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Abstract 

As crop straw and firewood are generated as by-products of food production systems, they 

are perceived to be sustainable energy sources that do not threaten food security by Chinese 

government for a long time. However, the time spent on collecting straw and firewood may 

create a burden on rural household, as it could reduce the available labor inputs for 

agricultural production, which in turn, possibly brings negative impact on food security. 

Building on an integrated agriculture-energy production system, a Symmetric Normalized 

Quadratic (SNQ) multi-output profit function (which includes labor allocations as quasi-fixed 

factors) is estimated to investigate the impacts of traditional biomass energy use on 

agricultural production in this paper. The negative signs of the calculated cross-price 

elasticities of supply (agricultural products and biomass energy) confirm that the relationship 

between biomass collection and agricultural production is competition. Moreover, the cross-

price elasticities of biomass collection with respect to inputs are positive, implying that 

indirect link between biomass collection and agricultural production perhaps lies in household 

consumption decisions. The important implication of this study is that potential policy 

interventions for developing biomass energy in rural China could aim at enhancing food 

security by improving household motivation of engaging in agricultural production and 

slowing down the competition between biomass collection and agricultural production. It is 

suggested that government should attach more importance to simultaneously promote the 

prices of agricultural products and control the prices of intermediate inputs.   

 

Keywords: biomass collection, agricultural production, labor allocation, China 

JEL Codes: O13, Q01, Q12, Q41  
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1. Introduction  

Biomass, which is related mostly to agriculture and forestry, is an important source of 

renewable energy in rural China. While the largest contributing sources are estimated to be 

the residues from annual crop production and forest logging like straw and firewood, much of 

them are presently used for cooking and heating in rural households (IRENA, 2014). According 

to the national statistics of China (MOA, 2010), the theoretical resources amount of crops 

straw with 15% water content was 0.82 billion ton, while the available resources amount of 

that for energy use was about 687 million ton, including 265 million ton maize straws, 205 

million ton rice straws and 150 million ton wheat straws. Moreover, totally 0.155 billion ton 

woody biomass resources derived from deforestation wastes, wood processing and firewood 

forests were used as feedstock for energy production by the end of 2010 (CRES, 2011). As 

these residues are generated as by-products of food production systems, they have been 

perceived to be sustainable energy sources that do not threaten food security by Chinese 

government for a long time (Fernandez, 2016). Despite all this, due to lack of access to modern 

technologies such as gasification, briquetting and co-combustion of coal and biomass, a large 

number of rural households have to convert biomass to energy at low efficiencies by directly 

burning it. Biomass collection, in this context, involves operations of gathering and packaging 

biomass in or near the field, and transporting it to a specific site (in most cases, households 

place the collected biomass near their houses) for temporary storage (Zafar, 2015). The time 

spent on collecting biomass may create a burden on household who decides to use traditional 

biomass energy such as crops straw and firewood, as it could reduce the available labor inputs 

for agricultural production, which in turn, may deal negative impacts on food security (Li et 

al., 2001; van der Kroon et al., 2013). Therefore, it is of great importance to better understand 

the effects of traditional biomass energy use on agricultural production in China.  

Currently in Sichuan Province, household energy consumption in rural areas still depends on 

traditional biomass energy generated from firewood and crop residues, due to the slow 

progress of energy transition toward modern fuels (Guta, 2014; Chen et al., 2016). By the end 

of 2013, the proportion of traditional biomass energy, i.e. crop straw and firewood, in rural 

energy consumption was 44% (SCREO, 2013). Excessive firewood collection leads to 

deforestation, while the utilization of crop straw potentially has negative effects on soil quality 

(Mathye, 2002; Chen el al., 2006). However, the existing evidence regarding the relationship 

between traditional biomass energy and agriculture is still insufficient to provide a clear 

picture of agriculture-energy interactions at micro level in rural Sichuan. Hence, the main 

purpose of this paper is to investigate how traditional biomass energy use affects agricultural 

production with a focus on biomass collection.  

In recent years, a large number of researches have analyzed the agriculture-energy linkages 

resulting from the integration of food, feed and fuel production, with focus on the effects of 

crop-based biofuel on agriculture ( Kgathi and Mfundisi, 2009; Timilsina et al., 2010; Babcock, 
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2011; Alka et al., 2014; Guta et al., 2015). The majority of them are qualitative analysis (Dodder 

et al, 2015). The results demonstrate that the utilization of crop-based biofuel impacts 

agricultural production, both directly and indirectly. The direct influences come from the 

competition between energy crop cultivation and agricultural production for resources such 

as land, labor and water (von Lampe, 2007; Baier et al., 2009), whereas the indirect effects are 

reflected through the mechanism of price transmission between biofuel prices and food prices 

(Havey and Pilgrim, 2011; Ajanovic, 2011; Zilberman et al., 2013). Moreover, considering the 

relationship between biomass collection and agricultural production, most existing empirical 

studies have only examined the influence of firewood collection on household agricultural 

production (Kgathi, 1997; Heltberg et al., 2000; Fisher et al., 2005; Chen et al., 2006). As 

suggested by van Horen and Eberhard (1995), an increase in labor time spent on firewood 

collection may adversely influence the labor budget and in turn, negatively affect agricultural 

production. That is to say, due to the limited time endowment, household members especially 

women and children, who have to spend extensive amounts of time on firewood collection, 

are usually constrained from engaging in other income generating activities such as working 

off-farm and agricultural production (Li et al., 2001; van der Kroon et al., 2013). Nonetheless, 

few rigorous empirical studies have been conducted on the interaction between crop straw 

collection and agricultural production. Although biomass collection is expected to compete 

with agricultural production, the understanding and the empirical evidence of the impacts of 

biomass collection on agricultural production are still relatively limited. Thus, the present 

article aims to fill the gaps in past literature by integrating biomass (including crop straw and 

firewood) collection into agricultural production. A major contribution of this paper is the 

analysis of household labor allocation between biomass collection and agricultural 

production, and of household responses to factors such as prices of agricultural products and 

intermediate inputs, and opportunity costs of time. A Symmetric Normalized Quadratic (SNQ) 

multi-output profit function, which includes labor allocation as quasi-fixed factors, is derived 

from a model of household production behaviors and estimated by triangulating several 

econometric approaches. 

A basic hypothesis of this paper is that biomass collection competes with agricultural 

production for labor resources. Based on the economic theory of duality, we propose to test 

the hypothesis through investigating household production responses to the changes in the 

prices of outputs and inputs. Here, we assume that households in the study region (in Sichuan 

Province) are price taking and profit maximizing and competitive producers, and the market 

for traditional biomass energy (i.e. crop straw and firewood) is absent. The structure of this 

paper is organized as follows: The theoretical framework developed on an agricultural 

household model is provided in Section 2. Section 3 gives the model specifications and 

estimation strategies adopted for empirical analysis. In Section 4, the data and variables used 

in this paper are described. Section 5 presents the estimation results of the models, and the 

main findings and policy implications are summarized in Section 6. 
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2. Theoretical framework 

In order to address the focused issue, an agricultural household model including household 

labor allocation to production activities is elaborated. Before further analysis, two basic 

assumptions for this study are set. The first one is that intra-household economic activities on 

the production side are only composed of biomass collection and agricultural production. The 

second one is that farm households allocate their limited labor endowment to agricultural 

production, biomass collection and off-farm work to generate income to support their 

consumption. Hence, biomass production will be integrated into the agricultural household 

model for investigating how a household makes decision on biomass energy use, and how it 

would, in turn, influence agricultural production. 

Firstly, the agricultural production of the household is assumed to be continuous and 

monotonic in its labor input aiL , twice-differentiable and strongly concave. It is represented 

by the function: 

0,0);(  aiaiiaiaiai FFwithBLFq                                       (2.1) 

Where B is a set of all inputs except labor (i.e. land, water, and all the other inputs) which is 

assumed to be exogenous. 

Now, we introduce the household biomass collection into our household model. In rural 

Sichuan, the most important types of biomass energy are crop straw collected from the farm 

and firewood collected from forest. Then, we define biomass resources here as crop residues 

and firewood. We assume that the labor supplied to biomass collection is )0(biL , and define 

household biomass collection function as:  

0,0);(  bibiibibibi FFwithZLFq                                  (2.2) 

Where Z is an exogenous vector of household characteristics pertaining to the accessibility 

and availability of biomass resources such as the distance from the forest or the field to the 

house, the transportation cost, and the stock of biomass resources. 

In previous literatures using the household models, the biomass collection was usually 

integrated into the agricultural household model by adding a separate production function 

(Wiedenmann, 1991; Heltberg et al. 2000; Köhlin and Parks, 2001; Fisher et al. 2005; Chen et 

al. 2006; Charles and James, 2008). In this approach, there is an implicit assumption that labor 

allocation decisions are separable and can be made independent of allocation decisions on 

agricultural production and biomass collection (Weaver, 1983). However, in Sichuan Province, 

the labor allocated between agricultural production and biomass collection cannot be 

distinguished by any physical indicator such as gender and age. The members of the household 

engaged in farm work, in most cases, are also responsible for biomass collection. They often 

collect firewood on their way to and from the fields or collect crop straw after harvesting and 



4 
 

take it home. The simple aggregation of the production functions in past studies lacks the 

information on the internal relationship between agricultural production and biomass 

collection. Rural households usually rely on the market to provide signals through the price 

system to choose the proportions of available labor inputs that should be allocated to each 

activity (Debertin, 2012). In other words, household labor allocation should on the basis of the 

decisions regarding these two activities. Therefore, the above separable labor allocation 

assumption will not be hold in this study. In order to better simulate household production 

behaviors in our study region, a multiple output production function will be considered 

(Weaver, 1983).  

Then, we can derive a multiple output production function that embodies the behavioral 

relationship as well as technical relationship based on the single-input productions (2.1) and 

(2.2): 

biaiiiiiibiaii LLLZBLgqqf  );,;(),(                                   (2.3) 

Where the function )(f is concave in aiq and biq . This shows the behavioral relationship that 

defines the transformation curve for the agricultural products and collected biomass 

(Debertin, 2012). The function )(g reflects the technical relationship that specifies possible 

combinations of the output aiq and biq  produced from the mix of labor inputs aiL and biL

(Debertin, 2012), and it may be concave in iL (the total labor input for intrahousehold 

production activities). 

Using the implicit function theorem, we can write: 

),;,()]([ 1

iiibiibibiaiai ZBLqhqFLFq                               (2.4) 

And we can also obtain: 

)()( 11

bibiaiaii qFqFL                                         (2.5) 

The total differentiation of (2.5) with respect to aiq and biq yields: 

bibiaiaibi
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Assuming that iL  is invariable, therefore we have: 

bi

ai

bi

ai

bibiaiaii
MPL

MPL

dq

dq
dqMPLdqMPLdL  0)1()1(                   (2.7) 

The equation (2.7) gives the behavioral relationship between agricultural and biomass 

collection. The expression biai dqdq represents the slope of the product transformation curve 

at a particular point. It is the rate of product transformation of biomass collection for 

agricultural production (
biaiqqRPT ) and indicates the rate at which agricultural products can be 
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substituted for the biomass outputs as the labor input bundle is reallocated (Debertin, 2012). 

Along the production transformation curve, 
biaiqqRPT is equal to the negative ratio of individual 

marginal products. According to our assumptions that 0aF and 0bF , this rate is 

unambiguously negative. This implies that, for agricultural products and biomass collection, 

one must be reduced in order to obtain more of the other, given a fixed available amount of 

labor inputs iL .  

As the objective of the household is to maximize its real income from agricultural production, 

biomass collection and off-farm work, it then can be expressed as a profit maximization 

problem: 

 
biaioiibiaiiibiaiibiaii

ioiibiaiiiiiii

LLLtrwELLaTwLLwqqf

ELwLLwZBLgMax

,,...))(()(),(

)(),;(

*

*




     (2.8)                                                                                             

With slight modification, the first-order conditions for household labor allocation are obtained 

as: 

i
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i w
L
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** 0 iaii

ai

ai

ai

i wMPLw
L

q

L










                                      (2.10) 

** 0 ibii
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i wMPLw
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







                                       (2.11)   

The conditions from (2.9) to (2.11) imply that the optimum of labor allocation between 

agricultural production and biomass collection will occur at the points where the marginal 

output equals to the shadow wage of household labor. Then we can solve the household profit 

maximization problem and obtain the reduced form of household optimal labor allocation 

functions as follow: 

),,(),,,)(,,( *** obanZBEaTwwLL iiiiiiini                                 (2.12) 

The labor allocated to off-farm work (o), agricultural production (a), and biomass collection 

(b) can be expressed as a function of market wage rate, shadow wage rate, household time 

endowment, non-labor income, inputs and services for agricultural production, and the 

factors affecting biomass collection.  
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3. Empirical specification and strategy 

The basic hypothesis of this research is that agricultural production competes with biomass 

collection for labor resources. Based on the theoretical framework provided in Section 2, we 

propose to test the hypothesis through investigating the product supply and input demand 

relationships. Here, we assume that the households in our study region are clearly price taker 

and profit maximizing and competitive producers. A two-stage estimation strategy developed 

on the basis of previous literature (Henning and Henningsen, 2007; Tiberti and Tiberti, 2015) 

is adopted. We firstly estimate the shadow wage of household labor through modeling the 

intra-household production system and then include the estimated shadow wage in a multi-

output profit function to investigate the relationship between agricultural production and 

biomass collection.  

3.1 Shadow wage estimation 

3.1.1 Household participation decisions  

As the shadow wage rate of household labor is endogenous and mainly determined within 

household, it can be expressed as a function of household characteristics affecting household 

preferences and choices (Singh et al, 1986). Therefore, functions in (2.12) can be transformed 

to: 

),,(),,,,)(,(** obanaZBEaTwLL iiiiiiini                                  (3.1) 

Considering the first-order Taylor series expansion for function (3.1): 

∑
10 )()(

J

j niij

ij

ni

i

i

ni

nni X
X

L
w

w

L
Y












                              (3.2) 

Where ni is the error term;  JXXX ,1 represents exogenous explanatory variables other 

than market wage rate. Let us denote inin wL 1 and ijninj XL  , and then we can 

create three estimable participation equations in the form as: 

),,(10 obanXwY niijnjinnni                                  (3.3) 

It can be seen from (3.3) that the dependent variables are decisions on participation in one of 

the three activities ( 1niY if household participates in one activity, otherwise 0niY ).  

Among independent variables, iw is the market wage rate. Theoretically, the functions in (3.1) 

reveal that market rate is one of the most important determinants for household participation 

decision on off-farm work. When the market rate increases, households are more likely to 

participate in off-farm work. With respect to other explanatory variables in X , the other 

income iE is measured by non-labor income. In our study, it mainly consists of subsidies 

provided from government (such as subsidies for superior crop varieties, direct subsidies to 
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grain cultivation, subsidies for pig breeding, and compensations for health insurance, etc.), 

reimbursements from various insurances, remittances and other returns from investment in 

capital market. The household size and demographic characteristics (such as the fractions of 

children and elderly people) are used as proxies for its time endowment iaT )( . Larger 

households could have more labor resources, while the fractions of children and elderly 

people also reflect the amount of available labor resources that can be provided by the 

household. Normally, households with larger fractions of children and elderly people are less 

likely to allocate labor to off-farm work. For the other inputs in agricultural production ( iB ), 

we firstly choose the areas of arable land owned by the household as it can significantly 

influence the household decision regarding participation in agricultural production. We do not 

use the total value of intermediate inputs as an explanatory variable in our econometric 

model, because household allocation decision can affect intermediate inputs using activities, 

especially the use of fertilizers and pesticides, according to the findings of many previous 

works of research (Lamb, 2001; Mathenge and Tschirley, 2007). Instead, we use the weighted 

price of fertilizers and pesticides as a proxy for the amount of intermediate inputs since the 

households are more likely to purchase cheaper fertilizers and pesticides. Meanwhile, 

considering biomass collection, the distance from house to the nearest biomass collecting spot 

is selected to represent the accessibility and availability of biomass resources. It is also 

supposed to negatively influence household labor allocation to biomass collection. 

Particularly, for the omission of this variable caused by non-participation in biomass collection, 

we assume that these households face the average distance and substitute regional sample 

mean for the missing data. 

We also include household head characteristics such as age, gender and educational level in 

our model, because these characteristics affect the quality of household labor, and then 

influence the marginal products of land and other intermediate inputs, which in turn brings 

effects to household participation decisions on different activities. Finally, the household 

location dummies are added into the regression to capture the effects of regions on household 

labor participation decisions. 

In order to estimate the participation equations, we employ a multivariate probit model and 

then use the method of simulated maximum likelihood (SML) to obtain the estimate results 

of the model. 

3.1.2 Production decisions 

We then estimate the shadow wage rate of household labor using production function. 

According to the multi-output production function obtained using implicit function theorem 

in (2.3) and considering the easiness of estimation and interpretation, the simultaneous 

agriculture-energy production relationship for household i can be represented by a system of 

two equations derived from the Cobb-Douglas transformation function as follows (Just et al., 

1983; Debertin, 2012): 
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ikikmimaiii vdρBξLσTOBσTOA ++++= ∑∑ lnlnlnln 21              

ijijbiii μdρLλTOAλTOB +++= ∑lnlnln 21                              (3.4) 

Where i and iv are the error term. 

In this model, the agricultural output (variable nameTOA , measured by the total value of 

agricultural products, i.e. the quantities of crops produced by household imultiply the prices 

of these crops.) is modeled as a function of the quantity of biomass (denoted asTOB , 

measured by the total amount of the biomass collected by household i 1.), the quantity of labor 

input ( aL , the total hours spent on farm), a vector of other inputs ( mB , including the areas of 

arable land AL  and the total value of intermediate inputsTCI 2.), and other variables ( kd ), 

such as household local dummies ( 1r and 2r ) that also can influence households’ agricultural 

production. In contrast, the amount of collected biomass is hypothesized as a function of the 

total value of agricultural outputs, the labor input ( bL , the total hours spent on biomass 

collection), and other influencing factors jd (including the distance to biomass collecting spots

DBand household location dummies).  

Once the system of equations (3.4) has been estimated, the shadow wage of household labor 

can be calculated using the following formula: 

ai

i

aii
L

AOT
MPLw

)ˆˆ1(

ˆˆ

11

2*






                                               (3.5) 

Where iAOT ˆ is the predicted value of agricultural output, and 1̂ , 2̂ and 1̂  are the estimated 

coefficients associated with outputs and labor allocated in agricultural production, 

respectively.  

As the market for biomass energy is almost absent in our study region, the prices of biomass 

energy (crops straw and firewood) cannot be directly observed. Therefore, according to the 

equilibrium condition *

ibiai wMPLMPL  , we use the shadow wage derived from (3.5) to 

calculate the shadow prices of crop straw and firewood as: 

)(

)()(*

kgbiomasscollectedofamountTotal

HourstimeCollectinghourperCNYw
priceShadow i 

                (3.6) 

The Ordinary Least Squares (OLS) estimates of the production system may be biased for three 

main reasons. Firstly, unobserved information such as the ability and management level of the 

household reflected in the error terms are likely to be correlated with the endogenous 

                                                      
1 Since the biomass or biomass energy is non-tradable. In order to unify the units of firewood and crop straw to standard coal equivalent 

(Kgsce), we divide the quantities of them by their conversion coefficients. The data of conversion coefficients for all types of energy are 
collected from China Energy Statistic Yearbook(2009) 
2 Due to the unavailability of the data, we use the total cost of fertilizer, pesticides and plastic films instead. 
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variables, particular the variable inputs (labor and intermediate inputs) in both of the 

equations, which may lead to omitted variable bias. Secondly, the two output variables are 

jointly determined. Thus, the single-equation estimation may suffer from simultaneity bias, 

due to the correlation between the disturbance of each equation and the output variables. 

Moreover, since the output variables are also the dependent variables of the equations in the 

system, the error terms among the equations are also expected to be correlated (Greene, 

2012), which may cause the problem of inefficient estimation. Thirdly, the observed data can 

only reflect the situation of the households who decide to participate in corresponding 

production activities. Under this circumstance, the conditional means of error terms over the 

non-zero output population are not equal to zero, implying that the potential sample selection 

bias should be corrected in our model estimation.   

The first problem could be mitigated by including observable household characteristics such 

as age, gender and educational level as proxies for management ability for both of the 

production activities. 

The second problem is solved by using estimation methods for simultaneous equations. In this 

research, IT3SLS (iterative three-stage least squares) is applied to estimate the system of 

production functions. The IT3SLS method combines the procedure of the 2SLS (two-stage least 

squares) and SURE (Seemingly unrelated estimation) and produces the system estimates from 

a three-stage process (Zellner, 1962). In the first and second stages, an instrumental-variables 

approach is adopted to develop instrumented values for all endogenous variables (the output 

variables in the system) and to obtain a consistent estimate for the covariance matrix of the 

equation disturbances. All other exogenous variables in the system are used as instruments. 

In the third stage, generalized least squares (GLS) estimation is performed using the 

covariance matrix estimated before and with the instrumented values in place of right-hand-

side endogenous variables (Greene, 2012). And then, this process iterates over the estimated 

disturbance covariance matrix and parameter estimates until parameter estimates converge.  

The third problem can be solved by the standard two-stage Heckman (1979) sample selection 

model. In the first stage, the results of the multivariate probit regression model, which is 

estimated to determine the probabilities that a given household will participate in agricultural 

production and biomass collection, are used to calculate the inverse mills ratio (IMR) for each 

household. In the second stage, parameter estimates of the production system are obtained 

by augmenting the regression with the IMRs using 3SLS (Heckman, 1979). Based on the 

equations in (3.3), the IMRs for the household iwho chooses to participate in either activity 

can be computed as follows: 

),,()2,1,,()2,1,,( ,, obanrrXwrrXwIMR jiijiiin                      (3.7) 

Additionally, to deal with the zero-value variables that have undefined logarithm, we modify 

them by replacing them with a “sufficiently small” value (MaCurdy and Pencavel, 1986; 

Jacoby, 1992; Soloaga, 1999).  
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3.2 Household profit maximization problem 

In order to further investigate the impacts of biomass collection on agricultural production, 

we estimate a multi-output profit function to obtain the full coefficients of the profit function 

as well as the price elasticities with respect to all outputs and inputs in the second step. 

Regarding the specification of profit function, a number of plausible functional forms have 

been discussed in previous works of literature. They include the translog (TL), generalized 

Leontief (GL), normalized quadratic (NQ), symmetric normalized quadratic (SNQ) and many 

other forms (Christensen et al., 1973; Lau, 1972; 1978; Diewert and Wales, 1987; 1988; 1992; 

Diewert and Ostensoe, 1988; Kohli, 1993; Villezca-Becerra and Schumway, 1992). As described 

in Kohli (1993), the SNQ profit function treats all outputs and inputs symmetrically (NQ profit 

function can be considered as a special case of SNQ profit function). It is necessarily linearly 

homogeneous in prices and quantities, and as a fully flexible functional form, it can be easily 

imposed monotonicity and convexity properties (Kohli, 1993). Therefore, we adopt a 

symmetric normalized quadratic (SNQ) profit function defined as follows (Diewert and Wales, 

1987, 1992): 
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With =profit, ip =netput prices, iz =quantities of non-allocable quasi-fixed inputs,

 


n

i ii pW
1
 =price index for normalization, i =weights of prices for normalization, and i ,

ij , ij and ijk =coefficients to be estimated.  

Given the above specification, the estimation equations (output supply and input demand 

equations) used to analyze household production decisions are obtained by the first 

derivation of the profit function using Hotelling’s Lemma ( ii pq   ): 
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Where ix =netput quantities or quantity indices. 

In this research, we have four groups of netputs )4( n , i.e. agricultural output (a), biomass 

output (b), labor input (l), and other intermediate inputs (o)3. Arable land is specified as the 

only quasi-fixed input. The price data were obtained from our field survey. Due to the facts 

that each group has many different individual output and input categories and the variations 

in price of the same commodities are quite small, therefore, except labor input, within other 

three groups, it is necessary to aggregate the price and quantity data of different individual 

outputs and inputs. In this study, we set up household-specific price index by calculating the 

                                                      
3 Totally, we set up a system of four equations (two outputs equations and two inputs equations). 
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sum of weighted prices of each category using output value structure in each group. The price 

(index) of each group of netput can be defined as (Lewbel, 1989): 

)2,1(
1

Nnspp n

n

i
ni ==

=

∑                                              (3.10) 

Where ns is the share of the value of netput n  in netput group i  and np is the producer price 

of netput n  (As we do not have the price data of all types of intermediate inputs for each 

household, we use the sum of weighted prices of fertilizer, pesticide and plastic films which 

was calculated using the average price and consumption structure data of the sampled 

households instead.). For the households that do not participate in either of the two 

productive activities, the corresponding production data are missing. We keep their outputs 

quantities zero and assume that these households face the average prices and replace the 

missing data with the sample mean. In particular, for agricultural output ( aix ) and 

intermediate inputs ( oix ), the aggregated quantity indices are computed through dividing 

their total value by their weighted prices.  

Moreover, we employ the following formula outlined by Diewert and Wales (1992) to 

calculate the weights i : 
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Once the SNQ profit function has been estimated, we define the price elasticity as: 
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Then, we will use these price elasticities to further analyze the relationship between 

agriculture production and biomass collection. 

According to Microeconomic theory, we must consider the conditions imposed on our SNQ 

profit function before estimating it. Homogeneity in netput prices is imposed by the functional 

form and symmetry requires njijiij ,,1,,    (Henning and Henningsen, 2007). In 

addition, in order to be consistent with the solutions to the profit maximization problem, the 

profit function has to be convex in netput prices (Varian, 1978). This implies that the Hessian 

matrix of the profit function must be positive semidefinite (Arnade and Kelch, 2007). 

Therefore, we applied the three-stage procedure proposed by Koebel et al. (2000; 2003) to 

impose convexity on the SNQ profit function. Firstly, we calculate the Hessian matrix after 

estimating the unrestricted netput equations in (3.9). Then, we minimize the weighted 
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difference between the unrestricted Hessian matrix and a Hessian matrix that is restricted as 

positive semidefinite by the Cholesky factorization. In the last stage, we estimated the 

restricted coefficients by adopting an asymptotic least squared (ALS) framework (Gourieroux 

et al., 1985; Kodde et al., 1990; Henning and Henningsen, 2007).  

As the shadow wage of household labor ( *

lp ) and the shadow price of biomass energy ( *

bp ) 

are unobservable and endogenously determined in the production system, an estimating 

process of instrumental variable regression should be employed in our estimation. Here, we 

use the average age and educational years of employed household members4 as instrumental 

variables for the shadow wage and shadow price. These two variables are exogenous in our 

model, and the characteristics of the employed household members can affect the quality of 

household labor, thus influencing household labor allocation and production decisions. 

Because of the fact that these variables are considered to be correlated with household 

production system, and therefore, they are appropriate instrumental variables. In order to 

estimate our SNQ profit function, we firstly regress the shadow wage ( *

lp ) and shadow price 

( *

bp ) on these instrumental variables and all the other exogenous variables respectively. Then 

the predicted value of these two endogenous variables will be used as augmented variables 

in the constrained IT3SLS at the second step. 

Using the iterative three-stage least square (IT3SLS) estimation method, we jointly estimate 

the SNQ profit function and the four netput equations with the data collected from our 

household survey. As described already, restrictions are imposed on the system to insure 

profit maximization. The estimations and calculations for the SNQ profit function are carried 

out by the statistical software “R” with the add-on package “micEconSNQP”.  

                                                      
4 The employed household members include self-employed members working on farm and those employed off-farm in a specific 

household. 
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4. Data  

4.1. Sample description 

The data used in this paper were collected in a household survey conducted from August 2013 

to February 2014. 556 rural households were randomly selected from 6 counties of 3 cities in 

Sichuan Province.  

As it is shown in Table 1, for the whole sample, 524 households engage in agricultural 

production, accounting for 94.2% of the total, while 409 households collect biomass, 

occupying 73.6% of all those surveyed. On average, the value of annual agricultural outputs is 

17,208 CNY5, whereas the amount of biomass collected by households is 3635 Kgsce6 per year. 

Moreover, the average time allocated to agricultural production is 717 hours per year, while 

the average time spent on collecting biomass is 236 hours annually. Regarding to agricultural 

production, households from Yibin (hilly areas) have the highest participation rate (96.2%), 

whereas households located in Deyang (plain areas) have the lowest one (91.9%). However, 

households from Aba (mountainous areas) spent longest time (796 hours per year) on farm 

work, while those from Deyang spent the shortest time (613hours per household per year). 

Accordingly, the total value of agricultural outputs in Aba is the largest (21,678 CNY per year), 

whilst that in Deyang is the smallest (14,329 CNY per year).  

Turning to biomass collection, the participation rate differs among different areas. In Aba, the 

participation rate is the highest (92.4%) and it took the longest time (380hours per year) for 

households to collect the largest amount of biomass (5354kgsce per year). In constrast, 

Deyang has the lowest participation rate (45.6%), resulting in the fact that the time (74 hours 

per year) allocated to biomass collection is the shortest, and the amount of biomass collected 

by households is the smallest. 

 

 

 

 

 

 

 

 

 

                                                      
5 CNY=Chinese Yuan 
6 Kgsce=Kilogram of standard coal equivalent  
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Table 1: General Information of household participation in agricultural production and 
biomass collection in study region 

  
Aba  
(Mountainous areas) 

Yibin 
 (Hilly areas) 

Deyang  
(Plain areas) 

Total  
sample 

Sample size 185 186 185 556 

Household participation  
in two activities (Number) 

Households participating in 
agricultural production 

175 (94.6) 179 (96.2) 170 (91.9)  524 (94.2) 

Households participating in 
biomass collection 

171 (92.4) 153 (82.3) 85 (45.6)  409 (73.6) 

Households participate in 
neither activities 

3 (1.6) 2 (1.1) 12 (6.5) 17 (3.1) 

Summary of household working  
activities (per household per year) 

Total value of agricultural 
products (CNY) 

21678 15625 14329 17208 

Total amount of collected 
biomass (kgsce) 

5354 4515 1031 3635 

Total hours spent on 
agricultural production 

796 742 613 717 

Total hours spent on biomass 
collection 

380 255 74 236 

Note: The values in parentheses are the shares in subsample or total sample. 
Source: Author’s Own Household Survey (2013)  

 

4.2 Variable description 

The variables used in estimating our econometric models are listed in Table 2. The variables 

employed to estimate household shadow wage rate can be categorized into household head 

characteristics, household demographic characteristics, household productive characteristics 

and other external factors. In terms of household head characteristics, the average age of the 

heads of the surveyed households is 51.74 years, and their average schooling year is 6.42 

years. The share of the male household heads in the total sample is about 0.93. For household 

demographic characteristics, the average family size of the households in our sample is 4.12. 

The mean values of the fractions of children and elderly people in household members are 

0.11 and 0.12, respectively. Considering productive variables, the mean value of the annual 

agricultural outputs for the sampled households is 17,207.65 CNY, while the amount of 

collected biomass is 3634.93 Kgsce per year. Averagely, the surveyed households spend 

716.91 hours on agricultural production, while allocating 236.31 hours to biomass collection 

per year. Moreover, on average, the area of arable land possessed by the surveyed household 
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is about 4.01 Mu7. Meanwhile, the mean cost of the intermediate inputs is about 4560.98 CNY. 

The average weighted price of fertilizers and pesticides is 6.27 CNY per kg. Among other 

external factors, the average market wage rate for the samples households is 8.29 CNY per 

hour, and the average non-labor income level is 2789.01 CNY per year. Additionally, in our 

sample, the number of households from the mountainous and plain areas both amount to 

33.27% and 33.45% of the households are from hilly areas. The biomass collecting spot is on 

average 2.14 km away from the house of the household.  

Moving on to the variables used in estimate the multi-output profit function, the mean value 

of the total hours spent on domestic production activities is about 953.23 hours for each 

household. The calculation results of price indices and quantity indices of the netputs are also 

shown in Table 2.  

 

Table 2: Description of variables used in empirical analysis 

Variables Mean Std. Dev. 

Total value of intermediate inputs (CNY) 4560.98 15827.21 
Total value of agricultural outputs (CNY) 17207.65 46668.22 
Total amount of collected biomass (Kgsce) 3634.93 4464.77 
Age of household head (Years) 51.74 11.54 
Age squared of household head 2810.22 1245.77 
Gender of household head (share of male) 0.93 0.26 
Educational level of household head (Years) 6.42 3.48 
Family size (Unit) 4.12 1.37 
Fraction of children (≤14) 0.11 0.16 
Fraction of elderly people (≥65) 0.12 0.23 
Arable land areas (Mu) 4.01 3.69 
Weighted price of fertilizers and pesticides (CNY per kg) 6.27 6.53 
Market wage rate (CNY per hour) 8.29 5.07 
Non-labor income (CNY) 2789.01 4484.31 
Distance to biomass collecting spot (km) 2.14 4.41 
Total hours allocated to agricultural production (Hours) 716.91 507.08 
Total hours allocated to biomass collection (Hours) 236.31 320.52 
Quantity index of agricultural outputs (kg) 55562.34 187089.9 
Total hours allocated to two activities (Hours)  953.23 655.11 
Quantity index of Intermediate inputs (kg)  850.71 886.11 
Price index of agricultural products (CNY per kg) 1.27 1.93 
Price index of intermediate inputs (CNY per unit) 7.34 22.79 
Average age of employed household members (Years) 44.69 10.73 
Educational level of employed household members (Years) 6.72 2.69 
Yai (=1, if household participates in agricultural production) 0.94 0.23 
Ybi (=1, if household participates in biomass collection)  0.74 0.44 
Yoi (=1, if household participates in off-farm work) 0.87 0.34 
r1 (=1, if the household is from mountainous areas) 0.3327 0.4713 
r2 (=1, if the household is from plain areas) 0.3327 0.4713 
Sample size 556  

Source: Author’s own household survey 

                                                      
7 1 Ha= 15 Chinese Mu 
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5. Estimation results 

Table 3 lists the estimation results of the multivariate probit model that explains how 

households make decisions regarding participation in different activities. The estimates of ρs 

(Rho, correlation between the errors) that maximizes the multivariate probit likelihood 

function are 0.1095, -0.0114 and 0.0291, respectively. Specifically, the correlation coefficient 

between agricultural production and biomass collection (Rho (b, a)) is positive and significantly 

greater than zero at the level of 5%. This indicates that the random disturbances in 

participation equations of agricultural production and biomass collection are affected in the 

same direction by random shocks. In other words, household participation decisions on these 

two activities are not statistically independent. The correlation coefficients between off-farm 

work and the two intra-household production activities are insignificant, implying that the 

household participation decision regarding off-farm work does not statistically depend on 

participation decisions about intra-household production activities. This also means that we 

can separately analyze the relationship between biomass collection and agricultural 

production without considering off-farm labor allocation. The significant log pseudo likelihood 

statistic suggests that the independent variables taken together influence household 

participation decisions. According to the estimated parameters, households that have higher 

wage rate are more likely to participate in off-farm work and less likely to collect biomass. 

These results are in line with our expectation. 

As expected, non-labor income has a significant negative impact on household participation 

decision regarding agricultural production and off-farm work. Households with higher no-

labor income level are less likely to allocate time to on-farm work and off-farm work and T a 

more likely to allocate time to biomass collection. The price index of intermediate inputs has 

a significant negative impact on off-farm work. That means raising the intermediate input 

price reduces household likelihood to participate in off-farm employment. The areas of arable 

land owned by households can also significantly influence household participation in off-farm 

work. Households possessing more arable land are less likely to find jobs outside their farms. 
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Table 3: Multivariate Probit Estimates of household participation functions of agricultural 
production, biomass collection and off-farm work 

Note: The significance levels are: *10%, **5%, ***1%. The missing location dummy is hilly area 

 

In terms of the demographic characteristics, households with larger size and smaller fractions 

of children and elderly people are more likely to work off-farm. With respect to the household 

head characteristics, we find that households with older heads are less likely to work on farm, 

whereas households with higher educational level are less likely to collect biomass. In 

addition, household location plays a vital role in determining household participation in 

biomass collection. Households located in plain areas are less likely to participate in biomass 

collection than those located in hilly areas. 

 

 

 

Variable 

Agricultural production Biomass collection Off-farm work 

(Yai) (Ybi) (Yoi) 

Coefficient Std.Dev. Coefficient Std.Dev. Coefficient Std.Dev. 

Age of household head -0.1453** 0.0723 0.0531 0.0485 -0.0248 0.0441 
Age squared of household head 0.0014** 0.0007 -0.0004 0.0005 0.0002 0.0004 
Gender of household head -0.0938 0.3472 -0.4138 0.2773 0.2412 0.2724 
Educational level of household 
head -0.0072 0.0303 -0.0458** 0.0219 -0.0041 0.0275 
Family size 0.0799 0.0719 0.0643 0.0598 0.4365*** 0.0747 

Fraction of children (≤14) -0.6252 0.6014 0.3226 0.5366 -1.1832** 0.5279 

Fraction of elderly people (≥65) 0.1732 0.4400 0.6679 0.4086 
-
1.1086*** 0.3436 

Arable land areas  0.0789 0.0491 0.0067 0.0242 -0.0323* 0.0184 
Market wage rate (log) -0.1129 0.1419 -0.2182** 0.1066 0.1434* 0.0742 

Non-labor income (log) -0.2085** 0.0807 0.0947 0.0581 -0.1292* 0.0665 
Price index of fertilizers and 
pesticides (log) 

-0.1144 0.0920 0.1431 0.1039 -0.2165* 0.1105 

Distance to biomass collecting 
spot 0.0547 0.0569 0.6374*** 0.1179 0.0298 0.0354 
Mountainous areas -0.0859 0.3128 -0.1299 0.2436 -0.2744 0.2453 

Plain areas -0.1572 0.2438 -1.0145*** 0.1755 -0.0638 0.2047 
_cons 6.8066*** 2.1738 -1.3185 1.4729 1.4401 1.3916 

Log pseudolikelihood  
-
496.59624      

Rho (b,a) 0.1905** 0.0885     
Rho (o,a) -0.0114 0.1225     
Rho (o,b) 0.0291 0.0951     
Wald chi2 (42) 228.00***      
No. of Obs 556           
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Table 4: Estimation results of the system of production functions using IT3SLS 

  Agricultural production  Biomass collection  

Variable Coefficient Std. Dev. Coefficient Std. Dev. 

Total value of agricultural outputs (log)   0.0524  0.0803  
Amount of collected biomass (log) -0.0597  0.1232    

Hours worked on farm (log) 0.6241***  0.0935    

Hours worked on biomass collection (log)   0.3634***  0.0464  
Total value of intermediate inputs (log) 0.0171  0.0146    

Areable land areas (log) 0.2763*** 0.0810    

Age of household head 0.0360  0.0288  0.0116  0.0303  
Age squared of household head -0.0004  0.0003  -0.0002  0.0003  
Gender of household head 0.0790  0.1771  0.1280  0.1803  
Educational level of household head 0.0488***  0.0150  0.0182  0.0154  
Distance to biomass collecting spots    0.0083  0.0123  
Mountainous areas 0.3989*** 0.1203  -0.1524  0.1381  
Plain areas 0.2810  0.1791  -0.4265**  0.1806  
IMR  0.3777  0.2778  -0.4154  0.2697  
_cons 3.5683***  1.4237  5.5164***  0.9951  
R2 0.3677 0.2835 
No. of Obs. 394 394 
Endogenous variablesa ln_TOA, ln_TOB     

Note: The significance levels are: *10%, **5%, ***1%. The missing dummy for regions is Hilly area. a. All the other 
variables in this system are treated as exogenous to the system and uncorrelated with the disturbances. The 
exogenous variables are taken to be instruments for the endogenous variables 

 

Table 4 presents the iterative three-stage least squared (IT3SLS) estimates of the production 

system. The R2 for the two equations are 0.3677 and 0.2835. The inverse Mills ratio (IMR) is 

insignificant in both equations, indicating that sample selection bias would not happen if the 

system of production functions was estimated without taking household participation 

decisions on biomass collection into consideration. 

With respect to the parameters of the production system, most of them have the expected 

signs. For the agricultural production, the inputs of labor and arable land have significantly 

positive impacts on the outputs. The educational level of the household head has a significant 

effect on farm production, supporting the widely accepted role of human capital in improving 

agricultural production (Henning and Henningsen, 2007; Tiberti and Tiberti, 2015). In addition, 

households located in mountainous areas produce more agricultural products than those from 

hilly areas. On the other hand, in biomass collection function, the labor input also has a 

significant and positive influence. The estimated parameters also indicate that households 

who are from plain areas collect less biomass than those from hilly areas. In addition, the 

coefficients of the output variables on right-hand-side of the two equations to some extent 

imply the relationship between agricultural production and biomass collection. Given fixed 

labor inputs, spending more time on biomass collection decreases the outputs of agricultural 
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production. Conversely raising the yields of agricultural production could also increase the 

collecting amount of biomass. This could be possibly attributed to the fact that biomass 

collection occupies labor resources for agricultural production. Nonetheless, agricultural 

production provides biomass resources. Furthermore, due to the fact described in Section 2 

that in Sichuan Province, household members usually collect biomass on the way to and from 

the fields, participating in agricultural production may increase the opportunity to pick up 

biomass.  

After getting the parameter estimation results of the production system, the shadow wage of 

household labor and the shadow prices of the biomass energy are calculated using (3.5) and 

(3.6). According to the results, the average wage rate of household labor ( *

lp ) is about 10.75 

CNY/Hour, whereas the shadow price of biomass ( *

bp ) is around 0.81 CNY/kgsce. Table A1 (See 

Annex) reports the estimates of the SNQ production function with restriction of curvature. 

The hausman test statistic indicates the endogeneity problem caused by including shadow 

wage in our model and our instrumental variables are not weak. Given our estimation results, 

we calculate the price elasticities of outputs and inputs according to (3.12) using sample 

means.  

 

Table 5: Estimated price elasticities of outputs and inputs 

 Pa Pb
* Pl

* Po 

xa 0.0420 -0.0219 -0.0067 -0.0133 

xb -0.5247 0.2798 0.1212 0.1237 

xl 0.0463 -0.0348 -0.0755 0.0640 

xo 0.1504 -0.0584 0.1051 -0.1971 
Note: The elasticities are calculated using R package “micEconSNQP”. The subscript a represents agricultural 

outputs; b denotes amount of collected biomass; l is labor inputs and, o refers to intermediate inputs. 

 

It can be seen from Table 5 that all outputs and inputs are inelastic. The own-price elasticities 

of outputs indicate that if the weighted average price of agricultural products increases 1%, 

the agricultural outputs will rise by about 0.04%, whereas a 1% increase in the shadow price 

of biomass energy will increase the outputs of biomass collection by about 0.28%. Meanwhile, 

the own-price elasticities of inputs also suggest that a 1% increase in the shadow wage of 

household labor will decrease labor input for the productive activities by 0.08%, whereas a 1% 

increase in the weighted average price of intermediate inputs will reduce household demand 

for them by 0.20%. Considering the cross-price elasticities, the supply (agricultural products 

and biomass energy) cross-price elasticities are negative, revealing a competitive relationship 

between these two activities. In other words, an increase in price of either of the outputs leads 

more labor inputs to be invested in producing it, in turn, reducing the production of the other. 

This is also in line with the findings of our theoretical analysis in Section 2. Additionally, the 

cross-price elasticities for the inputs (labor and intermediate inputs) are positive, reflecting 
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that the intermediate inputs such as fertilizers and pesticides are substitutes to labor-capital 

in our study region. This is to say, holding other variables constant, if the price of intermediate 

inputs increases, households will use less of them and simultaneously allocate more labor to 

production activities in order to keep the same quantities of outputs and vice versa. Moreover, 

if we compare the cross-price elasticities of intermediate inputs and labor (i.e.
ollo

pxpx
EE *

), the labor-intensive feature of the production system in rural Sichuan Province is then 

confirmed. However, if we compare the own-price elasticities of the outputs with their cross-

price elasticities respectively (i.e. *
baaa pxpx EE  and *

bbab pxpx EE  ), it demonstrates that 

both agricultural production and biomass collection are more likely to be driven by the market 

of agricultural products than the demand of biomass energy. Particularly, for agricultural 

production, the negative signs of the cross-price elasticities of outputs with respect to inputs 

are consistent with economic theory. In contrast, although fertilizers and pesticides are not 

directly invested in biomass collection, the positive signs of the cross-price elasticities to 

inputs imply that biomass collection is perhaps influenced by consumption decisions. When 

the price of other inputs increases, households have to spend more on purchasing them and 

cut down their expenditures on commercial energy under a given budget constraint. As the 

consequence, they collect more biomass for energy use to compensate for the consumption 

of commercial energy. On the other side, if the shadow wage increases, households will work 

on domestic production activities for longer duration instead of working off-farm, resulting in 

a decrease in their disposable incomes. Therefore, they have to use biomass as fuels to reduce 

the expense on commercial energy.  
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6. Conclusion 

In this paper, we analyze the impacts of biomass collection on agricultural production in our 

study region. The results of our study show that the educational level of the household head, 

market wage rate and household location are key factors in determining household 

participation in these two activities. Households with higher educational level and market 

wage rate are less likely to engage in both of these two productive activities, while those 

located in plain areas are less likely to work on farm as well as to collect biomass. Particularly, 

an interesting result is that non-labor income level can significantly influence household 

participation decisions on agricultural production and biomass collection in opposite 

directions. An increase in household non-labor income decreases the likelihood to work on 

farm, while increasing household participation probability of biomass collection. A possible 

explanation for this is that the proportion of agriculture-related subsidies in non-labor income 

is quite small to encourage households to participate in agriculture production. Moreover, an 

increase in non-labor income could reduce household incentives to work for extra income, 

and therefore increase the time allocated to biomass collection.  

More importantly, the estimation results of the SNQ profit function reveal that the supply 

cross-price elasticities of agricultural products and biomass energy are -0.02 and -0.52 

respectively, confirming that the relationship between biomass collection and agricultural 

production is competitive. Specifically, biomass collection is likely to be driven by the markets 

of intermediate inputs. This also indicates that biomass collection could be influenced by 

household consumption decisions. It means that if the prices of intermediate inputs increase, 

households will cut down their expenditures on commercial energy to purchase more of them 

under a given budget constraint Therefore, they have to collect more biomass to meet their 

demands for energy. Moreover, we also found that higher shadow wage induces households 

to allocate more labor on farm instead of working outside, and hence decreases the 

disposable income that can be spent on commercial energy. Accordingly, biomass collection 

will increase.  

One important implication of this study is that potential policy interventions for promoting 

biomass energy development in rural China could aim at enhancing food security by slowing 

down the competition between biomass collection and agricultural production. 

Simultaneously increasing the prices of agricultural products and decreasing the prices of 

intermediate inputs not only improve households’ motivation of engaging in agricultural 

production, but also decrease biomass collection. Moreover, since non-labor income level is a 

crucial factor affecting household participation decisions on biomass collection and 

agricultural production, especially in mountainous areas, future policies should seek to 

establish a sound and effective subsidy system in rural areas by increasing the shares of 

agriculture-related subsidies, attempting to support agricultural production while reducing 

the probability of collecting biomass. Finally, indirect policy that improves household 
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educational level should also be attached more emphasis in policy design. This could help to 

improve the efficiency and capacity of production. 
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Annex 

Table A1: Estimation Results of the normalized quadratic profit function with imposition of 
convexity 

Parameter Coef.u T-Stat Coef.r 

a  37948.0339** 2.2065 50139.6383 

b  -43.4072 -0.0365 1421.9070 

l  -2104.5469 -1.1996 -4206.8905 

o  -5585.7248*** -4.1370 -7045.2400 

)( aaaa pp  -2202.7377** -2.3939 2917.0882 

)( *

baab pp  -1536.2492*** -2.7964 -1457.4017 

)( *

laal pp  2605.3060*** 5.2161 -203.6292 

)( oaao pp  1133.6809** 2.4797 -1256.0572 

)( **

bbbb pp  -429.1761 -2.7374 795.8768 

)( **

lbbl pp  1146.4071*** 6.2630 275.2318 

)( *

obbo pp  819.0182*** 4.0979 386.2931 

)( **

llll pp  -1648.3134*** -5.0531 458.5478 

)( *

ollo pp  -2103.3997*** -7.8839 -530.1505 

)( oooo pp  150.7006 0.5777 1399.9146 

)( ALaAL z  6679.3614 1.3957 8125.4508 

)( ALbAL z  42.7095 0.1323 182.6015 

)( ALlAL z  -806.2899* -1.6694 -1099.5683 

)( ALoAL z  408.7647 1.1021 183.8917 

)( ALALaaALAL zzp  -402.0526 -1.0679 -467.6394 

)( *

ALALbbALAL zzp     6.5346 0.2597 0.1591 

)( *

ALALllALAL zzp  41.7793 1.1032 54.2255 

)( ALALooALAL zzp  -14.9734 -0.5167 -5.4900 

Hausman test statistic                    38.94*** 
No. of Obs.                     556 

Note: The system of SNQ profit function and netput equations are jointly estimated using R package 
“micEconSNQP”. The significance levels are *10%, **5%, and ***1%. The missing dummy for regions is Hilly 
area. The superscript u refers to the estimated coefficients of unrestricted profit function, whereas r is those 
of restricted estimation. T-Stat refers to the estimate parameter to the left. Subscript a represents agricultural 
outputs; b denotes amount of collected biomass; l is labor inputs 

 


