.

Key Words: Demand, Generalized Method of Moments, Rational Random Errors, Weak Separability

Please direct all correspondence to:

Professor Jeffrey T. LaFrance
Department of Agricultural and Resource Economics
207 Giannini Hall / MC 3310
University of California
Berkeley, CA 94720-3310
phone: (510)-643-5416
fax: (510)-643-8911
email: lafrance@are.berkeley.edu

Generalized Rational Random Errors

1. Introduction

More than a quarter of a century ago, Henri Theil developed an economic theory for the second moments of disturbances in behavioral models, which he called rational random errors (Theil 1971, 1975, 1976). In models of consumer choice, the main result of this theory is that the covariance matrix of the error terms is proportional to the Slutsky matrix. Although this result has received little attention over the past two decades, it is known to be a sufficient condition for total expenditure to be strictly exogenous (Engle, Hendry, and Richard, 1983) in demand models (Deaton 1975, 1986; Theil 1976). In this paper, I show that a generalization of the theory of rational random errors, which I call generalized rational random errors, is necessary and sufficient for strict exogeneity of group expenditure in separable demand models. I derive a simple, robust, and asymptotically normal t-test for this hypothesis based on the generalized methods of moments principle. An application to per capita annual U.S. food demand in the $20^{\text {th }}$ century strongly rejects the exogeneity of food expenditure in a model that in all other respects appears to be highly compatible with the data set and with economic theory.

2. The Econometric Model

Consider the demand equations

$$
\begin{equation*}
\boldsymbol{x}_{t}=\boldsymbol{h}^{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)+\boldsymbol{\varepsilon}_{t}, t=1, \ldots, T, \tag{1}
\end{equation*}
$$

where $\boldsymbol{x}_{t} \in \mathbb{R}_{+}^{n_{x}}$ is an n_{x}-vector of quantities demanded for the goods of interest, $\boldsymbol{y}_{t} \in \mathbb{R}_{+}^{n_{y}}$ is an n_{y}-vector of quantities demanded for all other goods, $\boldsymbol{p}_{x t} \in \mathbb{R}_{+}^{n_{x}}$ is an n_{x}-vector of market prices for the goods $\boldsymbol{x}_{t}, \boldsymbol{p}_{y t} \in \mathbb{R}_{+}^{n_{y}}$ is an n_{y}-vector of market prices for the other
goods, $m_{t} \equiv \boldsymbol{p}_{x t}^{\prime} \boldsymbol{x}_{t}+\boldsymbol{p}_{y t}^{\prime} \boldsymbol{y}_{t}$ is total expenditure (income for brevity), $\boldsymbol{s}_{t} \in \mathbb{R}^{k}$ is a k-vector of demographic variables and other demand shifters, and ε_{t} is a vector of stochastic error terms independently distributed across t with $E\left(\varepsilon_{t}\right)=\mathbf{0}$ and $E\left(\varepsilon_{t} \varepsilon_{t}^{\prime}\right)=\Sigma_{t}$. The mean demands for the goods \boldsymbol{x} given market prices, income, and demographic variables are

$$
\begin{equation*}
E\left(\boldsymbol{x}_{t} \mid \boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)=\boldsymbol{h}^{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right) \tag{2}
\end{equation*}
$$

Although Σ_{t} may well be time varying and dependent on prices, income, and/or the demographic variables, the budget identity does not imply that $\Sigma_{t} \boldsymbol{p}_{x t}=0$; that is, the error covariance matrix is not singular.

Weak separability of \boldsymbol{x} from \boldsymbol{y} in the consumer's preference function is equivalent to the demands for \boldsymbol{x} having the structure

$$
\begin{equation*}
\boldsymbol{x}_{t}=\tilde{\boldsymbol{h}}^{x}\left(\boldsymbol{p}_{x t}, \mu_{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right), \boldsymbol{s}_{t}\right)+\boldsymbol{\varepsilon}_{t} \tag{3}
\end{equation*}
$$

where $\mu_{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right) \equiv \boldsymbol{p}_{x t}^{\prime} \boldsymbol{h}^{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right) \equiv E\left(\boldsymbol{p}_{x t}^{\prime} \boldsymbol{x}_{t} \mid \boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)$ is the mean total expenditure on the separable goods given all prices, income, and demographic variables (Gorman, 1970; Blackorby, Primont, and Russell, 1978). Therefore, assuming \boldsymbol{x} is weakly separable from \boldsymbol{y}, and defining total expenditures on x by $m_{x t} \equiv \boldsymbol{p}_{x t}^{\prime} \boldsymbol{x}_{t}$, we have

$$
\begin{equation*}
m_{x t}=\mu_{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)+v_{t} \tag{4}
\end{equation*}
$$

where $v_{t} \equiv \boldsymbol{p}_{x t}^{\prime} \boldsymbol{\varepsilon}_{t} \sim\left(0, \boldsymbol{p}_{x t}^{\prime} \Sigma_{t} \boldsymbol{p}_{x t}\right)$, independent across t.

Standard empirical practice is estimate the complete system of conditional demands for the separable goods with observed group expenditure on the right-hand-side,

$$
\begin{equation*}
\boldsymbol{x}_{t}=\tilde{\boldsymbol{h}}^{x}\left(\boldsymbol{p}_{x t}, m_{x t}, \boldsymbol{s}_{t}\right)+\tilde{\boldsymbol{\varepsilon}}_{t}, \tag{5}
\end{equation*}
$$

where $\tilde{\boldsymbol{\varepsilon}}_{t} \equiv \boldsymbol{\varepsilon}_{t}+\tilde{\boldsymbol{h}}^{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{\mu}_{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right), \boldsymbol{s}_{t}\right)-\tilde{\boldsymbol{h}}^{x}\left(\boldsymbol{p}_{x t}, m_{x t}, \boldsymbol{s}_{t}\right)$ is the vector of conditional demand residuals. A first step in understanding the empirical implications of this practice is lemma 1, which follows directly from Jensen's inequality and the adding up condition.

Lemma 1. $E\left(v_{t} \mid \boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)=0$ and $E\left(\tilde{\boldsymbol{\varepsilon}}_{t} \mid \boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)=\mathbf{0}$ if and only if

$$
\frac{\partial \tilde{\boldsymbol{h}}^{x}\left(\boldsymbol{p}_{x t}, m_{x t}, \boldsymbol{s}_{t}\right)}{\partial m_{x}} \equiv \beta\left(\boldsymbol{p}_{x t}, \boldsymbol{s}_{t}\right) \exists \beta: \mathbb{R}^{n_{x}} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{n_{x}} \text { satisfying } \boldsymbol{p}_{x t}^{\prime} \beta\left(\boldsymbol{p}_{x t}, \boldsymbol{s}_{t}\right) \equiv 1
$$

The upshot is that a consistent stochastic specification between the conditional demands and group expenditure - equivalently, between conditional and unconditional demands restricts the structure of the conditional demand model for precisely the same reason that exact aggregation in income does (Gorman, 1953, 1961). ${ }^{1}$

A consequence of lemma 1 is that the relationship between conditional and unconditional demand residuals can be written as

$$
\begin{equation*}
\tilde{\boldsymbol{\varepsilon}}_{t} \equiv\left[\mathbf{I}-\boldsymbol{\beta}\left(\boldsymbol{p}_{x t}, \boldsymbol{s}_{t}\right) \boldsymbol{p}_{x t}^{\prime}\right] \varepsilon_{t} . \tag{6}
\end{equation*}
$$

It follows from this and the definition of the group expenditure residual that group expenditure and the conditional demand residuals are generically correlated,

$$
\begin{equation*}
E\left(\tilde{\boldsymbol{\varepsilon}}_{t} v_{t} \mid \boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)=\left[\mathbf{I}-\beta\left(\boldsymbol{p}_{x r}, \boldsymbol{s}_{t}\right) \boldsymbol{p}_{x t}^{\prime}\right] \Sigma_{t} \boldsymbol{p}_{x t} . \tag{7}
\end{equation*}
$$

This leads us directly to the following result.
Lemma 2. If $\Sigma_{t} \boldsymbol{p}_{x t} \neq \mathbf{0}$ then $E\left(\tilde{\boldsymbol{\varepsilon}}_{t} v_{t} \mid \boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)=\mathbf{0}$ if and only if

[^0]$$
\frac{\partial \tilde{\boldsymbol{h}}^{x}\left(\boldsymbol{p}_{x t}, \mu_{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right), \boldsymbol{s}_{t}\right)}{\partial m_{x}}=\beta\left(\boldsymbol{p}_{x t}, \boldsymbol{s}_{t}\right)=\left(\boldsymbol{p}_{x t}^{\prime} \boldsymbol{\Sigma}_{t} \boldsymbol{p}_{x t}\right)^{-1} \Sigma_{t} \boldsymbol{p}_{x t} .
$$

We call this restriction the generalized rational random errors hypothesis.
Given weak separability and lemma 1 , the conditional covariance matrix satisfies

$$
\begin{equation*}
\tilde{\Sigma}_{t}=\left[\mathbf{I}-\beta\left(\boldsymbol{p}_{x t}, \boldsymbol{s}_{t}\right) \boldsymbol{p}_{x t}^{\prime}\right] \Sigma_{t}\left[\mathbf{I}-\boldsymbol{p}_{x t} \beta\left(\boldsymbol{p}_{x t}, \boldsymbol{s}_{t}\right)^{\prime}\right] . \tag{8}
\end{equation*}
$$

The adding up condition for the group of separable goods implies,

$$
\begin{equation*}
\boldsymbol{p}_{x t}^{\prime} \tilde{\boldsymbol{h}}^{x}\left(\boldsymbol{p}_{x t}, \mu_{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right), \boldsymbol{s}_{t}\right) \equiv \mu_{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right) \tag{9}
\end{equation*}
$$

which when combined with (8) and lemma 1 implies that the conditional covariance matrix is singular,

$$
\begin{equation*}
\tilde{\Sigma}_{t} \boldsymbol{p}_{x t} \equiv\left[\mathbf{I}-\boldsymbol{p}_{x t} \beta\left(\boldsymbol{p}_{x t}, \boldsymbol{s}_{t}\right)^{\prime}\right] \boldsymbol{p}_{x t} \equiv \boldsymbol{p}_{x t}-\boldsymbol{p}_{x t} \equiv \mathbf{0} . \tag{10}
\end{equation*}
$$

The unconditional Slutsky matrix for \boldsymbol{x} is defined by

$$
\begin{equation*}
\boldsymbol{S}_{t}=\frac{\partial \boldsymbol{h}^{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)}{\partial \boldsymbol{p}_{x}^{\prime}}+\frac{\partial \boldsymbol{h}^{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)}{\partial m} \boldsymbol{h}^{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)^{\prime}, \tag{11}
\end{equation*}
$$

while the conditional Slutsky matrix for \boldsymbol{x} is defined by

$$
\begin{gather*}
\tilde{\boldsymbol{S}}_{t}=\frac{\partial \tilde{\boldsymbol{h}}^{x}\left(\boldsymbol{p}_{x t}, \mu_{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right), \boldsymbol{s}_{t}\right)}{\partial \boldsymbol{p}_{x}^{\prime}} \tag{12}\\
+\frac{\partial \tilde{\boldsymbol{h}}^{x}\left(\boldsymbol{p}_{x t}, \mu_{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right), \boldsymbol{s}_{t}\right)}{\partial m_{x}} \tilde{\boldsymbol{h}}^{x}\left(\boldsymbol{p}_{x t}, \mu_{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right), \boldsymbol{s}_{t}\right)^{\prime} .
\end{gather*}
$$

The connection between the conditional and unconditional Slutsky matrices for the separable goods can be established with the following identities:

$$
\begin{equation*}
\frac{\partial \boldsymbol{h}^{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)}{\partial \boldsymbol{p}_{x}^{\prime}} \equiv \frac{\partial \tilde{\boldsymbol{h}}^{x}\left(\boldsymbol{p}_{x t}, \mu_{x t}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right), \boldsymbol{s}_{t}\right)}{\partial \boldsymbol{p}_{x}^{\prime}} \tag{13}
\end{equation*}
$$

$$
\begin{gather*}
\frac{\partial \mu_{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)}{\partial m} \equiv \boldsymbol{p}_{x t}^{\prime} \frac{\partial \boldsymbol{h}^{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)}{\partial m} \tag{16}\\
\boldsymbol{p}_{x t}^{\prime} \frac{\partial \tilde{\boldsymbol{h}}^{x}\left(\boldsymbol{p}_{x t}, \mu_{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right), \boldsymbol{s}_{t}\right)}{\partial m_{x}} \equiv 1 \tag{17}
\end{gather*}
$$

and

$$
\begin{equation*}
\boldsymbol{h}^{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right) \equiv \boldsymbol{h}^{x}\left(\boldsymbol{p}_{x t}, \mu_{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right), \boldsymbol{s}_{t}\right) \tag{18}
\end{equation*}
$$

We make the following sequence of substitutions,

$$
\begin{gather*}
\boldsymbol{S}_{t} \equiv \frac{\partial \boldsymbol{h}^{x}}{\partial \boldsymbol{p}_{x}^{\prime}}+\frac{\partial \boldsymbol{h}^{x}}{\partial m}\left(\boldsymbol{h}^{x}\right)^{\prime} \tag{19}\\
\equiv \frac{\partial \tilde{\boldsymbol{h}}^{x}}{\partial \boldsymbol{p}_{x}^{\prime}}+\frac{\partial \tilde{\boldsymbol{h}}^{x}}{\partial m_{x}}\left(\frac{\partial \mu_{x}}{\partial \boldsymbol{p}_{x}^{\prime}}\right)+\frac{\partial \tilde{\boldsymbol{h}}^{x}}{\partial m_{x}}\left(\frac{\partial \mu_{x}}{\partial m}\right)\left(\boldsymbol{h}^{x}\right)^{\prime} \\
\equiv \frac{\partial \tilde{\boldsymbol{h}}^{x}}{\partial \boldsymbol{p}_{x}^{\prime}}+\frac{\partial \tilde{\boldsymbol{h}}^{x}}{\partial m_{x}}\left(\left(\tilde{\boldsymbol{h}}^{x}\right)^{\prime}+\boldsymbol{p}_{x t}^{\prime} \frac{\partial \boldsymbol{h}^{x}}{\partial \boldsymbol{p}_{x}^{\prime}}\right)+\frac{\partial \tilde{\boldsymbol{h}}^{x}}{\partial m_{x}}\left(\boldsymbol{p}_{x t}^{\prime} \frac{\partial \boldsymbol{h}^{x}}{\partial m}\right)\left(\boldsymbol{h}^{x}\right)^{\prime} \\
\equiv \tilde{\boldsymbol{S}}_{t}+\left(\frac{\partial \tilde{\boldsymbol{h}}^{x}}{\partial m_{x}} \boldsymbol{p}_{x t}^{\prime}\right) \boldsymbol{S}_{t} .
\end{gather*}
$$

and then solve for $\tilde{\boldsymbol{S}}_{t}$ to obtain

$$
\begin{equation*}
\tilde{\boldsymbol{S}}_{t} \equiv\left[I-\beta\left(\boldsymbol{p}_{x t}, \boldsymbol{s}_{t}\right) \boldsymbol{p}_{x t}^{\prime}\right] \boldsymbol{S}_{t} . \tag{20}
\end{equation*}
$$

Since $\tilde{\boldsymbol{S}}_{t} \boldsymbol{p}_{x t} \equiv \mathbf{0}$, equivalently, $\boldsymbol{p}_{x t}^{\prime} \boldsymbol{\beta}\left(\boldsymbol{p}_{x i}, \boldsymbol{s}_{t}\right) \equiv 1$, this implies

$$
\begin{equation*}
\tilde{\boldsymbol{S}}_{t} \equiv\left[\boldsymbol{I}-\boldsymbol{\beta}\left(\boldsymbol{p}_{x t}, \boldsymbol{s}_{t}\right) \boldsymbol{p}_{x t}^{\prime}\right] \boldsymbol{S}_{t}\left[\boldsymbol{I}-\boldsymbol{p}_{x} \beta\left(\boldsymbol{p}_{x t}, \boldsymbol{s}_{t}\right)^{\prime}\right] . \tag{21}
\end{equation*}
$$

Note that $\left(\boldsymbol{\Sigma}_{t}, \tilde{\boldsymbol{\Sigma}}_{t}\right)$ and $\left(\boldsymbol{S}_{t}, \tilde{\boldsymbol{S}}_{t}\right)$ share precisely the same structural connection from the unconditional to the conditional level of the demand model. Moreover, note from (19) and $\tilde{\boldsymbol{S}}_{t} \boldsymbol{p}_{x t} \equiv \mathbf{0}$ that, as long as $\boldsymbol{S}_{t} \boldsymbol{p}_{x t} \neq \mathbf{0}$, we have the identity

$$
\begin{equation*}
\frac{\partial \tilde{\boldsymbol{h}}^{x}\left(\boldsymbol{p}_{x t}, \mu_{x}\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right), \boldsymbol{s}_{t}\right)}{\partial m_{x}} \equiv\left(\boldsymbol{p}_{x t}^{\prime} \boldsymbol{S}_{t} \boldsymbol{p}_{x t}\right)^{-1} \boldsymbol{S}_{t} \boldsymbol{p}_{x t} . \tag{22}
\end{equation*}
$$

Therefore, defining the positive-valued function,

$$
\begin{equation*}
\varphi\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right) \equiv-\left(\boldsymbol{p}_{x t}^{\prime} \Sigma_{t} \boldsymbol{p}_{x t}\right)^{-1}\left(\boldsymbol{p}_{x t}^{\prime} \boldsymbol{S}_{t} \boldsymbol{p}_{x t}\right), \tag{23}
\end{equation*}
$$

we can restate the GRREH in the following way.
Lemma 3. If $\Sigma_{t} \boldsymbol{p}_{x t} \neq \mathbf{0}$, then $E\left(\tilde{\boldsymbol{\varepsilon}}_{t} v_{t} \mid \boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)=\mathbf{0}$ if and only if

$$
\Sigma_{t} \boldsymbol{p}_{x t} \equiv-\varphi_{t} \boldsymbol{S}_{t} \boldsymbol{p}_{x t} .
$$

Lemma 3 establishes the relationship between generalized rational random errors and rational random errors. In particular, the rational random errors hypothesis implies that the unconditional covariance matrix and the Slutsky matrix are related by $\Sigma_{t} \equiv-\varphi_{t} \boldsymbol{S}_{t}$ for some function $\varphi_{i}: \mathbb{R}_{+}^{n+k+1} \rightarrow \mathbb{R}_{+}$, where $n=n_{x}+n_{y}$. Rational random errors is sufficient, but not necessary for the generalized rational random errors hypothesis. As a counterexample to necessity, let Ω_{t} be the Hessian matrix for any function $g\left(\boldsymbol{p}_{x t}, \boldsymbol{p}_{y t}, m_{t}, \boldsymbol{s}_{t}\right)$ that is
1° homogeneous and convex in \boldsymbol{p}_{x}, and let $\Sigma_{t} \equiv \Omega_{t}-\varphi S_{t}$.

3. The Hypothesis and Test Statistic

In principle, the generalized rational random errors hypothesis is testable. The remainder of this section presents a derivation of a simple, consistent t-test for this purpose. Suppose that the generalized rational random errors hypothesis is true. Then

$$
\begin{equation*}
\varepsilon_{t} \varepsilon_{t}^{\prime} \boldsymbol{p}_{x t}=\varepsilon_{t} v_{t}=-\varphi_{t} \boldsymbol{S}_{t} \boldsymbol{p}_{x t}+\boldsymbol{u}_{t}, \tag{24}
\end{equation*}
$$

where $E\left(\boldsymbol{u}_{t}\right)=\mathbf{0}, E\left(\boldsymbol{u}_{t} \boldsymbol{u}_{t}^{\prime}\right)=\Phi_{t}$, say, and the \boldsymbol{u}_{t} are independently distributed across t. Therefore, let $\boldsymbol{z}_{t}=\boldsymbol{\varepsilon}_{t} \boldsymbol{v}_{t}, w_{i t}=\sum_{j=1}^{n_{x}} s_{i j t} p_{x_{j} t}$, and $\boldsymbol{w}_{t}=\left[\begin{array}{lll}w_{1 t} & \cdots & w_{n_{x} t}\end{array}\right]^{\prime}$. An unbiased estimator for φ_{t} is obtained by ordinary least squares (OLS),

$$
\begin{equation*}
\hat{\varphi}_{t}=-\left(\boldsymbol{w}_{t}^{\prime} \boldsymbol{w}_{t}\right)^{-1} \boldsymbol{w}_{t}^{\prime} \boldsymbol{z}_{t} . \tag{25}
\end{equation*}
$$

In practice, \boldsymbol{z}_{t} and \boldsymbol{w}_{t} are not observed, but consistent estimates can be readily obtained.
This does not alter any of the asymptotic results that follow, and for notational brevity this minor issue is ignored. For each t the OLS errors are

$$
\begin{equation*}
\hat{\boldsymbol{u}}_{t}=\left[\boldsymbol{I}-\boldsymbol{w}_{t}\left(\boldsymbol{w}_{t}^{\prime} \boldsymbol{w}_{t}\right)^{-1} \boldsymbol{w}_{t}^{\prime}\right] \boldsymbol{u}_{t}=\mathbb{M}_{t} \boldsymbol{u}_{t} \tag{26}
\end{equation*}
$$

with $E\left(\hat{\boldsymbol{u}}_{t} \hat{\boldsymbol{u}}_{t}^{\prime}\right)=M M_{t} \Phi_{t} M M_{t}$. The average OLS residual within each time period is defined by
$\overline{\hat{u}}_{t}=\frac{1}{n_{x}} \mathbf{l}_{n_{x}}^{\prime} \hat{\boldsymbol{u}}_{t}$, where $\mathbf{l}_{n_{x}}=\left[\begin{array}{lll}1 & \cdots & 1\end{array}\right]^{\prime}$, with variance

$$
\begin{equation*}
E\left(\overline{\hat{u}}_{\cdot t}^{2}\right)=\frac{1}{n_{x}^{2}} \mathbf{l}_{n_{x}^{\prime}}^{\prime} \mathbb{M} \Phi_{t} \Phi_{t} M M_{t} \mathbf{l}_{n_{x}} . \tag{27}
\end{equation*}
$$

The overall average residual is $\overline{\hat{u}}=\frac{1}{T}\left[\overline{\hat{u}}_{.1} \cdots \overline{\hat{u}}_{\cdot T}\right] l_{T}$, with variance

$$
\begin{equation*}
E\left(\overline{\hat{u}}^{2}\right)=\left(\frac{1}{n_{x} T}\right)^{2} \sum_{t=1}^{T} \mathbf{l}_{n_{x}}^{\prime} \mathbb{M} \Phi_{t} \Phi_{t} \mathbb{M} \mathbf{1}_{n_{x}} . \tag{28}
\end{equation*}
$$

Under standard assumptions for the error terms $u_{i t}$, a robust heterscedasticity-consistent
estimator for the variance term in (20) is (Hansen, 1982; White, 1980)

$$
\begin{equation*}
\hat{\boldsymbol{\sigma}}_{\bar{u}}^{2}=\left(\frac{1}{n_{x} T}\right)^{2} \sum_{t=1}^{T} \mathbf{l}_{n_{x}}^{\prime} \mathbb{M}_{t} \hat{\boldsymbol{u}}_{t} \hat{\boldsymbol{u}}_{t}^{\prime} M_{t} \mathbf{l}_{n_{x}} . \tag{29}
\end{equation*}
$$

However, since $\hat{\boldsymbol{u}}_{t}=M_{t} \boldsymbol{u}_{t}$ and $M_{t} M_{t}=M_{t}=M_{t}^{\prime \prime}$, this estimator simplifies to

$$
\begin{gather*}
\hat{\boldsymbol{\sigma}}_{\overline{\bar{u}}}^{2}=\left(\frac{1}{n_{x} T}\right)^{2} \sum_{t=1}^{T} \mathbf{l}_{n_{x}}^{\prime} \hat{\boldsymbol{u}}_{t} \hat{\boldsymbol{u}}_{t}^{\prime} \mathbf{l}_{n_{x}} \tag{30}\\
=\frac{1}{T^{2}} \sum_{t=1}^{T}\left(\frac{1}{n_{x}} \mathbf{r}_{n_{x}}^{\prime} \hat{\boldsymbol{u}}_{t}\right)^{2} \\
=\frac{1}{T^{2}} \sum_{t=1}^{T}\left(\overline{\hat{u}}_{t}\right)^{2}
\end{gather*}
$$

Therefore, restating the generalized rational random errors hypothesis as

$$
\begin{gathered}
H_{\mathrm{o}}: E\left(u_{i t}\right)=0 \forall i=1, \ldots, n_{x}, \forall t=1, \ldots, T, \\
H_{A}: \exists i, t \text { such that } E\left(u_{i t}\right) \neq 0,
\end{gathered}
$$

a simple t-statistic that has a standard normal asymptotic distribution is

$$
\begin{equation*}
t=\frac{T \overline{\hat{u}}}{\sqrt{\sum_{t=1}^{T}\left(\overline{\hat{u}}_{t}\right)^{2}}} \tag{31}
\end{equation*}
$$

3. An Application to U.S. Food Demand

Let y be a scalar representing nonfood expenditures, let $\pi\left(\boldsymbol{p}_{y}\right)$ be an increasing, 1° homogeneous, concave function of nonfood prices, and assume a quadratic (quasi-)utility function (LaFrance and Hanemann) for foods and nonfood expenditures,

$$
\begin{align*}
u(x, y, s)= & \left(x-\alpha_{x}(s)\right)^{\prime} \boldsymbol{B}_{x x}\left(x-\alpha_{x}(s)\right)+\beta_{y y}\left(y-\alpha_{y}(s)\right)^{2} \tag{32}\\
& +2\left(x-\alpha_{x}(s)\right)^{\prime} \beta_{x y}\left(y-\alpha_{y}(s)\right) .
\end{align*}
$$

Maximizing $u(\boldsymbol{x}, y, \boldsymbol{s})$ with respect to (\boldsymbol{x}, y) subject to $\boldsymbol{p}_{x}^{\prime} \boldsymbol{x}+\pi\left(\boldsymbol{p}_{y}\right) y \leq m$, gives the un-
conditional demands for \boldsymbol{x} as

$$
\begin{gather*}
\boldsymbol{h}^{x}\left(\boldsymbol{p}_{x}, \pi\left(\boldsymbol{p}_{y}\right), m, s\right)=\alpha_{x}(\boldsymbol{s}) \tag{33}\\
+\left(\frac{m-\alpha_{x}()^{\prime} \boldsymbol{p}_{x}-\alpha_{y}(\boldsymbol{s}) \pi\left(\boldsymbol{p}_{y}\right)}{\boldsymbol{p}_{x}^{\prime} \boldsymbol{C}_{x x} \boldsymbol{p}_{x}+2 \boldsymbol{p}_{x}^{\prime} \gamma_{x y} \pi\left(\boldsymbol{p}_{y}\right)+\gamma_{y y} \pi\left(\boldsymbol{p}_{y}\right)^{2}}\right) \cdot\left(\boldsymbol{C}_{x x} \boldsymbol{p}_{x}+\gamma_{x y} \pi\left(\boldsymbol{p}_{y}\right)\right),
\end{gather*}
$$

where $\boldsymbol{C}=\left[\begin{array}{ll}\boldsymbol{C}_{x x} & \boldsymbol{\gamma}_{x y} \\ \boldsymbol{\gamma}_{x y}^{\prime} & \gamma_{y y}\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{B}_{x x} & \boldsymbol{\beta}_{x y} \\ \boldsymbol{\beta}_{x y}^{\prime} & \boldsymbol{\beta}_{y y}\end{array}\right]^{-1}$.
Our empirical model specifies deflated expenditures, rather than quantities, as dependent variables (Brown and Walker, 1989),

$$
\begin{equation*}
\boldsymbol{e}_{x} \equiv \boldsymbol{P}_{x} \boldsymbol{x}=\boldsymbol{P}_{x} \boldsymbol{\alpha}_{x}(\mathbf{s})+\left(\frac{m-\boldsymbol{\alpha}_{x}(\mathbf{s})^{\prime} \boldsymbol{p}_{x}-\alpha_{y}(\boldsymbol{s})}{\boldsymbol{p}_{x}^{\prime} \boldsymbol{C}_{x x} \boldsymbol{p}_{x}+2 \boldsymbol{\gamma}_{x y}^{\prime} \boldsymbol{p}_{x}+\gamma_{y y}}\right) \boldsymbol{P}_{x x}\left(\boldsymbol{C}_{x x} \boldsymbol{p}_{x}+\boldsymbol{\gamma}_{x y}\right)+\boldsymbol{\varepsilon}_{x}, \tag{34}
\end{equation*}
$$

where m and \boldsymbol{p}_{x} are deflated by π and $\boldsymbol{P}_{x} \equiv \operatorname{diag}\left(p_{x i}\right)$. Adding up implies $\imath^{\prime} \boldsymbol{\varepsilon}_{x}+\boldsymbol{\varepsilon}_{y} \equiv 0$, where t is an n_{x}-vector of ones and ε_{y} is the residual for nonfood expenditure. The estimation method is nonlinear seemingly unrelated regression equations (SURE) with one iteration on the residual covariance matrix. This produces consistent, efficient, and asymptotically normal parameter estimates under standard conditions (Malinvaud; Rothenberg and Leenders), while avoiding a spurious over fit of a subset of equations, which can result from iterative SURE methods. ${ }^{2}$
${ }^{2}$ The reason for this can be seen by writing the estimated covariance matrix, say $\hat{\Sigma}$, at a given iteration in factored form as $\hat{\boldsymbol{\Sigma}}=\boldsymbol{Q} \Delta \boldsymbol{Q}^{\prime}$, where $\boldsymbol{Q} \boldsymbol{Q}^{\prime}=\boldsymbol{Q}^{\prime} \boldsymbol{Q}=\boldsymbol{I}$, and $\Delta=\operatorname{diag}\left(\delta_{\mathrm{i}}\right)$ is the diagonal matrix of eigen values. If any of the δ_{i} is small relative to all others, then while $\hat{\Sigma}^{-1}$ is held fixed during the next iteration on the structural parameters, the linear combination of the $\boldsymbol{\varepsilon}_{t}$'s associated with that eigen value carries a large relative weight in the sum of squares criterion. This linear combination of residuals can approach a perfect fit, leading to singularity of the estimated covariance matrix.

Weak separability of foods from nonfood expenditures, which is necessary and sufficient for separability of foods from all other goods (LaFrance and Hanemann), implies $\gamma_{x y}=0$. The Slutsky matrix for food is

$$
\begin{equation*}
\boldsymbol{S}_{x x}=\left(\frac{m-\boldsymbol{\alpha}_{x}(\mathbf{s})^{\prime} \boldsymbol{p}_{x}-\alpha_{y}(\mathbf{s}) \pi}{\boldsymbol{p}_{x}^{\prime} \boldsymbol{C}_{x x} \boldsymbol{p}_{x}+2 \boldsymbol{\gamma}_{x y}^{\prime} \boldsymbol{p}_{x} \pi_{x}+\pi^{2}}\right)\left[\boldsymbol{C}_{x x}^{\prime}-\left(\frac{\left(\boldsymbol{C}_{x x} \boldsymbol{p}_{x}+\boldsymbol{\gamma}_{x y} \pi\right)\left(\boldsymbol{p}_{x}^{\prime} \boldsymbol{C}_{x x}^{\prime}+\boldsymbol{\gamma}_{x y} \pi\right)}{\boldsymbol{p}_{x}^{\prime} \boldsymbol{C}_{x x} \boldsymbol{p}_{x}+2 \boldsymbol{\gamma}_{x y}^{\prime} \boldsymbol{p}_{x} \pi+\pi^{2}}\right)\right] \tag{35}
\end{equation*}
$$

Symmetry is accommodated by $1 / 2 n_{x}\left(n_{x}-1\right)$ linear parameter restrictions on $\boldsymbol{C}_{\boldsymbol{x x}}$. Quasiconcavity of preferences in (\boldsymbol{x}, y) implies that at least n_{x} Eigen values of \boldsymbol{C} must be positive (Lau, 1978). In this model, however, weak separability implies that preferences are additively separable in \boldsymbol{x} and y. Quasi-concavity then requires concavity either in \boldsymbol{x} or in y (Gorman 1995b). ${ }^{3}$ Treating foods and other goods symmetrically implies that all Eigen values of $\boldsymbol{C}_{x x}$ must be positive. Hence, let $\boldsymbol{C}_{x x}=\boldsymbol{L} \boldsymbol{L}^{\prime}, \boldsymbol{L}$ lower triangular. These parameter restrictions ensure global weak integrability (LaFrance and Hanemann, 1989).
\boldsymbol{L} can have reduced rank unless the symmetric estimate of $\boldsymbol{C}_{x x}$ is positive definite. In such a case, curvature is not binding. In the alternative situation where L has a reduced rank, say $n_{x}-g, 0 \leq g \leq n_{x}$, all elements on and below the last g diagonal elements will vanish. This gives the greatest number of independent parameters associated with a symmetric, positive semidefinite matrix $\boldsymbol{C}_{\boldsymbol{x x}}$ that has rank $n_{x}-g$ (Diewert and Wales,

[^1]1993), and $1 / 2 g(g+1)$ restrictions for curvature and $1 / 2 n_{x}\left(n_{x}-1\right)$ symmetry restrictions.

The food consumption data consist of 21 equations and 76 annual time series observations over the period 1918-1994. ${ }^{4}$ The sample period is 1919-41 and 1947-94, with 1942-1946 excluded to account for World War II. The unrestricted model has 615 parameters; there are 210 parameter restrictions associated with symmetry of $\boldsymbol{C}_{\boldsymbol{x} \boldsymbol{x}}$; and 238 restrictions associated with symmetry and positive semidefiniteness of $\boldsymbol{C}_{\boldsymbol{x x}}{ }^{5}$ Per capita consumption of twenty-one food items and corresponding average retail prices for those items were constructed several USDA and Bureau of Labor Statistics sources. The consumer price index for all nonfood items is used for the "price" of nonfood expenditures. Income is measured as per capita disposable personal income. Demographics include the first three moments (mean, variance, and skewness) of the age distribution for the U.S. population and proportions of the population that are Black and neither White nor Black. Habit formation is incorporated through including lagged food quantities elements of \boldsymbol{s} (Pollak and Wales, 1981).

A summary of model specification tests is reported in Table 1. A test of separability in the unrestricted model falls right on the margin of rejection at a 5 percent significance level. Although this warrants further consideration, separability of foods from nonfoods is maintained. No model version shows significant evidence of misspecification using either systemwide or single equation stability tests. The unrestricted model fails to re-

[^2]ject at the 5 percent significance level, while the symmetric and quasi-concave models fail to reject at the 10 percent level. ${ }^{6}$

Symmetry is not rejected at the 5 percent level of significance, while symmetry and quasi-concavity is not rejected at the 10 percent level. Neither the symmetric nor the quasi-concave model shows evidence of autocorrelation, while the unrestricted model suggests a low level of negative serial correlation ($\rho=-.15$). It is noteworthy that high levels of serial correlation are common in time series demand models, especially in those that are been restricted to satisfy Slutsky symmetry. This model shows little evidence of serial correlation and even less as economic restrictions are imposed. There also is little evidence of skewness in the residuals. All three versions of the model show evidence of leptokurtosis. Since the estimation and inference methods employed here are robust to thick tails as long as the fourth moments exist, this is not a serious concern. In addition, neither restricted model shows evidence of thicker tails than the unrestricted model. ${ }^{7}$

Tests of generalized rational random errors, equivalently, of strict exogeneity of food expenditure (Engle, Hendry, and Richard, 1983; Hendry, 1995), are rejected at any reasonable level of significance in all models. The implication is that food expenditure is correlated with the conditional error terms in all three versions of the model. The stan-

[^3]dard practice of using observed group expenditure on the right-hand-side of a system of conditional demands is clearly inappropriate for this model and data set. LaFrance (1991) has shown that group expenditure can never be weak, strong, or super exogenous (see Engle, Hendry and Richard (1983) for derivation and discussion). Thus, no concept of exogeneity can rationalize food expenditure as an exogenous right-hand-side variable in a conditional demand model of U.S. per capita food consumption.

Table 2 reports equation summary statistics for the incomplete demand system form of the symmetric, quasi-concave, separable model (see LaFrance (1985) or LaFrance and Hanemann (1989) for derivation and discussion). Table 3 presents the estimated parameters associated with the constant terms, demographics, and lagged quantities consumed, with estimated asymptotic standard errors in parentheses below the parameter estimates. Table 4 presents the parameter estimates for the food sector's negative inverse Hessian, with estimated asymptotic standard errors in parentheses below the coefficient estimates. It is worth emphasizing that this model globally satisfies the restrictions implied by economic theory.

4. Implications

The rational random errors hypothesis is sufficient for strict exogeneity of group expenditure in separable demand models. This paper derives the generalized rational random errors hypothesis as a necessary and sufficient condition for strict exogeneity of group expenditure in separable demand models. A simple, robust, asymptotically normal t-test of this hypothesis is derived based on the generalized method of moments.

An empirical application is made with per capita annual U.S. food demand in the $20^{\text {th }}$ century. An incomplete demand systems approach is used, which does not rely on
any form of exogeneity of group expenditure to obtain consistent, asymptotically efficient parameter estimates. Extensive destructive testing a la Hendry (1995) suggests that, in all respects, the empirical model is compatible with the data and economic theory.

Tests of generalized rational random errors, however, are rejected at all reasonable levels of significance in all versions of the empirical model. The implication is that food expenditure is correlated with the error terms in a conditional demand model for U.S. food demand. Using group expenditure on the right-hand-side of a system of conditional demands, for this model and data set at least, would lead to biased and inconsistent parameter estimates and invalid statistical inferences. Food expenditure cannot be weakly, strongly, super or strictly exogenous, exhausting the logical possibilities. Treating group expenditure as exogenous in separable demand models is a flawed empirical practice.

References

Blackorby, C., D. Primont and R.R. Russell. Duality, Separability and Functional Structure: Theory and Economic Applications, New York: North-Holland, 1978.

Brown, B. W. and M. B. Walker. "The Random Utility Hypothesis and Inference in Demand Systems." Econometrica 57 (1989): 815-829.

Deaton, A. Models and Projections of Demand in Post War Britain London: Chapman and Hall, 1975.
\qquad ."Demand Analysis." In Handbook of Econometrics, Vol. III, Eds. Z. Griliches and M. Intriligator. New York: North-Holland, 1986:1767-1839.

Diewert, W. E. and T. J. Wales. "Flexible Functional Forms and Global Curvature Conditions." Econometrica 55 (1987): 43-68.

Edgerton, D.L. "On the Estimation of Separable Demand Models." Journal of Agricultural and Resource Economics 18 (1993): 141-146.

Engle, R. F., D. F. Hendry, and J.F. Richard. "Exogeneity." Econometrica 51 (1983): 277-304.

Gorman, W.M. "Community Preference Fields." Econometrica 21 (1953): 63-80.
\qquad . "On a Class of Preference Fields." Metroeconomica 13 (1961): 53-56.
\qquad . "Two-Stage Budgeting." Unpublished typescript, University of North Carolina, 1970. Reprinted as Chapter 2 in C. Blackorby and T. Shorrocks, Eds. Separability and Aggregation: Collected Works of W. M. Gorman, Oxford: Clarendon Press, 1995a.
\qquad . "The Concavity of Additive Utility Functions." Unpublished typescript, University of North Carolina, October 1970. Reprinted as Chapter 9 in C. Blackorby and T. Shorrocks, Eds. Separability and Aggregation: Collected Works of W. M. Gorman, Oxford: Clarendon Press, 1995b.

Hansen, L. P. "Large Sample Properties of Generalized Methods of Moments Estimators." Econometrica 50 (1982): 1029-1054.

Hendry, D. F. Dynamic Econometrics Oxford: Oxford University Press, 1995.
LaFrance, J. T. "Linear Demand Functions in Theory and Practice." Journal of Economic Theory 37 (1985): 147-166.
\qquad . "When is Expenditure 'Exogenous' in Separable Demand Models?" Western Journal of Agricultural Economics 16 (1991):49-62.
\qquad . "The Structure of U.S. Food Demand." Working Paper No. 862, Department of Agricultural and Resource Economics, University of California, Berkeley, CA, 1999.

LaFrance, J.T. and W.M. Hanemann. "The Dual Structure of Incomplete Demand Systems." American Journal of Agricultural Economics 71 (1989):262-274.

Lau, L. J. "Testing and Imposing Monotonicity, Convexity and Quasi-convexity Constraints." Appendix A. 4 in Production Economics: A Dual Approach to Theory and Applications, M. Fuss and D. McFadden (eds.), Amsterdam: North-Holland Publishing Co., 1978: 409-455.

Malinvaud, E. Statistical Methods of Economics, Second edition, Amsterdam: NorthHolland, 1980.

Ploberger, W. and W. Krämer. "The CUSUM Test with OLS Residuals." Econometrica

60 (1992): 271-286.
Pollak, R.A. and T.J. Wales. "Demographic Variables in Demand Analysis." Econometrica 49 (1981):1533-1551.

Rothenberg, T.J. and C.T. Leenders. "Efficient Estimation of Simultaneous Equation Systems." Econometrica 32 (1964):57-76.

Theil, H. "An Economic Theory of the Second Moments of Disturbances of Behavioral Equations." American Economic Review 61 (1971): 190-194.

Theil, H. "The Theory of Rational Random Behavior and its Application to Demand Analysis." European Economic Review 6 (1975): 217-226.

Theil, H. Theory and Measurement of Consumer Demand, Volume II, Amsterdam: North-Holland, 1976.

White, H. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity." Econometrica 48 (1980): 817-38.

Table 1. Model Diagnostics; Sample Period 1919-41 and 1947-94.

	Unrestricted	Symmetric	Quasiconcave
Trace	1415.7	1228.1	1249.3
ρ	-.135	-.039	-.027
σ_{ρ}	.027	.029	.029
t_{ρ}	5.02	1.35	0.94
η_{3}	.147	.045	.066
$\sigma_{\eta_{3}}$.063	.063	.063
$t_{\eta_{3}}$	2.31	0.71	1.05
η_{4}	.451	.675	.628
$\sigma_{\eta_{4}}$.127	.127	.127
$t_{\eta_{4}}$	3.55	5.32	4.94
Jarque-Bera	17.96	28.80	25.51
P-value	1.3×10^{-4}	5.6×10^{-7}	2.9×10^{-6}

GRREH Tests

$\overline{\hat{u}}$	1.624	5.150	5.061
$\sigma_{\overline{\mathrm{u}}}$.343	1.364	1.332
$\mathrm{t}_{\overline{\hat{u}}}$	4.739	3.776	3.800
P -value	1.1×10^{-5}	8.0×10^{-5}	7.2×10^{-5}

F-Tests

Separability $\quad 1.56$

P -value .05

Theory	-	1.18	1.12
P-value	-	.06	.12

Systemwide Specification Tests
$1^{\text {st }}$ Moment
$\max \left|\mathrm{B}_{\mathrm{T}}(\mathrm{z})\right| \quad .41 \quad .42$. 47

P -value
.996 .995
47
$2^{\text {nd }}$ Moment
$\max \left|\mathrm{B}_{\mathrm{T}}(\mathrm{z})\right|$
1.36
1.22
1.06

P -value
. 05
. 10
. 22
ρ is the common first order autocorrelation coefficient; η_{3} is the coefficient of skewness; η_{4} is the coefficient of excess kurtosis; and Jarque-Bera the $\chi^{2}(2)$ test for normality.

Table 2. Single Equation Statistics; Symmetric, Quasi-Concave Model.

	\mathbf{R}^{2}	$\sqrt{T} \overline{\hat{\varepsilon}}_{i} / \hat{\mathbf{\sigma}}_{i}$	$\max _{0 \leq z \leq 1}\left\|B_{i T}(z)\right\|$
Milk \& Cream	.9973	.122	.326
Butter	.9965	-.164	.463
Cheese	.9983	-.026	.529
Frozen Dairy Products	.9877	-.190	.402
Other Dairy Products	.9867	.073	.507
Beef \& Veal	.9951	-.058	.438
Pork	.9747	.043	.561
Other Meat	.9590	.032	.380
Fish	.9949	.148	.447
Poultry	.9893	.171	.607
Fresh Citrus Fruit	.6717	.301	.728
Fresh Noncitrus Fruit	.9487	-.297	.560
Fresh Vegetables	.9882	-.137	.346
Potatoes	.9648	.240	.807
Processed Fruit	.9882	-.020	.518
Processed Vegetables	.9891	-.124	.426
Fats \& Oils	.9737	-.124	.394
Eggs	.9989	-.240	.473
Cereal Products	.9889	-.082	.413
Sugar	.9878	-.243	.478
Coffee, Tea, \& Cocoa	-.242	.493	

Table 3. Demographics and Habits; Symmetric, Quasi-Concave Model.

	Constant	Age Distribution			Ethnicity		Habits x_{t-1}
		Mean	Variance	Skewness	Black	Others	
Milk \& Cream	$\begin{gathered} 374.1 \\ (79.38) \end{gathered}$	$\begin{aligned} & -2.277 \\ & (2.419) \end{aligned}$	$\begin{gathered} 3.334 \\ (0.673) \end{gathered}$	$\begin{aligned} & -.7492 \\ & (.7256) \end{aligned}$	$\begin{gathered} -20.42 \\ (13.43) \end{gathered}$	$\begin{aligned} & -3.503 \\ & (9.101) \end{aligned}$	$\begin{gathered} .3680 \\ (.0577) \end{gathered}$
Butter	$\begin{gathered} 4.975 \\ (13.61) \end{gathered}$	$\begin{gathered} .0268 \\ (.2576) \end{gathered}$	$\begin{aligned} & -.2941 \\ & (.0917) \end{aligned}$	$\begin{aligned} & -.0263 \\ & (.0785) \end{aligned}$	$\begin{gathered} 1.222 \\ (1.922) \end{gathered}$	$\begin{aligned} & -2.2417 \\ & (1.160) \end{aligned}$	$\begin{gathered} .7394 \\ (.0840) \end{gathered}$
Cheese	$\begin{aligned} & -16.21 \\ & (11.65) \end{aligned}$	$\begin{aligned} & .6015 \\ & (.3331) \end{aligned}$	$\begin{aligned} & -.1178 \\ & (.0798) \end{aligned}$	$\begin{aligned} & .0795 \\ & (.0846) \end{aligned}$	$\begin{gathered} .2766 \\ (1.883) \end{gathered}$	$\begin{gathered} 3.090 \\ (1.322) \end{gathered}$	$\begin{aligned} & .5023 \\ & (.1090) \end{aligned}$
Frozen Dairy	$\begin{gathered} -39.11 \\ (27.78) \end{gathered}$	$\begin{gathered} .0238 \\ (.7482) \end{gathered}$	$\begin{gathered} .8168 \\ (.2791) \end{gathered}$	$\begin{gathered} .0291 \\ (.1956) \end{gathered}$	$\begin{gathered} 1.036 \\ (4.214) \end{gathered}$	$\begin{gathered} .7565 \\ (2.674) \end{gathered}$	$\begin{aligned} & .3924 \\ & (.1204) \end{aligned}$
Other Dairy	$\begin{gathered} 34.47 \\ (24.15) \end{gathered}$	$\begin{aligned} & -.2323 \\ & (.7751) \end{aligned}$	$\begin{gathered} 1.097 \\ (.2870) \end{gathered}$	$\begin{aligned} & -.4906 \\ & (.1816) \end{aligned}$	$\begin{gathered} -3.843 \\ (4.511) \end{gathered}$	$\begin{gathered} .8026 \\ (2.492) \end{gathered}$	$\begin{aligned} & .3123 \\ & (.1345) \end{aligned}$
Beef \& Veal	$\begin{aligned} & -377.7 \\ & (29.42) \end{aligned}$	$\begin{gathered} 1.801 \\ (.8655) \end{gathered}$	$\begin{gathered} 1.859 \\ (.2144) \end{gathered}$	$\begin{aligned} & -.0224 \\ & (.2424) \end{aligned}$	$\begin{gathered} 31.75 \\ (5.089) \end{gathered}$	$\begin{aligned} & -21.30 \\ & (3.395) \end{aligned}$	$\begin{gathered} .0206 \\ (.0471) \end{gathered}$
Pork	$\begin{gathered} 151.0 \\ (27.13) \end{gathered}$	$\begin{gathered} .9419 \\ (.8654) \end{gathered}$	$\begin{gathered} .9444 \\ (.2288) \end{gathered}$	$\begin{gathered} .1261 \\ (.2402) \end{gathered}$	$\begin{gathered} -16.34 \\ (4.947) \end{gathered}$	$\begin{gathered} 5.227 \\ (3.285) \end{gathered}$	$\begin{gathered} .0758 \\ (.0396) \end{gathered}$
Other Meat	$\begin{gathered} 27.33 \\ (13.13) \end{gathered}$	$\begin{aligned} & .1009 \\ & (.4196) \end{aligned}$	$\begin{gathered} -.0149 \\ (.1134) \end{gathered}$	$\begin{gathered} .0907 \\ (.1117) \end{gathered}$	$\begin{aligned} & -1.812 \\ & (2.419) \end{aligned}$	$\begin{gathered} -.0203 \\ (1.563) \end{gathered}$	$\begin{gathered} .0727 \\ (.1251) \end{gathered}$
Fish	$\begin{gathered} 42.94 \\ (12.23) \end{gathered}$	$\begin{aligned} & .2894 \\ & (.3341) \end{aligned}$	$\begin{aligned} & -.1963 \\ & (.0812) \end{aligned}$	$\begin{aligned} & .1513 \\ & (.0904) \end{aligned}$	$\begin{aligned} & -4.272 \\ & (1.988) \end{aligned}$	$\begin{gathered} 5.653 \\ (1.348) \end{gathered}$	$\begin{aligned} & .2578 \\ & (.0856) \end{aligned}$
Poultry	$\begin{gathered} 31.00 \\ (20.66) \end{gathered}$	$\begin{gathered} .0496 \\ (.5240) \end{gathered}$	$\begin{aligned} & .2493 \\ & (.1646) \end{aligned}$	$\begin{gathered} .0662 \\ (.1441) \end{gathered}$	$\begin{aligned} & -3.797 \\ & (3.321) \end{aligned}$	$\begin{gathered} 12.92 \\ (2.863) \end{gathered}$	$\begin{gathered} .5027 \\ (.0753) \end{gathered}$
Fresh Citrus	$\begin{gathered} 69.05 \\ (40.34) \end{gathered}$	$\begin{gathered} 6.657 \\ (1.444) \end{gathered}$	$\begin{aligned} & -.3189 \\ & (.3063) \end{aligned}$	$\begin{aligned} & .1289 \\ & (.3339) \end{aligned}$	$\begin{gathered} -22.90 \\ (7.486) \end{gathered}$	$\begin{gathered} 6.247 \\ (4.749) \end{gathered}$	$\begin{aligned} & -.0509 \\ & (.0933) \end{aligned}$
Fresh Noncitrus	$\begin{aligned} & 1060.5 \\ & (97.33) \end{aligned}$	$\begin{aligned} & -4.393 \\ & (2.474) \end{aligned}$	$\begin{aligned} & -4.086 \\ & (.6862) \end{aligned}$	$\begin{aligned} & .5838 \\ & (.6709) \end{aligned}$	$\begin{gathered} -67.74 \\ (15.08) \end{gathered}$	$\begin{gathered} 59.81 \\ (10.52) \end{gathered}$	$\begin{aligned} & -.4825 \\ & (.0756) \end{aligned}$
Fresh Veges	$\begin{gathered} 221.1 \\ (50.57) \end{gathered}$	$\begin{gathered} 7.054 \\ (1.554) \end{gathered}$	$\begin{gathered} .3274 \\ (.3485) \end{gathered}$	$\begin{gathered} 1.508 \\ (.3852) \end{gathered}$	$\begin{aligned} & -45.84 \\ & (8.965) \end{aligned}$	$\begin{gathered} 34.11 \\ (5.937) \end{gathered}$	$\begin{aligned} & .1745 \\ & (.0929) \end{aligned}$
Potatoes	$\begin{gathered} 575.1 \\ (99.17) \end{gathered}$	$\begin{aligned} & -9.599 \\ & (2.806) \end{aligned}$	$\begin{aligned} & -2.288 \\ & (.6742) \end{aligned}$	$\begin{gathered} .0084 \\ (.7207) \end{gathered}$	$\begin{aligned} & -5.856 \\ & (15.78) \end{aligned}$	$\begin{gathered} 18.17 \\ (9.994) \end{gathered}$	$\begin{gathered} -.0283 \\ (.0943) \end{gathered}$

Numbers in parentheses are estimated asymptotic standard errors.

Table 3. Continued.

Numbers in parentheses are estimated asymptotic standard errors.
Generalized Rational Random Errors

	Milk \& Cream	Butter	Cheese	Frozen Dairy	Other Dairy	Beef \& Veal	Pork	Other Meat	Fish	Poultry
Milk \& Cream	$\begin{gathered} .721 \\ (.129) \end{gathered}$									
Butter	$\begin{gathered} .00716 \\ (.00646) \end{gathered}$	$\begin{gathered} .00511 \\ (.00103) \end{gathered}$								
Cheese	$\begin{aligned} & .00105 \\ & (.0101) \end{aligned}$	$\begin{aligned} & -.00102 \\ & (.00087) \end{aligned}$	$\begin{gathered} .00447 \\ (.00160) \end{gathered}$							
Frozen Dairy	$\begin{aligned} & -.0659 \\ & (.0391) \end{aligned}$	$\begin{aligned} & -.00235 \\ & (.00281) \end{aligned}$	$\begin{aligned} & -.00699 \\ & (.00469) \end{aligned}$	$\begin{gathered} .142 \\ (.0302) \end{gathered}$						
Other Dairy	$\begin{gathered} -.119 \\ (.0403) \end{gathered}$	$\begin{aligned} & -.00456 \\ & (.00290) \end{aligned}$	$\begin{gathered} -.00697 \\ (.00415) \end{gathered}$	$\begin{aligned} & .0125 \\ & (.0189) \end{aligned}$	$\begin{gathered} .0704 \\ (.0241) \end{gathered}$					
Beef \& Veal	$\begin{aligned} & -.0279 \\ & (.0104) \end{aligned}$	$\begin{gathered} .00250 \\ (.00096) \end{gathered}$	$\begin{gathered} -.00369 \\ (.00135) \end{gathered}$	$\begin{gathered} .00694 \\ (.00402) \end{gathered}$	$\begin{gathered} .0107 \\ (.00371) \end{gathered}$	$\begin{aligned} & .0617 \\ & (.00564) \end{aligned}$				
Pork	$\begin{gathered} .0100 \\ (.0127) \end{gathered}$	$\begin{aligned} & -.00167 \\ & (.00140) \end{aligned}$	$\begin{gathered} -.00499 \\ (.00185) \end{gathered}$	$\begin{gathered} .00742 \\ (.00506) \end{gathered}$	$\begin{gathered} .00764 \\ (.00472) \end{gathered}$	$\begin{gathered} -.0195 \\ (.00312) \end{gathered}$	$\begin{gathered} .0904 \\ (.00834) \end{gathered}$			
Other Meat	$\begin{aligned} & .0305 \\ & (.0162) \end{aligned}$	$\begin{aligned} & -.00131 \\ & (.00110) \end{aligned}$	$\begin{aligned} & -.00071 \\ & (.00185) \end{aligned}$	$\begin{gathered} -.0103 \\ (.00700) \end{gathered}$	$\begin{aligned} & -.0137 \\ & (.00654) \end{aligned}$	$\begin{aligned} & -.0147 \\ & (.00237) \end{aligned}$	$\begin{gathered} -.0106 \\ (.00252) \end{gathered}$	$\begin{gathered} .0376 \\ (.00512) \end{gathered}$		
Fish	$\begin{aligned} & .0211 \\ & (.0086) \end{aligned}$	$\begin{gathered} -.00271 \\ (.00081) \end{gathered}$	$\begin{gathered} .00418 \\ (.00111) \end{gathered}$	$\begin{aligned} & -.00179 \\ & (.00428) \end{aligned}$	$\begin{gathered} -.00536 \\ (.00383) \end{gathered}$	$\begin{aligned} & -.00310 \\ & (.00124) \end{aligned}$	$\begin{aligned} & -.00680 \\ & (.00176) \end{aligned}$	$\begin{gathered} -.00051 \\ (.00176) \end{gathered}$	$\begin{gathered} .00610 \\ (.00139) \end{gathered}$	
Poultry	$\begin{aligned} & -.0664 \\ & (.0138) \end{aligned}$	$\begin{gathered} .00033 \\ (.00140) \end{gathered}$	$\begin{gathered} .00258 \\ (.00189) \end{gathered}$	$\begin{gathered} -.0133 \\ (.00542) \end{gathered}$	$\begin{gathered} .00167 \\ (.00567) \end{gathered}$	$\begin{gathered} -.00550 \\ (.00210) \end{gathered}$	$\begin{aligned} & -.00449 \\ & (.00310) \end{aligned}$	$\begin{gathered} .00220 \\ (.00267) \end{gathered}$	$\begin{gathered} .00197 \\ (.00172) \end{gathered}$	$\begin{gathered} .0209 \\ (.00347) \end{gathered}$
Fresh Citrus	$\begin{aligned} & .00608 \\ & (.0211) \end{aligned}$	$\begin{aligned} & -.00022 \\ & (.00251) \end{aligned}$	$\begin{gathered} .00063 \\ (.00255) \end{gathered}$	$\begin{aligned} & -.00152 \\ & (.00751) \end{aligned}$	$\begin{aligned} & -.00075 \\ & (.00698) \end{aligned}$	$\begin{aligned} & -.00152 \\ & (.00466) \end{aligned}$	$\begin{aligned} & -.00837 \\ & (.00605) \end{aligned}$	$\begin{gathered} .00103 \\ (.00328) \end{gathered}$	$\begin{gathered} .00086 \\ (.00207) \end{gathered}$	$\begin{gathered} -.00972 \\ (.00556) \end{gathered}$

Numbers in parentheses are estimated asymptotic standard errors.
Generalized Rational Random Errors
Table 4. Continued.

	 Cream	Butter	Cheese	Frozen Dairy	Other Dairy	 Veal	Pork	Other Meat	Fish	Poultry
Fresh Non-	-.0934	-.0113	.00422	-.0704	.0192	-.0197	-.0248	-.0230	.00820	.0207
Citrus	$(.0502)$	$(.00492)$	$(.00692)$	$(.0241)$	$(.0192)$	$(.00988)$	$(.0131)$	$(.00968)$	$(.00651)$	$(.00951)$
Fresh Veges	.0445	-.0109	.00033	.0256	.0155	-.00150	.0127	-.00893	.00771	-.00440
	$(.0367)$	$(.00340)$	$(.00436)$	$(.0163)$	$(.0153)$	$(.00576)$	$(.00783)$	$(.00796)$	$(.00407)$	$(.00653)$
Potatoes	-.0212	.00887	-.00313	-.0178	.0130	-.00574	-.00284	.00138	-.00754	-.0110
	$(.0487)$	$(.00533)$	$(.00704)$	$(.0162)$	$(.0169)$	$(.00945)$	$(.0125)$	$(.00794)$	$(.00647)$	$(.0119)$
Processed	-.00756	-.00406	.00048	-.0196	-.00406	.00118	.00687	-.00545	-.00045	-.00567
Fruit	$(.0160)$	$(.00163)$	$(.00223)$	$(.00701)$	$(.00612)$	$(.00344)$	$(.00436)$	$(.00277)$	$(.00202)$	$(.00335)$
Processed	.0130	.00394	.00169	.0445	-.00252	-.0236	-.0217	.0117	.0101	.0209
Veges	$(.0406)$	$(.00300)$	$(.00464)$	$(.0187)$	$(.0176)$	$(.00507)$	$(.00650)$	$(.00748)$	$(.00415)$	$(.00641)$
Fats \& Oils	.0177	-.00329	.00930	-.0209	-.0177	-.0145	-.0109	.00763	.00867	.00758
	$(.0171)$	$(.00156)$	$(.00212)$	$(.00894)$	$(.00735)$	$(.00283)$	$(.00378)$	$(.00330)$	$(.00204)$	$(.00302)$
Eggs	.0290	.00056	-.00172	-.00687	.00433	-.00116	.00478	-.00685	-.00321	-.00959
	$(.0146)$	$(.00129)$	$(.00188)$	$(.00598)$	$(.00611)$	$(.00175)$	$(.00278)$	$(.00270)$	$(.00164)$	$(.00260)$
Flour \&	-.256	.00083	-.00320	.0245	.0221	-.0293	-.0226	.00462	-.00690	.0363
Cereals	$(.0991)$	$(.00663)$	$(.00918)$	$(.0404)$	$(.0360)$	$(.0108)$	$(.0135)$	$(.0172)$	$(.00838)$	$(.0134)$
Sugar \&	-.0334	.00740	.00339	.00452	.0186	-.0179	-.00985	.00534	-.00156	.0153
Sweeteners	$(.0270)$	$(.00266)$	$(.00352)$	$(.00777)$	$(.00819)$	$(.00542)$	$(.00662)$	$(.00479)$	$(.00347)$	$(.00534)$
Coffee, Tea	-.00406	-.00024	-.00075	.00231	.00185	.00016	.00179	.00031	-.00051	.00022
\& Cocoa	$(.00288)$	$(.00035)$	$(.00039)$	$(.00112)$	$(.00102)$	$(.00074)$	$(.00092)$	$(.00048)$	$(.00035)$	$(.00095)$

Numbers in parentheses are estimated asymptotic standard errors.
24

[^4]
[^0]: ${ }^{1}$ It is always possible to modify the stochastic specification to have a model with, say, budget shares on the left-hand-side and nonlinear functions of expenditure on the right-hand-side. However, a result analogous to Lemma 1 also applies to such cases, and a coherent statistical model restricts our attention to at most rank two demand systems that are linear in a single nonlinear function of expenditure (Edgerton, 1993). Our focus is on conditional demand models linear in group expenditure.

[^1]: ${ }^{3}$ This can be demonstrated as follows. Quasi-concavity requires

 $$
 \left[\begin{array}{ll}
 d \boldsymbol{x}^{\prime} & d y
 \end{array}\right]\left[\begin{array}{cc}
 u_{x x} & \mathbf{0} \\
 \mathbf{0}^{\prime} & u_{y y}
 \end{array}\right]\left[\begin{array}{l}
 d \boldsymbol{x} \\
 d y
 \end{array}\right] \leq 0 \quad \forall\left[\begin{array}{l}
 d \boldsymbol{x} \\
 d y
 \end{array}\right] \neq\left[\begin{array}{l}
 \mathbf{0} \\
 0
 \end{array}\right] \ni\left[\begin{array}{ll}
 d \boldsymbol{x}^{\prime} & d y
 \end{array}\right]\left[\begin{array}{l}
 u_{\boldsymbol{x}} \\
 u_{y}
 \end{array}\right]=0 .
 $$

 Setting $d y=0$ implies that $d \boldsymbol{x}^{\prime} u_{x x} d \boldsymbol{x} \leq 0 \forall d \boldsymbol{x}^{\prime} u_{x}=0$, so that the sectoral utility function for foods must be quasi-concave. But if $u_{x x}$ is indefinite (has a positive eigen value) and $u_{y y}>0$, the sign condition fails for joint quasi-concavity of u in (x, y).

[^2]: ${ }^{4}$ Detailed descriptions of the data, its sources and construction methods, and data set are available from the author on request.
 ${ }^{5}$ The bottom 7 rows of L equal zero, the number of negative Eigen values of $\boldsymbol{C}_{x x}$ in the symmetric model, generating 28 parameter restrictions for curvature.

[^3]: ${ }^{6}$ The systemwide test statistics denoted by $B_{T}(z)$ in table 1 are asymptotically distributed as Brownian bridges, and are constructed from partial sums of the transformed regression errors, $\hat{\Sigma}^{-1 / 2} \hat{\boldsymbol{\varepsilon}}_{t}$. See LaFrance (1999) for derivation and a discussion. Also, see Ploberger and Krämer (1992) for the derivation of linear single equation versions of the conditional means tests.
 ${ }^{7}$ The point estimate for the coefficient of excess kurtosis in the unrestricted model falls well within a 95 percent confidence interval of the corresponding estimate for the quasi-concave model. In other words, the parameter restrictions associated with symmetry and jointly with symmetry and quasi-concavity do not appear to create spurious outliers in the data.

[^4]: Numbers in parentheses are estimated asymptotic standard errors.

