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Monte-Carlo Simulation and Stochastic Programming 

in Real Options Valuation: the Case of Perennial 

Energy Crop Cultivation

Alisa Kostrova, Wolfgang Britz, Utkur Djanibekov, Robert Finger 

Abstract 

There are two prominent approaches in the valuation of American option, if no 

closed-form solution is available: stochastic simulation based on binomial 

(trinomial) scenario tree, and Monte-Carlo simulation. Yet, in practice real 

options rarely stand alone; and neither method excels in the valuation of 

compound American option subject to resource endowments and returns-to-

scale, as well as a set of investment options of predefined sizes. In this paper, we 

develop an approach, based on Monte-Carlo simulation, scenario tree reduction, 

and stochastic programming. It is especially advantageous for real options 

valuation where not only timing, but also the scale and interaction with 

constraints and alternative activities matter. For illustrative purposes, we employ 

the option to adopt, harvest, and reconvert perennial energy crop in a farm-level 

context. 

Keywords: Scenario Tree Reduction, Compound Option, American Option, 

Farming Investment Decision, Bioenergy. 

JEL classification: C61, C63, G32, Q12, Q42 

1 Introduction 

In the absence of a closed-form solution, real options are valued with 

numerical methods. In case of simple European options, this is often done by the 

Black-Scholes-Merton model (Merton 1973). As for American options, there are 

two prominent approaches: stochastic simulation based on binomial (trinomial) 
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scenario tree (e.g. Cox, Ross, and Rubinstein 1979; Trigeorgis 1991), and Monte-

Carlo simulation (Boyle 1977), including computationally more efficient Least 

Squares Monte-Carlo (LSMC) Simulation Method (Longstaff and Schwartz 2001). 

A binomial (trinomial) scenario tree is an intuitive and generic approach, however, 

it suffers from the curse of dimensionality and leads to branches with exploding 

values or values close to zero already under rather conservative assumptions about 

the variance at nodes (Lander and Pinches 1998, pp.545–546). That limits its 

applicability to compound options and over a long time horizon. The LSMC 

method efficiently deals with compound options, but is often criticized for being 

sensitive to the choice of functional form in the regression step (e.g. Stentoft 2004, 

p.136), especially if the dimension increases (Bouchard and Warin 2012, p.216).  

Characteristics of large real-world investment projects often do not fit well to 

the restrictions explicitly or implicitly inherent in existing numerical valuation 

methods for real options. In this paper, we focus on investment projects that 

involve compound American real options and/or compete with other activities for 

(quasi-)scarce resources. In addition, returns-to-scale or investment options of 

predefined sizes can be involved. Examples include investment in indivisible 

assets, investment characterized by a high share of transaction or other (quasi-) 

fixed costs, as well as investment of (quasi-)scarce resources with competing uses. 

In order to advance in capturing the complexity of such large investment projects, 

we develop an alternative numerical method that combines and benefits from the 

scenario tree and the Monte-Carlo simulation methods. 

In this study, we suggest applying a scenario tree reduction technique to the 

outcome of a Monte-Carlo simulation. We hence control for dimensionality and 

obtain an advanced scenario tree that enters stochastic programming which values 

the real options. In contrast to the Least Squares Monte-Carlo, we don’t 

approximate the fitted payoffs and hence the optimal investment decision by one 

function; instead we consider the fragmented distribution of self-contained 

expected payoffs. In order to illustrate our approach and show its applicability to a 

complex real-world example, we chose a case study from agricultural economics, 
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namely investment analysis of perennial energy crops cultivation. That seems 

especially interesting as the real options theory has gained interest in analysis of 

agricultural investment projects (e.g. Wossink and Gardebroek 2006; Hinrichs, 

Mußhoff, and Odening 2008; Hill 2010), but empirical applications are so far 

rather limited. Our example depicts a case where not only timing, but also the scale 

of the investment and its interaction with alternative activities matter due to 

competition for the endowments.  

The remainder of this paper is organized as follows. Section 2 provides 

methodological background of option valuation and identifies the gaps addressed in 

the paper. Section 3 introduces the general methodology proposed. Section 4 

illustrates our approach for the chosen case study. Section 5 presents core empirical 

findings of the case study to exemplify the type of results which the methodology 

provides. Section 6 comments on further application fields for the proposed 

approach before section 7 concludes.  

2 State of the art 

Lander and Pinches (1998) distinguish the main reasons why practitioners are 

reluctant to employ the real options for investment analysis. First, the existing 

models and methods of real options valuation can be deemed obscure and hard to 

follow; second, often restrictive assumptions are required in order to be able to 

solve the model. Below we address those two issues while summarizing the major 

existing methods of real options valuations.  

Analytical solutions for real options valuation (e.g. Black and Scholes 1973; 

Geske and Johnson 1984) are elegant from a scholarly perspective, but often 

deemed inappropriate due to restrictive assumptions required, e.g. about stochastic 

processes. If that is the case, a numerical method has to be employed instead 

(Trigeorgis 1996; Regan et al. 2015). Cetinkaya and Thiele (2014, p.12) distinguish 

here between methods approximating the underlying stochastic process and 

methods approximating the partial differential equations (see e.g. Trigeorgis (1996) 

for an overview of the latter). The most well-known method that approximates the 



Agricultural and Resource Economics, Discussion Paper 2016:3 

4 

partial differential equations - the Black-Scholes-Merton model (Merton 1973) - 

was initially designed and is well suited for valuation of simple European options 

(Regan et al. 2015, p.146). In contrast, compound American options are typically 

valued by approximating stochastic process methods. They can be further divided 

into Monte-Carlo simulation (Boyle 1977), including computationally more 

efficient the Least Squares Monte-Carlo method (Longstaff and Schwartz 2001), 

and scenario tree approximation.  

The scenario tree approximation method usually implies either a binomial 

lattice or a binomial scenario tree (Brandão and Dyer, 2005; Smith, 2005). An 

(approximate) optimal value for option(s) depicted by the constructed scenario tree 

or lattice is than found by dynamic programming (e.g. Dixit and Pindyck 1994, 

pp.140–147; Guthrie 2009, pp.88–92). Programming approaches are widely used to 

analyse investment decisions in a quantitative and relatively transparent way, 

including applications of stochastic programming (e.g. Brandes, Budde, and 

Sperling 1980; Haigh and Holt 2002). Examples of real options valuation with 

stochastic programming include, among others, energy economics (Sagastizábal 

2012; Feng and Ryan 2013; Simoglou et al. 2014; van Ackooij and Sagastizábal 

2014), managing project portfolio (Beraldi et al. 2013), and natural resources 

extraction (Alonso-Ayuso et al. 2014). One of the main disadvantages of a scenario 

tree approximation is that a tree can quickly become unsolvable in terms of 

computational capacity, as the number of time periods increases (Lander and 

Pinches 1998, pp.545–546), since a binomial lattice requires [(n(n+1))⁄2], and a 

binomial tree - 2^n final leaves for n time periods. Furthermore, developments of 

stochastic parameters in a binomial tree with chained relative ups and downs in 

each node can lead after a few time points to unrealistic values, since already rather 

conservative assumptions about the variance at any node can imply exploding 

branches. 

The alternative Least Squares Monte-Carlo (LSMC) method evolves from the 

core finding that the optimal strategy is determined by the conditional expectations 

of the value to postpone exercising the option; and these conditional expectations 
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can be estimated using the results of a simulation (Longstaff and Schwartz 2001, 

p.114). Thus, the method consists of the following three steps: (i) simulation of the 

payoffs in every time period if exercising the option now and keeping it in the 

previous periods; (ii) regression of those payoffs using least squares; and (iii) 

specification of the optimal strategy based on the estimated regression and fitted 

payoffs. The method is considered as highly powerful to value American options 

and widely used in the literature (see e.g. Sabour and Poulin 2006; Abadie and 

Chamorro 2009; Zhu and Fan 2011). A disadvantage discussed with respect to the 

LSMC method refers to a functional form that must be assumed for the estimation 

of the Lagrangian and can be crucial for determining the optimal strategy (e.g. 

Stentoft 2004, p.136). Although follow-up papers addressed that issue, including 

Rogers (2002), Haugh and Kogan (2004), and Létourneau and Stentoft (2014), 

there is still no general payoff independent choice algorithm which also works for 

higher dimensional problems (Bouchard and Warin 2012, p.216). 

Accordingly, there is room for alternative methods, especially when they are 

able to relax otherwise required restrictive assumptions which motivates our 

approach. 

Another reason identified by Lander and Pinches (1998) why the real option 

theory is not applied is that existing valuation methods fail to capture the 

complexity of real-world investment projects. In the following, we focus on large 

investment projects that typically not only involve compound real options, but also 

compete for (quasi-)scarce resources. It implies that (changes in) the returns to 

inputs and possible adjustment in management resulting from re-allocating these 

resources need to be considered as well. This interaction between endowment 

constraints and alternative activities is especially crucial in the context of returns-

to-scale and/or a set of investment options of predefined sizes (i.e. binary decision 

variables). In such cases, both timing and scale of exercising an option are at issue. 

Examples include investment in indivisible assets, investment characterized by a 

high share of transaction or other (quasi-)fixed costs, as well as investment 

impacting the competing use of resources. All methods discussed above are for 
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different reasons not well suited for these problem settings. The Black-Scholes-

Merton model is not appropriate for valuing compound American options. Due to 

the curse of dimensionality, a binomial scenario tree hampers valuation of 

compound options, in particular over a long time horizon. The LSMC method 

impedes the choice of Lagrangian function under high dimension. In addition, the 

LSMC requires solving a programming model for each single fitted payoff, if 

interaction with constraints and alternative activities is considered, which threatens 

its computational efficiency. We therefore discuss our alternative approach which 

is particularly relevant if alternative activities, returns-to-scale, indivisible assets, 

as well as resources’ endowments and other constraints are jointly considered.  

For illustrative purposes we employ a case study relating to an agricultural 

investment project that is characterized by limited resources, returns-to-scale, and 

predefined sizes of available investment options. Our example refers to farm-level 

decision to adopt, harvest and reconvert a perennial energy crop in the context of 

farm constraints and alternative activities. The application of the real options in 

agricultural economics is rather limited, especially in terms of investment analysis 

of perennial energy crops adoption; the dominant approach in the literature is the 

classical net present value (e.g. Lothner, Hoganson, and Rubin 1986; Strauss et al. 

1988; Gandorfer, Eckstein, and Hoffmann 2011; Schweier and Becker 2013). The 

few existing models based on the real options either considered perennial energy 

crops cultivation as standing alone investment option (Frey et al. 2013), or (partly) 

killed managerial flexibility it allows for (Bartolini and Viaggi 2012), or both 

(Song, Zhao, and Swinton 2011; Musshoff 2012; Wolbert-Haverkamp and 

Musshoff 2014). These restrictive assumptions were made, in order to gain 

tractability and computational efficiency, as discussed previously. 

The objective of the paper is twofold. First, we aim to develop an alternative 

approach that allows for a straightforward valuation of compound American 

options in the context of returns-to-scale, resources’ endowments and binary 

decision variables. Second, we fill the gap in limited application of the real options 



Agricultural and Resource Economics, Discussion Paper 2016:3 

7 

in agricultural economics by designing and valuating a farm-level model of 

perennial energy crops adoption, in order to illustrate our approach. 

3 General methodology 

The approach we propose can be summarized in four main steps. First, we 

define the (state contingent) decision variables of the problem and the available 

(compound) real options. Second, we define the relations (i.e. equations and 

constraints) between these decision variables, including lagged relations between 

time points, and combine them into a programming model. Simultaneously, we 

also introduce node indices for the state contingent decision variables while 

reflecting the ancestor relation between lagged nodes (states). The first two steps 

hence design a deterministic mixed-integer linear programming model. Integers, 

including binaries, enable to differentiate between investment options of predefined 

sizes; non-linearity allows reflecting returns-to-scale. On this step we also define 

the payoff function, e.g. net present value, subject to constraints, including 

resources’ endowments. Third, having sketched a deterministic version of the 

programming model, we introduce different future outcomes (states) and related 

state contingent decision variables. In particular, we choose a distribution for the 

uncertain parameter(s), draw Monte-Carlo scenarios and construct from them a 

reduced scenario tree with probabilities, employing a scenario tree reduction 

technique. In order to convert the deterministic version into a stochastic 

programming equivalent, four additional elements are needed: (i) the decision 

variables need to carry an additional index for the decision node (i.e. state); (ii) an 

ancestor matrix, reflecting the order of the nodes in the decision tree, has to be 

introduced; (iii) outcomes for the stochastic parameters for each state need to be 

defined; and (iv) the probabilities for each node should be assigned. Finally, we 

employ stochastic programming to value the real options.  

The third step is worth additional comments; therefore we will next discuss 

how the outcomes and related probabilities can be constructed. Here, we first 

assume distributions for the stochastic components and run Monte-Carlo 



Agricultural and Resource Economics, Discussion Paper 2016:3 

8 

simulations which result in a large-scale scenario tree that is numerically not 

solvable due to the curse of dimensionality. We hence aim at reducing the size of 

the tree without losing too much information about the underlying distributions, for 

which we employ the tree reduction and construction algorithm by Heitsch and 

Römisch (2008). Similar to a Gaussian quadrature, which describes a probability 

density function with a few characteristic values and their probability mass, this 

algorithm picks representative nodes and assigns probabilities to them to capture 

approximately the distribution in original trees
1
. The algorithm can be depicted 

graphically as lumping together neighbouring nodes and branches in the tree to 

bigger ones, where the thickness represents probability mass. In particular, we opt 

to use a pre-defined number of final leaves, and hence pre-determine the model’s 

number of equations and variables, and let the algorithm decide which nodes to 

maintain. There is no well-established approach to determine the optimal number 

of leaves. The choice however should reflect a trade-off between accuracy and 

solution time: more leaves improve the results, while increasing the solving time 

substantially (Dupačová, Consigli, and Wallace 2000, p.30). The extreme case of 

small number of leaves is the classical net present value approach with one leaf 

only and no incentive to postpone. Adding one single leaf converts the problem 

into the real options and might create incentives to wait. Also note that the number 

of leaves has different influence on different outcomes of the model. In particular, 

it might be very hard to stabilize integer variables within a certain range of 

accuracy. We suggest here to proceed as follows: (1) choose the “main result 

variable” of the model; (2) decide on an appropriate degree of deviation for this 

variable; (3) run a sensitivity analysis with increasing number of leaves and check 

                                                      

 

1 Basically all the methods of generating a scenario tree can be summarized as aggregating nodes and 

stages, trimming or refining the trees (see e.g. Klaassen 1998; Consigli and Dempster 1998; 

Frauendorfer and Marohn 1998; Dempster and Thompson 1999; Dempster 2006). A practical 

advantage of the method developed by Heitsch and Römisch (2008) is a GAMS tool SCENRED2 

written on its basis. 
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this variable; and (4) stop increasing the tree size once the variable is stabilized 

within the deviation level.  

Our approach allows assuming any risk attitudes. However, deviating from 

risk neutrality and using a risk-adjusted discount rate requires re-adjusting the 

discount rate for every time period, as the risk decreases when approaching the 

final leaves of the scenario tree (Brandão and Dyer 2005). In addition, different 

risk-adjusted discount rates should be applied to various risky farm activities (see 

e.g. Finger 2016). 

We solve the model described above by stochastic programming using the 

following software: standard Java libraries
2
 for Monte-Carlo draws, GAMS 24.3, a 

tree construction tool SCENRED2 (GAMS Development Corporation 2015), and 

an optimization solver CPLEX (IBM Corporation 2016). The computational speed 

can be increased by employing a multi-core processor. Also, the literature provides 

further techniques to gain computational efficiency for such large-scale mixed 

integer stochastic problems (see e.g. Escudero et al. 2012). 

4 Empirical application 

For illustrative purposes we value an investment decision in perennial energy 

crop, namely short-rotation coppice (SRC), which involves decision on timing and 

scale of adoption, harvesting and reconversion. That case study features the 

complexities discussed above: it constitutes a compound American option of 

predefined sizes in the context of limited resources, returns-to-scale, and alternative 

activities. We next present briefly the background for our case study, while Table 1 

briefly summarizes the main characteristics considered in our example. 

                                                      

 

2 The use of Java is mostly motivated by the fact that we store the generated draws along with the 

ancestor matrix describe the node structure efficiently in the proprietary data format GDX of GAMS 

to avoid costly computations in GAMS. 
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SRC uses fast growing trees that are harvested in relatively short intervals – 

typically between two and five years – to produce biomass for energy purpose. A 

SRC plantation is not clear-cut and can be harvested several times during its 

lifetime of up to 20 years. A large share of the costs is sunk, once the plantation is 

set-up: typically, about 2/3 of the costs of a SRC plantation relate to its planting 

and final re-conversion (Lowthe-Thomas, Slater, and Randerson 2010). SRC is 

characterized by low-input production comparing with alternative crops (Faasch 

and Patenaude 2012); planting and harvesting are usually outsourced to a 

contractor, such that little or no on-farm labour is required (Musshoff 2012, p.77). 

Land use competition between SRC and other crops has been reduced under the 

latest Common Agricultural Policy reform, which requires that large arable farms 

devote 5% of their farmland to “Ecological Focus Area” (EFA), for which SRC is 

to a certain degree eligible
3
 (in Germany with a factor of 0.3 (Bundesministerium 

fuer Ernaehrung und Landwirtschaft 2015)).  

During the lifetime of a plantation, farmers face (at least) uncertain prices for 

the harvested biomass. While the same might be said with regard to future returns 

for competing annual crops, the possibility to adjust the crop mix and cropping 

intensity on an annual basis might substantially reduce the subjective risk assessed 

by farmers being used to manage these crops (Di Falco and Perrings 2003). We 

define switching to SRC as a compound American option, where planting, each 

intermediate harvesting, and the final reconversion are the option stages. Due to 

stage contingent harvesting periods between two and five years and the maximum 

lifetime of a plantation, the number of total stages is not predetermined, but 

flexible. As a consequence, the sooner each stage is exercised, the more stages in 

total are available. 

                                                      

 

3 We consider two options to meet the EFA requirements in our model: set-aside land (i.e. fallow 

land) and SRC (for other options, see Bundesministerium fuer Ernaehrung und Landwirtschaft 2015). 
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The data for the model are taken from Musshoff (2012); Faasch and Patenaude 

(2012); Wolbert-Haverkamp (2012) (see Appendix 1 for data used), and refer to 

cultivation of SRC poplar on a farm in the region Mecklenburg-Western Pomerania 

(northern Germany). The region is characterized, in comparison to average German 

conditions, by low soil quality and precipitation, and thus generates low returns 

from annual crops. That renders so far uncommon alternative land use options, in 

particular SRC, potentially attractive; in addition, according to Schuler et al. (2014, 

p.69), more than 90% of agricultural lands in this region are suitable for SRC 

cultivation. 

In order to model the competition for farm resources, such as land and labour, 

we consider two alternative crops that are relevant for the case study region - 

winter wheat and winter rapeseed - of which the former is more labour intensive 

and has also a higher gross margin per hectare. Finally, we consider the EFA 

requirements and thus introduce set-aside as an alternative to SRC in order to fulfil 

these requirements.  

We consider pre-defined plantation sizes, because farmers would typically 

convert existing plots into a SRC plantation. In particular, against a background of 

100 ha total land endowment, we assume three plots
4
 to be potentially converted to 

SRC – of 10 ha, 20 ha, and 40 ha, - providing eight possible combinations of total 

plantation sizes from 0 to 70 ha. Each plot is characterized by three core decision 

variables over the simulation horizon: (1) land use decisions: whether a plot is used 

for SRC or one of the three alternative activities; (2) SRC harvesting decisions, in 

case the plot is used for SRC: whether the plot is harvested in the current year or 

not; and (3) SRC reconversion decision, in case the plot is used for SRC and 

                                                      

 

4 Initially four plots and 11 combinations from 0 to 100 ha were assumed, covering hence all the 

available land area. Since tests revealed the optimal total area under SRC to be always below 40 ha, 

we restrict ourselves to three plots, as described in the text, in order to additionally decrease the 

number of variables and hence gain computational efficiency. 
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harvested in the current year
5
: whether the plot is converted back to traditional 

agriculture or not.  

Revenues for a plot under SRC are linked to harvest decisions which are based 

on the interplay between functions depicting biomass growth and harvesting costs. 

Biomass growth is represented by a linear function of available yields and – 

combined with the harvesting decision in the previous year – provides the current 

yields. The harvesting costs function considers transaction costs for labour 

outsourcing, transport costs to the field, harvesting costs, costs for after-harvest 

fertilization, and costs for drying and storing the harvested biomass. In order to 

capture economies of scale in harvesting, we distinguish costs (a) at farm (fixed); 

(b) per plot (quasi-fixed); and (c) per ton of harvested biomass (variable) as 

follows: 

 𝐻𝐶 = 66.75 + 272.13 ∗ 𝐿 + 10.67 ∗ 𝐿 ∗ 𝑌 (1) 

where 

HC – total harvesting costs (i.e. all the costs related to harvesting), €; 

L – area of land harvested, ha; 

Y – yields harvested
6
, t DM. 

Considering different harvest intervals allows the plantation to function as 

storage for biomass, such that temporal arbitrage can be applied: one might let the 

trees grow if prices are currently low and expected to increase again. Moreover, 

since we specify fixed and quasi-fixed harvesting costs, the total harvesting costs 

per ton of dry matter yields decline the longer the plantation has grown since 

planting or the latest harvest; here, between two and five years are considered. 

                                                      

 

5 Reconversion can be exercised only in combination with harvesting. Costs for reconversion include 

harvesting costs and clear-cut costs. 

6 Hereinafter “DM“ stays for “dry matter”. 
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Table 1. Summary of the main characteristics of our case study. 

Characteristics of a large real-world 

investment project 
Expressed in our case-study via 

Compound American option 

Short rotation coppice plantation with initial 

planting (can be postponed by 3 yrs), 

intermediate harvestings (after 2-5 yrs from 

the previous stage, i.e. planting or 

harvesting), and final reconversion (after 

max. 20 yrs after planting, exercised only 

together with harvesting). 

Stochastic component 
Biomass price, i.e. price for short rotation 

coppice output. 

Sunk costs 
Planting costs, as well as costs associated 

with harvesting and final reconversion. 

Predefined investment sizes 

Predefined land plots to be potentially 

converted to short rotation coppice 

plantation. 

Opportunity costs 

Annual agriculture, in particular two types 

of annual agriculture, characterized by 

different inputs, i.e. land and labor, and 

output, i.e. gross margins. 

Returns-to-scale 

Costs associated with harvesting, which 

include costs (a) at farm (fixed); (b) per plot 

(quasi-fixed); and (c) per ton of harvested 

biomass (variable). 

Resources’ endowments 
Land and labor; both assumed to be limited 

with no possibility to expand. 

Policy constraints 

“Ecological Focus Area”: 5% of land 

endowment must be devoted to fallow land; 

alternatively, short rotation coppice 

plantation is recognized as fallow land with 

the coefficient 0.3. 

Source: Own representation. 
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After setting up the mixed integer programming model
7
 that maximizes the net 

present value the risk is introduced into the model. We assume the natural 

logarithm of the output price for SRC to follow a mean-reverting process (MRP), 

in particular an Ornstein-Uhlenbeck process (Musshoff 2012; de Oliveira et al. 

2014). Having run Monte-Carlo simulation for the output prices with 10’000 

draws, we apply a scenario tree reduction technique. In order to determine the 

optimal number of leaves, we chose the expected area under SRC as the main 

result, and stabilized it within +/-10% of the expected area under SRC under 500 

leaves (see Appendix 2 for the results of our sensitivity analysis). We found out 

100 leaves to be a good trade-off between accuracy and speed. For the sake of 

clarity of our analysis, we focus on a risk-neutral decision maker and apply a risk-

neutral discount rate. 

We additionally run two types of sensitivity analysis. First, we quantify the 

difference between the real options and the classical net present value approach. 

For the latter, we force the farmer to make the ultimate decision on planting, 

harvesting and reconversion immediately, based on the expectations of biomass 

output price, i.e. we switch from stochastic to deterministic model. The stochastic 

process for the biomass price stays the same. Second, we analyse the influence of 

the observed biomass price on the farmer’s decision making. In particular, we shift 

the constructed scenario tree up and down in parallel, keeping all the other 

parameters constant. 

5 Empirical results 

The results of our sensitivity analysis with respect to the difference between 

the real options and the classical net present value approach are in line with the 

                                                      

 

7 The deterministic model is beyond the focus of the paper. Therefore we present only the major 

points relevant for the proposed approach, leaving out all the equations. 
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theory: planting trigger under the classical net present value approach is lower, 

than the one based on the real options. Specifically, under a now or never decision, 

the farmer would convert some land to SRC immediately already under a biomass 

price of 48 €/t DM which is 5% below our baseline scenario. In opposite to that, 

our real options approach finds at that price a positive option value to postpone 

planting which fits the observed reluctance of farmers to adopt SRC under current 

prices (see e.g. Bemmann and Knust 2010; Allen et al. 2014). In contrast, Musshoff 

(2012) reported immediate planting of SRC to be profitable in his real option 

application, assuming the same stochastic process for biomass price. We presume 

that our higher investment trigger is due to consideration of more aspects of the 

real world investment problems, namely full managerial flexibility in SRC 

cultivation along with an alternative farm activities competing for resource 

endowments. We next exemplify some results available from the model.  

The results of the sensitivity analysis with respect to the observed biomass 

price (i.e. the starting value of the scenario tree) are shown in Figure 1. For 

instance, under the observed biomass price of 50.40 €/t DM (i.e. the baseline 

scenario), there is a chance of never converting any plot to SRC (the sum of 

probabilities is below 100%). If SRC is planted, then not immediately, specifically, 

SRC will be introduced in the second year with a probability of 23%, with 23% in 

the third year, and with 41% in the fourth year. A breakdown by the scale of 

investment is beyond Figure 1. If SRC is planted in the second year under the 

baseline scenario, in 87% of the cases a plot of 10 ha would be converted to SRC; 

and a plot of 20 ha in the remaining 13% of the cases. As one would intuitively 

assume, the (expected) area under SRC increases the biomass prices are shifted 

upwards (the blue curve in Figure 1). The same sensitivity analysis can be 

conducted for every stage of the compound option, such as harvesting and 

reconversion decisions, for any time points, as we account for full flexibility in 

planting and harvesting while considering the compound option in a farm context. 
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Figure 1. Sensitivity analysis with respect to the biomass output price for short-

rotation coppice (SRC) for planting decision (based on the real options approach). 

 

Source: own calculations and construction. 
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alternative activities. Ignoring the policy measures and opportunity costs would 

have obscured this result. 
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impact of competition for land (Figure 2)
8
. A similar result can be found if we 

assume that the freed labour is employed off-farm. Due to that effect, the 

investment trigger is reduced compared to a simpler model where only competition 

for land is reflected. Again, this result is only possible due to taking into account 

alternative activities, policy measures and farm constraints. 

Figure 2. Expected land distribution (average per year) between alternative farm 

activities under different starting (observed) value of the scenario tree (based on the 

real options approach). 

 

Source: own calculations and construction. 

To this end, our empirical results are in line with the observed reluctance of 

farmers to convert to SRC under current market and policy conditions and reveal 

additional information on incentives to adopt SRC. 
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rather postponed. 
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6 Discussion 

The proposed approach provides a detailed investment analysis, including 

timing and depth of exercising every stage of the compound option. Timing is 

represented by the optimal investment behaviour at each given node of the scenario 

tree, as well as at the subsequent nodes assigned with probabilities and conditional 

to the antecedent developments. Depth is expressed in fractional units or – if 

investment options of predefined sizes are considered – as the exercised subset of 

all the available options. At each node of the scenario tree the value to postpone 

can be evaluated by comparing the expected payoffs with and without temporal 

flexibility, i.e. the payoffs derived based on the real options and on the classical net 

present value approach. We also reveal additional (dis-)incentives to invest that 

were obscured previously due to restricted assumptions, such as interactions of 

alternative activities and their influence on the investment behaviour. In particular, 

we allow for adjustment of alternative activities or other changes in management 

related to exercising an option.     

For the sake of clarity, we presented a simplified farm model, while it can be 

improved by adding more farm activities and constraints. Multiple risks, including 

mutual correlation, can be assumed; this would require the scenario tree to be 

characterized by a vector of simulated values in each node. Alternatively, several 

stochastic parameters can be combined in one composite risk, as done in some 

existing models (e.g. Flaten and Lien 2007; Bartolini and Viaggi 2012; Beraldi et 

al. 2013). Also, risk preferences can be considered; the easiest way would be 

introducing a risk utility function. Further empirical analysis can be done in 

different directions. First, investment triggers can be determined by conducting a 

sensitivity analysis with respect to any parameter of the model as a potential 

investment trigger. Increasing (decreasing) the respective parameter stepwise 

would determine an interval, within which the investment decision switches to 

exercising the option immediately; the true investment trigger hence belongs to this 

interval. The smaller the steps of the sensitivity analysis, the smaller the range 

containing the true investment trigger. Second, our approach allows for stepwise 
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relaxing of the assumptions and hence quantifying their influence on the 

investment behaviour. Next, a comprehensive policy analysis can be done. The 

tested policy measures might refer not only to the investment option itself, but also 

to the alternative activities, as well as to the resources’ endowments and other 

constraints. Such an analysis would reveal both direct and indirect effect of a 

policy measure due to redistribution of resources between alternative activities and 

other changes in management. Finally, if risk preferences are considered, a risk 

analysis can be conducted.  

Our approach advances in the following. First, the curse of dimensionality of 

a binomial (trinomial) scenario tree is overcome. Our constructed asymmetric 

scenario tree reflects the underlying distribution, while the values are not exploding 

and the number of leaves is restricted. Second, in contrast to LSMC, our approach 

can be efficiently applied to problems with higher complexity. Indeed, once 

resources’ endowments and other constraints are involved, the LSMC requires a 

numerical method to solve each Monte-Carlo path backwards for each stage, 

starting from the last one. If the size of the investment project is a decision variable 

as well, the LSMC additionally requires a sensitivity analysis with respect to the 

project size. Generating the payoffs for all potential combination of exercising time 

points and Monte-Carlo draws can be numerically demanding if a programming 

approach is needed. And not at least, that process must be programmed as well. 

Once it is necessary to use a programming approach to determine the NPV of a 

single Monte-Carlo, potentially conditional of exercising an option at a pre-

determined stage, we find it more straightforward to use stochastic programming 

directly as proposed in this paper. Instead of approximating the payoff matrix with 

a regression function as in the LSMC, we approximate the Monte-Carlo fan based 

on tree reduction, which we judge as more transparent. Third, as our case study 

underlines, the approach is rather general. It is able to value even complex 

compound options such as choosing the best combination from a portfolio of 

different investments which interact or even problems where the number of stages 

is not pre-determined. There are no restrictive methodological requirements 
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associated with our approach. Indeed, any underlying stochastic process can be 

assumed as long as it is possible to run Monte-Carlo simulations and to construct a 

reduced scenario tree. The number of stages is not limited either, unless the 

relations between the stages cannot be captured in equations. The time horizon is a 

parameter of the model and its choice is not restricted. Next, European options can 

be valuated using our approach in a similar way as American option. Finally, our 

approach allows conducting comprehensive sensitivity, policy and risk analyses, 

while representing the outcomes in a transparent and intuitive way.    

There are three issues worth additional comments. First, an exploding 

stochastic process cannot be assumed, since a Monte-Carlo simulation might 

quickly lead to unrealistic values. For instance, Geometric Brownian Motion and 

Arithmetic Brownian Motion – common assumptions in the literature for stochastic 

biomass price (e.g. Kallio, Kuula, and Oinonen 2012; Di Corato, Gazheli, and 

Lagerkvist 2013) - exploit by simulating over several time periods. Since such 

simulated values are not plausible, this limitation refers to the assumption itself, 

rather than to the approach. Another issue that requires further research is the 

choice of the number of leaves. As mentioned above, there is no well-established 

procedure to determine the optimal number of leaves. Finally, the appropriate risk-

adjusted discount rate applied to a scenario tree should differ from the risk-adjusted 

discount rate applied to the underlying asset, since a tree does not correctly 

represent the underlying volatility (e.g. Lander and Pinches 1998, p.553). In 

addition, as mentioned above, a tree is characterized by decreasing risk when 

approaching the leaves. Further research might hence focus on a method 

determining the appropriate risk-adjusted discount rate for a scenario tree. 

7 Conclusion 

The existing methods of real options valuation miss to capture the complexity 

of large real-world investment projects consistently. This limitation leads to 

reluctance of practitioners to employ the real options theory for investment 

analysis. In this paper we develop a numerical method for valuation of (compound 
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American) real options. The approach combines and benefits from both intuitive 

scenario tree approach and the Least Squares Monte-Carlo – the two well-known 

approaches for valuation of American options. Yet in contrast, our approach has no 

curse of dimensionality, does not require additional assumption about the 

functional form of Lagrangian, and ensure computational efficiency by restricting 

the solution domain. In addition, our approach, as well as the obtained results, is 

very straightforward and comprehensible. 

The approach we propose can be summarized with four main steps. First, we 

define the decision variables of the problem. Second, we establish the relations 

between these decision variables, including lagged relations between time points, 

and combine them into a deterministic programming model. Third, we choose an 

appropriate distribution for the stochastic parameter(s), draw Monte-Carlo 

scenarios and construct from them a reduced scenario tree with probabilities, 

employing a scenario tree reduction technique. Finally, we employ stochastic 

programming for the real options valuation. The obtained results include both 

timing and depth of exercising options. Timing is represented by the optimal 

investment decision at each given node of the scenario tree and at the subsequent 

nodes with assigned probabilities. Depth is reflected by the optimal scale of 

exercising an option, taken into account opportunity costs, returns-to-scale, 

resources’ endowments and other constraints. Our approach also allows conducting 

comprehensive sensitivity, policy and risk analyses, while representing the 

outcomes in a transparent and intuitive way. 

We illustrated the approach with valuation of option to adopt, harvest, and 

then reconvert perennial energy crop in the farm-level context. The empirical 

model differs from existing investment analyses of perennial energy crops 

cultivation by a number of simultaneously relaxed assumptions. In particular, we 

allow for full flexibility in planting and harvesting, consider alternative farm 

activities, as well as take into account resources’ endowments and other 

constraints. Our empirical results are in line with both the real options theory and 

the observed reluctance to adopt perennial energy crops. Due to relaxed 
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assumptions, we obtain more plausible results and reveal additional incentives for 

perennial energy crops cultivation, in particular redistribution of resources between 

alternative activities. The model we presented here can be improved further, 

including consideration of more alternative activities and farm constraints, as well 

as introduction of multiple risks and risk preferences.  

Our approach can be employed to various applications, being especially 

advantageous for real options valuation, where not only timing, but also the scale 

and interaction with constraints and alternative activities matter.  
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Appendices 

Appendix 1. Data and parameters 

Parameter Units Assumed value 

Short-Rotation Coppice 

Labour requirements 
Labour units / 

ha 
0 

Planting costs € / ha 2875.00 

Biomass growth function   

Multiplier for last year’s biomass - 1.54 

Constant increase per year t DM / ha 6.68 

Harvesting costs   

Fixed costs a farm level € 66.75 

Quasi-fixed costs for each plot € / ha 272.13 

Variable costs, depending on harvested 

quantity 
€ / t DM / ha 10.67 

MRP for logarithmic output price (ln 𝑃𝑡)   

Starting value - 3.92 

Average value - 3.92 

Speed of reversion - 0.22 

Variance of Wiener process - 0.22 

Reconversion costs € / ha 1400.00 

Density of trees 
Number of trees 

/ ha 
9000 

Alternative agriculture 

Net annual cash flow from traditional agriculture   

Winter wheat € / ha 537.15 

Winter rapeseed € / ha 460.64 
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Set-aside land € / ha -50.00 

Labour requirements9   

Winter wheat 
Labour units / 

ha 
5.32 

Winter rapeseed 
Labour units / 

ha 
4.16 

Set-aside land 
Labour units / 

ha 
1 

Farm characteristics 

Land endowment10 ha 100 

Labour endowment11 Labour units 455 

Real risk-free discount rate % 3.87 

Source: based on Musshoff (2012); Faasch and Patenaude (2012); Wolbert-Haverkamp (2012); 

Pecenka and Hoffmann (2012); Schweier and Becker (2012); Kuratorium für Technik und Bauwesen 

in der Landwirtschaft e.V. (2016); Statistisches Amt Mecklenburg-Vorpommern (2016). 

Two elements in the parameterization are worth further comments. First, we 

take the yield function from Ali (2009), introduce some required parameters and 

regress from there a linear function for biomass stock that depends on previous 

year’s stock. Second, based on Schweier and Becker (2012) and Pecenka and 

Hoffmann (2012), we derive harvesting cost separated by (a) costs at farm (fixed) 

                                                      

 

9 Those include only field work and exclude management work, which is assumed to be limited per 

farm and hence have no effect on resources’ distribution. 

10 The assumption is based on the statistical data, according to which 20% of agricultural farms in 

2010 in Mecklenburg-Western Pomerania operated on an area of 50 to 200 Ha (Statistisches Amt 

Mecklenburg-Vorpommern 2016). 

11 Based on the assumption that initially 47.5% of land are devoted to winter wheat, 47.5% - to winter 

rapeseed, and 5% - to set-aside land. This endowment excludes management work and off-farm work; 

both are assumed to be limited per farm and hence have no effect on resources’ distribution. 
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and (b) per plot (quasi-fixed) plus (c) costs per ton of harvested biomass (variable), 

in order to consider possible economy of scale. 

Appendix 2. Comparison of solving time (for 7 price scenarios) and average 

expected area under SRC between the model with 500 leaves and the models 

with fewer leaves in scenario tree 

 

Note that solving time for each price scenario was restricted by 20 hours. Source: own calculations 

and construction. 
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