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1. Introduction

Expectations of future energy prices are a key factor in public and private capital invest-

ment decisions. This is especially true in the energy sector, but also carries over to energy

intensive industries as well as household durable goods investment decisions. Expecta-

tions of future aggregate domestic energy production and consumption are important to

policymakers concerned with domestic energy security. These variables are also crucial

factors determining the need for investment in large scale energy infrastructure, such as

refineries and additional power generation facilities which take a long time to construct

and are very costly. Expectations of future energy imports and exports have repercus-

sions for foreign policy decisions. Further, future realizations of these random sequences

along with expectations of future carbon dioxide (CO2) emissions and energy intensity

have taken on a prime role in the discussion on global climate change. Since the United

States has withdrawn from the Kyoto Protocol in 2001, citing excessive current and future

costs of reducing emissions, a debate on the expected future costs reducing greenhouse gas

emissions has emerged. At the center of this debate is the anticipated future trajectory

of carbon intensity of the economy, which is closely related to the energy intensity of the

economy. This indicator of carbon saving technological change, is often cited as the key

variable determining whether economies will be able to maintain economic growth while

reducing aggregate emissions, ceteris paribus.1 The energy intensity of the economy is of

indirect interest to the climate change debate and of central interest to energy planners

(Rosenfeld, McAuliffe and Wilson, 2004).

The process by which individuals form expectations of future realizations of these

sequences is a key area of study in economics. Firms and policymakers often form their

expectations based on forecasts made by government agencies or experts. Forecasts of i.e.

asset returns constructed by equity research firms (e.g. Bloomberg) are used by investors to

make portfolio allocation decisions. Point and density forecasts of macroeconomic variables

1The composition effect, which indicates a transition from a manufacturing to a service based economy
would have the same effect on carbon/energy intensity of an economy. The difference is that emissions in
this case may migrate to another country, although empirical evidence of this is limited.
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are used by government and central bank decision makers to determine optimal monetary

policy intervention. When taking these forecasts as exogenous inputs to the decision

making process, it is important to have an assessment of their quality. If the forecasts

used are constructed by rational forecasters, it is important to understand how costly the

producer of the forecasts finds over predictions relative to under predictions of the variable

of interest. This relative cost of forecast errors is captured in a loss function.2 A given

forecast is only optimal for a forecast user when the loss function of the user matches that

of the forecast producer. This is the case if the producer and the user are one and the

same person, yet not necessarily the case if the user and producer are separate individuals

or organizations. Often users assume that forecast producers use symmetric loss functions,

which may not be the case. This misperception would result in a suboptimal outcome for

the forecast user.

This paper is an empirical attempt to shed light on the loss function of the most impor-

tant forecaster of energy related sequences for the United States - the Energy Information

Administration (EIA), which is the research branch of the Department of Energy. The

forecasts produced by the EIA are widely used by policymakers, industry and modelers -

often under the assumption of a symmetric loss function. We will test the null hypothesis

of symmetric loss and if it is rejected provide estimates of asymmetry parameters. These

estimates of asymmetry parameters will allow forecast users to get a fuller understanding

of the loss function of the EIA.

The next section provides an overview of the EIA’s forecasts and the model used to

construct them. Section 3 describes the empirical model and approach. Section 4 presents

the estimation results and discussion. Section 5 contains some concluding remarks.

2. Background

The EIA annually publishes forecasts of energy consumption, production, prices, imports,

gross domestic product and energy intensity of the US economy. Modelers use these

2Sometimes the loss function is referred to as the utility function of the forecast producer.
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EIA forecasts to calibrate economic simulation models and to benchmark engineering-

based energy scenario analyses (Sands, 2004; Interlaboratory Working Group on Energy-

Efficient and Low-Carbon Technologies, 2000). Since 1982, these forecasts have been

published annually in the widely cited Annual Energy Outlook (AEO) (Energy Information

Agency, 1982-2005a). Over the history of the publication the forecasting horizon has

gradually grown. The Annual Energy Outlook in 1982 included forecasts of up to 8 years,

which was extended to 15 years in 1986, to 22 years in 1998 and this year to 25 years out.

The AEO includes five different scenarios of forecasts: a reference case, a high and low

economic growth case and a high and low oil price case. These forecasts are to be considered

“business-as-usual trend forecasts, given known technology, technological and demographic

trends, and current laws and regulations. Thus, they provide a policy-neutral reference

case that can be used to analyze policy initiatives.” (Energy Information Agency, 2005b).

The model employed to construct all energy related forecasts is the National Energy

Modeling System (NEMS).3 This partial equilibrium model of the economy divides the US

into the nine census regions and one non-US region. Ten modules are used to model the

entire US energy system. There are four demand modules, one each for the residential,

commercial, industrial and transportation sector. The supply side is characterized by four

separate modules for oil and gas, renewable energies, natural gas transmission and distri-

bution, and coal. The final two modules are so called conversion modules for electricity

and the refining of petroleum. A separate macroeconomic module explicitly models in-

teractions between domestic aggregates and energy prices. Further, the model allows for

feedback between world and US oil markets.

The AEO forecasts have included energy intensity of the economy in British Ther-

mal Units per US$ of GDP only recently.4 These are provided since “the EIA has seen

more public interest in energy intensity, particularly as public policy issues such as CO2

emissions, technological development, impacts of structural changes on the economy, and

3Kydes (1999) provides an accessible description of the NEMS model and its predecessor, the Intermedi-
ate Future Forecasting System (IFFS), and its sensitivities to different assumptions regarding technological
innovations.

4Explicit forecasts of Carbon Intensity are not provided by the EIA.
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Figure 1: Energy Intensity in BTU per US$ of real GDP (1949=1)
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national energy security, are more openly discussed and evaluated” (Energy Information

Agency, 2004). Figure 1 shows that energy intensity for the United States has decreased

almost monotonically since the first energy crisis in 1973. Future drops in energy intensity,

ceteris paribus, will partially determine the magnitude of additional measures and related

costs necessary to decrease carbon emissions and slow growth in aggregate energy consump-

tion as advocated by some policymakers (Leonhardt, Mouawad, Sanger and Hulse, 2005).5

Expectations of future drops in this ratio are therefore one of the main drivers of expected

costs from regulating energy consumption and carbon emissions. Further, reduced form

econometric models, such as Yang and Schneider (1998) use energy intensity trends as

‘right hand side’ variables to forecast emissions. Finally, these quasi official EIA forecasts,

including the predictions of production, consumption, prices, imports, and GDP are fre-

quently cited as benchmarks to provide direct comparability of model performance, since

they are issued by a US government agency. This makes assessing their quality important.

5Carbon Intensity measures units of carbon per dollar of output, while energy intensity measures BTUs
per unit of output, which includes carbon free sources of energy such as solar, hydro and nuclear. If there
is a drastic shift in fuel mix towards these fuels, energy intensity may stay constant while carbon intensity
falls.
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This paper is not the first paper evaluating forecasts made by the EIA. The EIA

conducts its own forecast evaluation and publishes these results (Energy Information

Agency, 2004). As a measure of forecast performance they calculate the average per-

cent error made for the forecast of a given year across AEOs, therefore averaging forecast

errors made at different horizons. They call this measure the average absolute [forecast] er-

ror. This type of evaluation ignores potentially persistent biases in the forecasting model

for a given horizon. By mixing forecasts made over different horizons this approach to

forecast evaluation ignores the fact that forecast error variance usually increases with the

forecasting horizon. Further this approach allows no insight into the performance of the

NEMS model over different horizons. Shlyakhter, Kammen, Broido and Wilson (1994)

examine forecast errors and show that a normal error density cannot account for the large

number of extreme outliers. They suggest using an asymmetric distribution of forecast

errors with fat tails. O’Neill and Desai (2005) provide an in depth evaluation of the long

term forecasts from the Annual Energy Outlook. They provide a formal evaluation of

the forecast errors and attempt to identify sources of inaccuracies, finding that long run

projections of energy consumption have tended to underestimate future demand. They

further show consistent long run overpredictions of GDP and underpredictions of energy

intensity for the US economy. The authors find no evidence of improvements in these EIA

forecasts since 1982. They call for further detailed studies explaining the source of these

persistent inaccuracies, which is the goal of the current paper.

It is the task of the econometrician to evaluate how well the employed forecasting

model performed once the realization of the series in question is observed. The forecasting

model is constructed or revised according to the cost from erroneous forecasting. The

forecaster’s cost of over- and underpredictions is summarized by a loss function, which is

used to assess forecast performance of the particular forecasting model. Traditionally used

loss functions are Mean Square Forecast Error (MSFE) or Mean Absolute Forecast Error

(MAFE) Loss. Both of these are symmetric around zero, indicating that the forecaster

considers an overprediction as costly as an equidistant underprediction. For MSFE, the

cost of forecast errors increases nonlinearly in the absolute value of the forecast error,
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whereas under MAFE this cost increases linearly. Under the most frequently used MSFE

class of loss functions, testing for rationality amounts to testing for mean zero forecast

errors and no serial correlation in the forecast errors beyond the prediction horizon. As

Granger and Newbold (1986) point out, the assumption of a symmetric loss function is

not reasonable in all settings, since in many circumstances overpredictions are considered

to be more costly than underpredictions and vice versa. A classic example is forecasts of

a firm’s sales, where overpredictions lead to buildup of inventory and underpredictions of

sales may lead to a potentially very costly loss of business and damages in reputation. It is

unlikely that in this case the cost of forecast errors is symmetric around zero. When using

forecasts for model calibration or as benchmarks, it is important to understand what loss

function was applied to arrive at the employed prediction. Forecasts not produced by the

user are only optimal for the forecast user if the loss function of the forecast producer is

identical to that of the forecast user. If one assumes that EIA forecasts are constructed

using symmetric loss when using them and this is indeed not the case, using these EIA

forecasts is not optimal from the user’s perspective.

It is the purpose of this study to provide an insight as to what loss function the EIA

uses when it constructs the forecasts reported as the reference case in the Annual Energy

Outlook. The strategy we will follow involves two steps. First we will test whether the

forecasts are rational given a traditional class of symmetric loss functions, specifically the

MSFE and MAFE loss functions. If we reject the notion of rationality under symmetric

loss, we extend the class of considered loss functions to include asymmetric loss functions.

In this second step, instead of considering all possible types of loss functions, we restrict

the class of considered loss functions to the class of asymmetric linear (lin-lin) loss as well

as asymmetric quadratic loss (quad-quad). Instead of assuming a particular asymmetry

given these loss functions, we attempt to empirically estimate an asymmetry parameter

by applying the Generalized Method of Moments estimator proposed by Elliott, Komunjer

and Timmermann (2005). This approach will provide some insight into the implicit loss

function of the Energy Information Administration for each of the published series.

This study is not meant as a critique of the EIA’s forecasting methodology, but an
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attempt to show statistically what type of implicit loss function is consistent with the ob-

served forecasts being rational. From a climate change perspective, the results concerning

the energy intensity series are of special interest, although the consumption, production

and import series are of potentially greater significance to policymakers and energy plan-

ners.

3. Asymmetric Loss and Forecast Rationality

The goal of the forecaster is to predict the realization of Yt, the variable of interest, τ

periods from now, which we denote Yt+τ . We call τ the forecasting horizon. At time t the

forecaster constructs his/her forecast of Yt+τ conditional on the information observed at

time t, which includes a set of variables observed at time t, denoted Wt. The forecast of Yt+τ

made at time t is denoted ft+τ (Wt,θ), where θ is a vector of parameters of the forecasting

model. The forecaster only observes the forecast error εt+τ (Wt,θ) = Yt+τ − ft+τ (Wt, θ)

at time t + τ . Given this definition, an overprediction of the series of interest is therefore

equivalent to a negative forecast error. When the forecaster constructs his/her rational

forecast of Yt+τ his/her objective is to minimize the cost of forecast error. This cost of

over/under prediction is summarized in a loss function, which is defined over the forecast

error and denoted by L(εt+τ (Wt, θ), ψ), where ψ is a vector of parameters governing the

shape of the loss function. The overwhelming majority of traditionally used loss functions

is symmetric, such as the mean square forecast error loss function or the mean absolute

deviation forecast error loss function. Patton and Timmermann (2004) show that under a

squared error loss function L(εt+τ (Wt,θ), ψ) = ψ (εt+τ (Wt,θ))2, where the scalar ψ > 0,

the rational forecast of Yt+τ is Et[Yt+τ ], the rational forecast error is unbiased and the

forecast error does not exhibit any serial correlation beyond lag τ . These properties of

rational forecasts rely on the assumption of this most frequently used loss function. Testing

for forecast rationality under MSFE Loss can be achieved by testing for a zero intercept and

unity slope in a Mincer and Zarnowitz (1969) regression of Yt+τ = α+βft+τ (Wt, θ)+ εt+τ .

MSFE and MAFE loss functions imply that a one unit positive forecast error is as
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costly as a one unit negative forecast error. If we relax the symmetry assumption, these

properties of rational forecasts no longer hold. Under asymmetric loss, it is likely to be

rational to observe non-zero mean forecasts errors. As mentioned in the previous section,

Shlyakhter et al. (1994) show that an assumed normal error density fails to adequately

predict the number of extreme events and argue that an asymmetric error density with

fat tails is more consistent with the observed forecast errors. An alternate explanation for

the observed large number of extreme events on one side of the error distribution is the

possible asymmetry of the forecaster’s loss function.

Figure 2 shows the one step ahead forecasts and realizations for the energy intensity and

total CO2 emissions series in the left and right panel respectively. Upon casual inspection

the forecast errors do not look like they are rational under symmetric loss (mean zero

and serially uncorrelated) for either series. The energy intensity series are over predicted

at the one period forecast horizon for all years except for the year 2000. Table 1 in the

next section shows the mean forecast errors and correlation coefficients of the examined

forecast errors for the first, second and third lag. The energy intensity series displays

non-zero mean forecast errors as well as statistically significant autocorrelations at lags 1,

2 and 3. The CO2 series is underpredicted for each year in the sample. The mean forecast

error is also statistically different from zero, with the opposite sign.

The Elliott et al. (2005) estimator we employ, makes use of the information contained

in a sequence of observed forecast errors to estimate an asymmetry parameter governing

the shape of the loss function of the forecaster consistent with the observed forecasts being

rational. They further provide a joint J-test of forecast rationality conditional on a given

asymmetry of the loss function. The class of loss functions they consider is restricted to

the family:

L(εt+τ (Wt,θ),ψ) ≡ [α + (1− 2α) · 1(Yt+τ − ft+τ (Wt,θ) < 0)] |Yt+τ − ft+τ (θ)|p (1)

where ψ = (p, α) and α ε (0, 1) is the parameter governing the relative cost of over
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Figure 2: EIA Energy Intensity and CO2 Forecasts (1992=1)
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versus underprediction, which we will refer to as the asymmetry parameter and will be

the goal of our estimation. p in theory can be any positive integer, but we will restrict it

to be either one (lin-lin loss) or two (quad-quad loss). The underlying forecasting model

does not need to be known, but is assumed to be a linear forecasting rule of the type

ft+τ (Wt,θ) = Wtθ, where Wt is a set of variables observed by the forecaster at time t

thought to help forecast Yt.
6 The forecaster solves the minimization problem:

min
θ

E [L(εt+τ (Wt,θ),ψo)] (2)

where the true shape parameters of the loss function ψo = (po, αo) are observed by the

forecaster only. Assuming this class of loss functions and optimizing behavior on behalf of

6Elliott et al. (2005) do not assume that the model is correctly specified. Further, the linearity as-
sumption is not crucial to the estimation procedure. It is a strong assumption implicit in our analysis,
that the NEMS forecasting model employed by the EIA can be approximated by this class of models.
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the forecaster gives rise the following moment condition, which have to hold for forecast

rationality:

E[Vt(1(Yt+τ − ft+τ (Wt,θ)) < 0)− αo)]|Yt+τ − ft+τ (Wt,θ)|po−1 = 0 (3)

Vt is a k×1 observed vector and a subset of the Wt. The estimation strategy is to assume a

value of po ε (1, 2) and αo = 0.5. We will test whether the k moment conditions above hold.

If they do not, we assume a value of po and estimate α̂. For overidentified cases, where

the number of moment conditions is greater than the number of estimated parameters,

we apply the Elliott et al. (2005) J-Test for overidentification, which allows for the joint

test of rationality under a given loss function. Assuming symmetric loss and a value for p

allows application if this test for any k. Under asymmetric loss, this test only applies for

this class of loss functions if k > 1.

4. Data and Results

The Energy Information Administration publication ‘Annual Energy Outlook’ appears in

January of each year and includes forecasts for the anticipated value of each series by the

end of the calendar year, as well as annual forecasts for each year up to 25 years into the

future, although the long range forecasts have only become available recently. The first

available year of these forecasts is 1982, although the only forecasts available for that year

start at the 3 year ahead horizon. We have a consistent series of same year forecasts from

1985 until 2003. A complete series of true one step ahead forecasts is available for the

same period. This means that we have 18 usable observations for the end of year series

and 17 usable observations for the true one step ahead forecasts.

The 17 series for which forecasts are provided are listed in table 4. The table reports

the means of end of same year forecast errors as well as the autocorrelations at the first,

second and third lag. A simple test for forecast rationality under symmetric loss, is to

see whether the mean forecast error is statistically not different from zero and the second

and third order autocorrelations are equal to zero. Nine of the series have forecast error
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means which are statistically different from zero. Further the energy intensity series as

well as the natural gas production series have significant autocorrelations beyond the first

lag, indicating that the forecasts are not rational under symmetric MSFE loss. Estimation

of the specific asymmetry of the loss function for each of these series is likely to provide

some interesting insights.

It would be appealing to use our framework to analyze long range forecasts of the

EIA, yet there are two reasons why this is not a feasible exercise. First, due to the

brevity of the series, extending the forecasting horizon past one year ahead, decreases

the size of our sample by the forecasting horizon, which is already very small. Second,

using the reported long range forecasts does not allow one to conduct true forecast model

performance evaluation. Conversations with the EIA modelers showed that definitions

of many series have changed over time, so that looking at the long term forecasts is not

a valid exercise. Short run forecasts incorporate the slight changes in definitions, and

therefore do not suffer from this change in definitions. For the above reasons, we consider

two forecasting horizons in our models, which are forecasts for end of current calendar year

made at the time of publication, and forecasts for the following calendar year (τ = 0, 1).

We do observe the level forecast and the realization of the series, which allows us to

calculate the forecast error. These samples are admittedly very small, and the results

should be interpreted keeping the shortness of the series in mind.7

Further, the first CO2 forecasts were first published in 1992, which does not provide

us with a sufficient sample size to test for rationality on this rather important series. The

consistent underpredictions of CO2 emissions, as is evident by the statistically significant

mean of the forecast error reported in table 4, leads us to believe that analyzing this

series for loss function asymmetries may be a valuable exercise once sufficient data are

available.8 It would be desirable to conduct the same exercise on the quasi-official country

7In the original application of this estimator, Elliott et al. (2005) use government forecasts of budget
deficits as their empirical application, for which they have 25 observations.

8Carbon Intensity is not forecast by the EIA directly. Using the available, yet very short series, we
can construct a measure of Carbon Intensity of the economy by dividing CO2 by GDP. The mean forecast
error of this series is statistically not different from zero and serially uncorrelated up to three lags. This is
due to the consistent overpredictions of CO2 and underpredictions of GDP, which cancel each other out.
This somewhat surprising result is quite different from the result for energy intensity.
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Table 1: EIA AEO Forecast Series Titles, Mean Forecast Error and Autocorrelations
Code Series Name Mean εt+1 ρt−1 ρt−2 ρt−3

ENC Total Energy Consumption 0.05 0.08 -0.06 -0.41
PEC Total Petroleum Consumption 0.04 -0.05 0.21 -0.30
NGC Total Natural Gas Consumption 0.45** 0.33 -0.03 -0.21
COC Total Coal Consumption 7.25 0.22 0.04 -0.21
ELS Total Electricity Sales 16.21** -0.33 0.39 -0.38
OIP Crude Oil Production -0.02 0.14 0.08 0.21

NGP Natural Gas Production 0.13 0.16 -0.44** -0.17
COP Coal Production -7.01 0.21 0.04 -0.38
PEI Net Petroleum Imports 0.20 0.62** 0.35 0.42
NGI Net Natural Gas Imports 0.05** -0.05 0.08 0.00
OI$ World Oil Prices -0.55** -0.04 0.06 -0.16

NG$ Natural Gas Wellhead Prices 0.02 -0.28 0.34 0.19
CO$ Coal Prices to Electric Generating Plants -0.08** 0.14 0.00 -0.11
EL$ Average Electricity Prices -0.13** 0.30 -0.03 0.18

GDP Gross Domestic Product 235.75** 0.67** 0.36 0.05
ENI Energy Intensity -0.61** 0.79** 0.69** 0.50**
CO2 Carbon Dioxide Emissions 34** -0.42 -0.13 -0.06

level forecasts of CO2 emissions issued by the Intergovernmental Panel on Climate Change

(IPCC), yet unfortunately there are only two sets of forecasts available and an update will

not be available until the fifth assessment report, which is likely to be published only in

another decade. Overall, the set of data we employ is the best data set we are aware of in

the energy context.

Following the method outlined in the previous section, we will test for rationality of

the forecasts by assuming MSFE and MAFE loss functions, which is equivalent to setting

α = 0.5 and p = 1, 2 respectively. We then conduct the J-Test to test for whether we have

sufficient evidence to reject the null of forecast rationality under symmetric loss. In the

second step, we obtain an estimate of αo = α̂ and then again test for forecast rationality

under the estimated degree of asymmetry. The employed J-Test and GMM estimator

provided by Elliott et al. (2005) require Yt to be a stationary series. We apply a series

of tests for stationarity around a deterministic trend, using the Elliott, Rothenberg and

Stock (1996) (ERS) procedure, which has better power properties than the test proposed by

Dickey and Fuller (1979). It has been shown that tests using the null of a non-stationary

process tend to fail to reject the null too frequently. We fail to reject the null of non-
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stationarity for most series, which may still be due to the weak power properties of the

test for the small sample employed. We therefore estimate the model in predicted growth

rates, which amounts to converting the forecast of Yt+τ into a growth rate, which is more

likely to be stationary. The forecast growth rate for horizon τ made at time t is given

by: ḟt+τ (Wt,θ) = (ft+τ (Wt,θ)
Yt

− 1)/τ , where the dot indicates the growth rate. In order to

not lose another observation due to this conversion, we went back to hard copies of the

Annual Energy Outlook and collected actual realizations of all series for 1984. We run

ERS tests on these series again and for series, for which the p-value of the test statistic

is greater than 0.1, we apply the Kwiatkowski, Phillips and Schmidt (1992) test, which

poses a stationary series as the null. If we fail to reject the null for the KPS test, we

break in favor of the KPS result. Using this procedure we argue that the growth rates

are stationary. Forecast errors in the estimation are also realizations minus the calculated

forecast. A negative forecast error is therefore an over prediction of the variable. In the

case of energy intensity this implies that the energy intensity of the economy has fallen by

more than expected.

We conduct the empirical test of forecast rationality for po = 1 first, which is a lin-lin

loss function and a good approximation for a large class of asymmetric loss functions. We

then report results for po = 2, which is a quad-quad loss function. We use four different

combinations of instruments for the Vt: an intercept; an intercept and the lagged forecast

error; an intercept and Yt−1; and an intercept, the lagged forecast error and Yt−1.

The top panel of table 2 reports the estimated asymmetry parameter α̂, assuming

rationality and lin-lin loss for the same year forecasts. The bottom panel reports the

parameters for the true one year ahead forecasts. The standard errors and two-tailed p-

values are reported in brackets under the estimates for α̂. For the same year forecasts,

we reject the null of symmetric loss for the following series: natural gas consumption,

electricity sales, natural gas imports, world oil price, coal prices to electric generating

plants, GDP and energy intensity. This mirrors the results from table 1, which is not

surprising. The estimated lin-lin loss functions display asymmetry at the 10% level of
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significance irrespective of what combination of instruments is used.9 According to these

estimates, the EIA considers overpredictions NGC, ELS, NGI and GDP as very costly,

while regarding underpredictions of OI$, CO$, EL$ and ENI as relatively more costly.

For the true one year ahead forecasts a similar picture emerges, although the natural gas

consumption estimate is closer to 0.5 and only statistically different from 0.5 for the four

instruments case. The one step ahead oil price series no longer display asymmetric loss.

The estimated coefficient for the natural gas import series is also no longer statistically

different from 0.5 - although the point estimate is closer to zero than one. For electricity

sales, coal prices, electricity prices, GDP and energy intensity we again reject the null

hypothesis of symmetric lin-lin loss. Overall, the results are almost identical to the τ = 0

case.

Table 3 displays the parameter estimates under nonlinear quad-quad loss, under which

large errors are relatively more costly than small errors compared to MAFE loss. The

results from lin-lin loss are echoed in the results for quad-quad loss. The same series show

statistically significant evidence of asymmetric loss. For energy intensity and coal prices

to electric generating plants as well as electricity prices, the asymmetry parameter is very

close to or equal to one, suggesting that positive errors are considered much less costly than

negative forecast errors. Since the estimated coefficient is at the boundary of the parameter

space, one should be careful with inference. The results using the quad-quad loss function

for natural gas consumption display a statistically significant degree of asymmetry at both

forecasting horizons we consider. The estimated degree of asymmetry for coal prices,

electricity prices, GDP and energy intensity is different from 0.5 for all combinations of

instruments, forecasting horizons and loss functions considered. Figure 3 displays the

estimated loss function over energy intensity forecasts for lin-lin and quad-quad loss for

each of the four combinations of instruments used. This visualization demonstrates the

implicit extreme cost of underpredicting the future energy intensity of the economy. Since

α̂ is at the boundary of the space for some scenarios, this leads us to believe that in the

most conservative estimate the EIA finds overpredictions seven times more costly than

9α̂ for Electricity Sales and Natural Gas Imports using one instrument are only significantly different
from 0.5 at the 14% level.
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Figure 3: Estimated Loss Functions for Energy Intensity
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underpredictions of energy intensity. At the upper end the ratio is roughly 400.10

Although the above estimation results provide strong evidence of asymmetric loss for

natural gas consumption, electricity sales, natural gas imports, GDP, oil, coal and elec-

tricity prices as well as energy intensity, they do not provide any explanation why this

may be so. If the Energy Information Administration uses an explicitly asymmetric loss

function for some series, but not others, this is not reported in the Annual Energy Outlook

and therefore observable to the econometrician or more importantly so - the forecast user.

Further, we do not observe the internal decision making process the EIA undergoes until it

agrees to release one specific set of forecasts. One potential political economy explanation

may be that political pressures are applied, which lead to one set of forecasts over another

being chosen. For example, an explanation of conservatively forecasting drops in the en-

ergy intensity ratio of the economy may have to do with planning for sufficient fuel supply

for coming years. Should a predicted large drop in this ratio not be realized, allocated

fossil fuels may not be sufficient to meet demand and have severe economic and political

consequences.

10Due to rounding the parameter estimate is not exactly one.
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We pursued two routes of inquiry to gain a better understanding of how the EIA arrives

at choosing a set of forecasts out of the many possible scenarios emerging due to a partic-

ular parametrization of the NEMS model. First, through conversations with the relevant

contacts at EIA for a subset of the modules, an interesting picture emerged. The indi-

vidual(s) responsible for each of the NEMS modules work on parameterizing each module

for the next set of forecasts separately. In a series of meetings, these modelers discuss the

assumptions, which go into the new set of forecasts produced by each module and then

go back to incorporate any agreed upon changes. Ultimately, later rounds of forecasts are

handed up to higher levels in the administration, but explicit questioning showed that the

modelers are to a large extent responsible for choosing a particular set of forecasts, which

get released in a particular volume of the Annual Energy Outlook. The conversations sug-

gest that the estimated asymmetries in loss are likely due to heterogeneous loss functions

of individual modelers, rather than a generally applied loss function decided on by higher

levels of authority within the administration.

The second line of inquiry specifically dealt with the actual method of forecasting en-

ergy intensity employed by the EIA. The publicly available forecast evaluation materials

(Energy Information Agency, 2004) provided an interesting, although less behavioral, ex-

planation for the observed sequence of overpredicted energy intensity values. Forecasts

and rudimentary forecast evaluation are posted on the EIA website in spreadsheet form.11

From the posted calculation it is apparent that energy intensity is not forecast directly,

yet constructed from the ratio of the forecast for energy consumption and gross domestic

product. Tables 2 and 3 show that we cannot reject the null of a symmetric loss function

for energy consumption for quad-quad or lin-lin loss using any combination of instruments.

We do, however reject the null of symmetric loss for the GDP forecasts at the 3% level for

all 16 cases. The implicit loss function for GDP is depicted in figure 4.

As discussed above, energy consumption forecasts, as well as all of the other series

with the exception of GDP are calculated from using the EIA National Energy Modeling

System (NEMS). The GDP forecasts are supplied to the EIA by an outside consulting firm

11http://www.eia.doe.gov/oiaf/analysispaper/tables2 18.html
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Figure 4: Estimated Loss Functions for U.S. Gross Domestic Product
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and then modified by the modelers in charge of the macroeconomic module. Historically,

Standard & Poor’s DRI GDP forecasts were used, who have since merged with their

main competitor (the WEFA group) to form Global Insight, who now supply the GDP

forecasts. The EIA uses the Global Insight forecasts as a guideline and then modifies these

forecasts. Inquiries into how these modification are conducted, revealed a non-structural

approach. The Global Insight forecasts are compared to other popular forecasts available

in the literature and adjusted accordingly.12 A rudimentary forecast comparison of the

short run GDP forecasts made by the EIA, versus the WEFA and DRI forecasts as well

as a forecast issued by the Congressional Budget office indicates that the EIA forecasts

predict slightly higher growth rates than any of the three other providers.13 The resulting

published forecasts underpredict GDP growth for a majority of the observed time periods

for both forecasting horizons. Admittedly, GDP growth is very difficult to forecast. A

naive forecast of the GDP growth rate, however, would on average be expected to be as

likely to overstate as to understate future GDP. The repeated underprediction of GDP

12This was described as the ‘looking over our shoulder’ approach.
13Available at http://www.eia.doe.gov/oiaf/economy/energy price.html
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growth may just reflect a conservative forecasting approach, which here we interpret as

asymmetric loss. We take this as evidence that the consistent overpredictions of energy

intensity for the US economy have their source in asymmetric loss over GDP forecasts.

The degree of asymmetry of the forecasters’ loss function is interesting, yet we are

also interested in testing whether the observed forecasts are rational, given a specific loss

function. The top panels in tables 4 and 5 display the results for the joint hypothesis

test of forecast rationality under symmetric loss.14 The results presented in these top

panels are especially interesting, since symmetric loss is assumed in the vast majority of

forecast rationality tests. Therefore the top panels indicate a “traditional” test for forecast

rationality. We reject rational forecasts for natural gas consumption, electricity sales, coal

and electricity prices, GDP and energy intensity for all considered sets of instruments,

forecast horizons and loss functions at the 3% level. This is not surprising given the

previous estimates for α. We further reject rationality in most scenarios for the remainder

of the series. Petroleum consumption and natural gas prices are the only two series, which

for the majority of cases pass the test of rationality under symmetric loss. For the quad-

quad loss case, we reject forecast rationality under symmetry for 95 out of the possible

128 tests conducted. For the lin-lin loss function we reject for 79 out of the 128 conducted

tests.

The bottom panels of table 4 and 5 provide the J-tests under asymmetric loss, which

allow us to check whether the rejection of forecast rationality is due the assumed shape

of the loss function. For energy intensity we fail to reject the null of rationality and

asymmetric loss for all cases considered at the 10% level. GDP forecasts are rational with

the exception of the two instrument case for the end of year forecasts under lin-lin loss.

Once we relax the symmetry restriction, we reject rationality for 10 out of 96 valid cases

for lin-lin loss and 13 out of 96 valid cases for quad-quad loss. Overall, the results from

estimation suggest that the majority of the AEO forecasts considered in this paper are not

consistent with a symmetric loss function of the forecaster producing them - the Energy

Information Administration.

14This case is overidentified for all k since we are “fixing” the asymmetry parameter and p.
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5. Conclusions

Using forecasts produced by others is only optimal for the forecast user if the loss function

of the forecast producer is identical to that of the forecast user. This paper provides

empirical evidence that a majority of the most important national level energy related

forecasts published by the Energy Information Administration are only rational/optimal

under highly asymmetric loss function. The forecasts of oil, coal and gas prices as well

as natural gas consumption, GDP and energy intensity are shown to be consistent with

highly asymmetric loss functions.

Since these quasi-official EIA forecasts are used both for the calibration of economic

simulation models and for benchmarking engineering-based energy scenario analyses un-

derstanding the implicit loss function of the forecasters who constructed them is crucial.

Using these forecasts under the assumption that they were constructed using a symmetric

loss function will result in suboptimal outcomes for the user. We argue that the observed

asymmetric loss functions are likely to reflect loss functions of individual modelers at the

EIA, rather than an overall loss function of the EIA as an organization or its top admin-

istrators.

Interestingly, the forecasts of energy intensity reflect very conservative expectations of

future drops in energy intensity. Overpredicting the future energy intensity ratio under-

states autonomous drops in efficiency and therefore overstates expected costs of regulation.

The consistent overprediction of energy intensity is due to asymmetric loss over Gross Do-

mestic Product forecast errors. The GDP forecasts, which are provided by an outside

consulting firm and are modified by EIA modelers drive the energy intensity forecasts.

Other GDP forecasts considered by the EIA seem to do underpredict future GDP even

more.

On interesting line of future research is taking a closer look at CO2 forecasts from

NEMS. It is possible that underpredictions of GDP, reflecting economic activity, may be

responsible for the underpredictions of CO2 emissions. When constructing a frequently

used measure of technological progress (Carbon Intensity) from these two series, the biases

cancel each other out and the forecasts of Carbon intensity seem to be consistent with

20



symmetric loss, although the available series are too short to formally test this at the

current time.
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