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Abstract 

In determining the optimal redistribution of a given population’s income, we ask which 

factor is more important: the social planner’s aversion to inequality, embedded in an 

isoelastic social welfare function indexed by a parameter alpha, or the individuals’ concern 

at having a low relative income, indexed by a parameter beta in a utility function that is a 

convex combination of (absolute) income and low relative income. Assuming that the 

redistribution comes at a cost (because only a fraction of a taxed income can be transferred), 

we find that there exists a critical level of beta below which different isoelastic social 

planners choose different optimal allocations of incomes. However, if beta is above that 

critical level, all isoelastic social planners choose the same allocation of incomes because 

they then find that an equal distribution of incomes maximizes social welfare regardless of 

the magnitude of alpha.  
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1. Introduction 

The fundamental tension between different social planners with regard to the income 

allocation rule under a deadweight loss of tax and transfer is easily understood, and has 

been alluded to for many years. For example, Tullock (1975) and Sen (1982) already grappled 

with the assumptions or conditions necessary to render equal division the optimal 

distributional rule for a given total income. However, neither of them enlisted individuals’ 

concern at having a low relative income as a conciliator. In this note we bring together under 

the same isoelastic roof all the pivotal social planners, we incorporate a deadweight loss of 

tax and transfer, we display the received tension between the different social planners, and 

we ask what strength of the individuals’ concern at having a low relative income will cause 

all the social planners to choose the same - equal - distribution of income.1  

The class of isoelastic social welfare functions (Atkinson, 1970) enables us to 

represent the varying degrees of the social planners’ aversion to inequality in the 

population’s distribution of income as special cases. Due to its appealing axiomatic 

foundation and flexibility in embracing basic equality criteria,2 the function has become a 

popular measure of social welfare in a variety of fields, ranging from optimal taxation 

(Atkinson and Stiglitz, 1976; Stern, 1976; Slemrod et al., 1994) to health economics (Abasolo 

and Tsuchiya, 2004, and references cited therein) and environmental economics (Shiell, 

2003). 

Our aim is to uncover a condition under which all the pivotal “isoelastic social 

planners” - a utilitarian, a Rawlsian, a Bernoulli-Nash, or any planner “in-between” - will 

come up with the same optimal income distribution when a tax and transfer procedure is 

subject to a deadweight loss. We obtain a strong congruence result: when the individuals’ 

utility functions exhibit a sufficiently high concern at having a low relative income, the 

optimal tax policies of all the social planners align: this unanimity holds for the entire class of 

isoelastic social welfare functions with a parameter of inequality aversion,  , (defined in (1) 

below) spanning from zero (the case of a utilitarian social function) to infinity (the case of a 

                                                      
1
 Rich evidence from econometric studies, experimental economics, social psychology, and neuroscience 
confirms that individuals routinely engage in, and are affected by, interpersonal comparisons. In particular, 
people are dissatisfied when their consumption or income levels are lower than those of others who 
constitute their “comparison group.” Studies that recognize such discontent are, among others, Stark and 
Taylor (1991), Zizzo and Oswald (2001), Luttmer (2005), Fliessbach et al. (2007), Blanchflower and Oswald 
(2008), Takahashi et al. (2009), Stark and Fan (2011), Stark and Hyll (2011), Fan and Stark (2011), Stark et al. 
(2012), and Card et al. (2012). Additionally, the comparisons that affect the sense of wellbeing significantly 
are those made by looking “up” the hierarchy, whereas the possibility that individuals derive satisfaction from 
looking “down” is not supported by studies of this subject. For example, Andolfatto (2002) demonstrates that 
individuals are adversely affected by the material wellbeing of others in their reference group when this 
wellbeing is far enough below theirs. See also Frey and Stutzer (2002) and Walker and Smith (2002) for a 
large body of evidence that supports the “upward comparison” hypothesis. 

2
 The isoelastic social welfare function satisfies the criteria of unrestricted domain, independence of irrelevant 
alternatives, anonymity, separability, and the weak Pareto criterion (Roberts, 1980). 
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Rawlsian social function). We characterize the consensus optimal income distribution - 

which is a distribution of equal incomes - and we find that the intensity of the individuals’ 

concern at having a low relative income crowds out the preferences over income 

distribution harbored by particular social planners. Moreover (and unless we begin with 

equal incomes), we identify the critical intensity of the individuals’ concern at having a low 

relative income below which every isoelastic social planner other than the Rawlsian will 

choose a different, and particularly a non-equal, distribution. In other words, we formulate a 

necessary and sufficient condition for reconciliation of all the isoelastic social planners.  

We proceed in two steps. First, we show that when the individuals’ preferences do 

not exhibit a strong enough concern at having a low relative income, a deadweight loss of 

tax and transfer impedes equalization of incomes, and entails an optimal allocation in which, 

except for the Rawlsian social planner, all social planners end up with an unequal 

distribution of the available income. Second, we show that if the individuals’ preferences 

exhibit a strong concern at having a low relative income, any isoelastic social planner who 

acknowledges this concern will end up equalizing incomes, no matter what is his degree of 

inequality aversion. Put more starkly, although the higher  , the more the isoelastic social 

welfare function tilts in favor of income equalization, a deadweight loss of tax and transfer 

interferes with this “proclivity” for any   . Incorporation of the individuals’ concern at 

having a low relative income restores the “power” (or reinvigorates the mandate) of the 

social welfare planner to equalize incomes. 

Our analysis unravels an interesting distinction between the social planners’ aversion 

to inequality (represented by the parameter   in the isoelastic social welfare function) and 

the individuals’ concern at having a low relative income (represented by the parameter   in 

the individuals’ utility functions). We find that when an “isoelastic social planner” faces a 

population characterized by an intensity of concern at having a low relative income that is 

higher than a critical value, the planner will choose to equalize incomes. There exists a 

critical level of the individuals’ concern at having a low relative income that makes all the 

isoelastic social planners choose an equal income distribution, but there does not exist a 

(finite) level of the social planner’s aversion to inequality that leads him to choose equal 

income distribution for any  . That is, the   preference of the individuals dominates the   

taste of the social planner. Essentially, we show that inequality aversion formed “top-down” 

via the social welfare function is not a substitute for the intensity of a distaste percolating 

“bottom-up” from the preferences of the individuals.3 In a sense, this finding is in conflict 

with intuition that has gained analytical support in the optimal taxation models of Stern 

                                                      
3
 Kaplow (2010) already noted asymmetry in the effect of the concavity of individuals’ utility functions and the 
effect of the concavity of the social welfare function on the desirability of redistribution, finding that the 
former has more significant influence. In our model, a strong concern at having a low relative income 
embodied in the individuals’ utility functions, namely, a high enough  , translates into a high marginal utility 

of individuals whose incomes are low, whereas the parameter   defines the concavity of the social welfare 

function. 
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(1976), Slemrod et al. (1994), and others, who show that embedding inequality aversion in 

the social welfare function suffices to render taxation more progressive, and the distribution 

of income more equal. 

The plan of the remainder of this note is as follows. In Section 2 we introduce the 

class of isoelastic social welfare functions. In Section 3, which serves as a benchmark, we 

consider a population of two individuals. Under a deadweight loss of tax and transfer, we 

find that if the individuals’ concern at having a low relative income,  , is not strong enough 

(in a sense made precise), then (i) the optimal income distributions chosen by different 

social planners differ from one another, depending on the social planners’ parameter of 

inequality aversion,  ; and (ii) only a Rawlsian social planner chooses an equal income 

distribution. In Section 4 we consider a population of any size. We show that there exists a 

critical level of the intensity of the concern at having a low relative income, * , which 

compels all isoelastic social planners to choose an equal income distribution, regardless of 

the value of their parameter of inequality aversion,  . Section 5 concludes. 
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2. The isoelastic social welfare function 

Let there be a population of 2n   individuals (where n is a natural number), and let the 

isoelastic social welfare function, SWF, be defined as 
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where 1,( , )nxx x , and 0ix   is the income of individual 1,...,i n ; ( , )iu x x  is the utility 

function of individual i, which depends on the individual’s income ix  and, possibly, on the 

incomes of other individuals in the population, such that ( , 0)ixu x  for any x , where 

  is the set of possible income distributions; and [0, )   is the social planner’s 

parameter of inequality aversion.4,5 The social welfare function in (1) is a discrete equally-

distributed-equivalent utility, as is often defined in social choice theory. 

As already noted in the Introduction, varying the parameter   allows us to represent 

the maximization problem of the social planners who differ from one another in the degree 

of their inequality aversion.  

When 0   (no preference for equality), we have that (1) reduces to  
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 x x , 

which is equivalent to a standard utilitarian social welfare function,
 1

 ( ) ( , )
n

i

i

USWF u x


x x .  

Using a well-known property of a generalized mean (Bullen, 2003, Theorem III.1.2), it 

follows that, when 1  , we have that  

                                                      
4
 The literature offers several definitions or representations of an isoelastic social welfare function with 0  , 

1  . Probably the one that is most commonly used is 
1

1

( ) ( 
1

1
),

n

i

iuS x












x x . However, as noted by 

Iritani and Miyakawa (2002), this form of isoelastic function does not converge point-wise to a Rawlsian 

maximin social welfare function for    (although the preference relations described by ( )S

  converge 

to those of maximin function for   ). For precision’s sake, we resort throughout this note to the 

formulation of SWF given in (1), which has the advantages of converging to a Rawls maximin function for 

   without additional transformations and, as a monotone transformation of ( )S

 , it is equivalent to 

( )S

  in terms of maxima for any 0  , 1  .

 5
 The isoelastic function can be linked to the so-called Box-Cox transformation of population incomes, used 
often in statistics and in econometrics in order to render the data resemble a pattern akin to the normal 
distribution (Salas and Rodríguez, 2013). 
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namely, the limit function for   approaching 1 is equivalent to the Bernoulli-Nash social 

welfare function,
 1

(( ) , )BN

n

i

i

SWF xu


 xx .  

In addition, it is easy to show that when   , we have that 

  
{1,..., }

lim ( ) min ( , ) ( )Ri
i n

SWF x Su WF
 

 x x x , 

which implies that the Rawlsian maximin social welfare function ( )RSWF x  represents the 

extreme case of a social planner’s inequality aversion.6 

Thus, and as is already well known, by varying the coefficient 0   and, additionally, 

by analyzing the limit case   , we can use the isoelastic social welfare function defined 

in (1) to represent the preferences of the most “prominent” social planners: utilitarian, 

Bernoulli-Nash, and Rawlsian.  

We now formulate the social planner’s optimization problem. Let the vector of initial 

incomes of the n individuals be 1( ,..., )ne ee  such that 1 ..0 . nee   . A social planner can 

transfer income from one individual to another in order to obtain what he considers to 

constitute the population’s optimal income distribution. Let ix  denote the possible post-

transfer (or post-tax) income of individual i, and let 
1

max{ ,0}
n

i i

i

t e x


   denote the total 

income that the social planner takes away from the individuals (henceforth “the tax”). Due 

to a deadweight loss of tax and transfer, only a fraction of the tax ends up being 

transferred.7 We denote this fraction by (0,1] . Consequently, the set on which we search 

for the solution of the social planner’s problem is  

 1

1 1

( , ) ( , , ) : 0 for all and max{ ,0},  ,0}max{
n n

n i i i i i

i i

x x e x xx i e 
 

 
        

 
 e x , 

namely, we search over the set of incomes that can be attained from the initial allocation e  

by taxing some individuals; we thereby obtain the sum 
1

max{ ,0}
n

i i

i

t e x


  ; and we 

distribute t
 

between the remaining individuals such that the transfer amounts to 

1

max{ ,0}
n

i i

i

t x e


 .  

                                                      
6
 In what follows, we denote by ( ) ( )

R
SWF SWF


x x  the case when the social welfare function is Rawlsian, 

even though the parameter   is then not set. 
7
 The loss incurred in the course of the process of tax and transfer is in the spirit of Okun’s (1975) concept of 
“leaky bucket.” 



6 
 

Let the utility function of an individual whose income is ix  be  

 ( , ) ( ( ) ,) )1 (i i ix x xu Ef RI   xx , (2) 

where ( )f   is a strictly increasing, strictly concave function with (0) 0;f    0,1   

measures the intensity of the individual‘s distaste at having a low relative income, while the 

taste for having an (absolute) income is accorded the complementary weight 1  ; RI is the 

index of low relative income, defined as  

 
1

( ) max{,
1

 ,0}
n

i j i

j

RI xx x
n 

 x , 

namely, we operationalize the concern for low relative income by the index of relative 

deprivation;8 and where E is a constant such that 
1

1 n

k

k

E
n

E e


  , which we introduce in 

order to ensure that for each i and ( , )x e  we will have that ( , ) 0.ixu x
9  

                                                      
8
 The index of relative deprivation, based on the seminal work of Runciman (1966), was proposed by Yitzhaki 
(1979), and axiomatized by Ebert and Moyes (2000) and Bossert and D’Ambrosio (2006). A detailed account 
of the background, rationale, and logic for this index is in Stark (2013). The index can be shown (see, for 
example, Stark, 2013) to be equal to the fraction of the individuals in the population whose incomes are 
higher than the income of the individual, times their mean excess income. 

9
 From the definition of the set ( , ) e  we have that 

1 1

n

i

i

n

i

i

e x
 

   for any ( , )x e . Thus, 

1 1 1

( ) max{ , 0} / / /,

n n n

i j i j j

j j j

RI x x x n ex n n E E  
  

       x  and, therefore, because ( ) 0
i

f x  , 

,( ) 0
i

u x x  for any {1,..., }i n  and ( , )x e . 
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3. A population of two individuals 

In this section we study a population of two individuals. We find that if the concern for a low 

relative income is not strong enough, an isoelastic social planner who faces a deadweight 

loss of tax and transfer will not, in general, choose to equalize incomes. The analysis of the 

case of two individuals serves as a foundation for analyzing the case of a population of any 

size, conducted in Section 4. The case of two individuals, and in particular the part leading to 

inequality (7) below, is significant in that it unravels the intuition of our main result, 

presented in the form of a proposition, in Section 4.  

We consider a two-person population, 1,2i  , in which individual 1i  , the “poor,” 

has an initial income 1e , and individual 2i  , the “rich,” has an initial income 2e , 1 20 e e  .  

Let there be an isoelastic social planner who can revise the prevailing income 

distribution by transferring an amount t  from one individual to another, taking into account 

the deadweight loss as defined in Section 2. It is easy to verify that if we were to tax the 

income of the “poor” individual and transfer income to the “rich” individual, social welfare 

would decline. Thus, the only way in which the social planner could try to improve social 

welfare is to tax the “rich” individual, and make a transfer to the “poor” individual. In the 

case of two individuals, it is convenient to rewrite the utility levels in (2) as functions of the 

tax amount t, ( )iv t , 1,2i  . The post-transfer utility of the “poor” individual is then 

   21 1 11 1 2( ) (1 ( ) ) ,0},( , ) ) max{( ( )
2

v t u f e t te t e t t e e t Ee


              , 

and the post-transfer utility of the “rich” individual is 

   2 12 22 1 2( ) (1 () max{) ),0( ) (), },
2

(v t u f e t t Et e t ee e t e t


          . 

Which t will an isoelastic social planner choose? To find out, we rewrite the social welfare 

function in (1) for a population of two individuals and for a transfer from the “rich” 

individual to the “poor” individual as   

 

1 1
1

1 2

11 1
1 2

for 0,  1,
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swf t
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which is to be maximized over 2[0, ]t e . We note that the amount t which equalizes the 

incomes of the two individuals is 2 1

1

e e
t







, in which case the post-transfer income of each 

of the individuals’ is 

* 2 1

1

e e
x








 . It is easy to verify that for 2, )(t t e
 and any 0   we 



8 
 

have that ( ) 0swf t
   and, thus, the isoelastic social planner will surely not choose a tax 

level higher than t . 

For [0, ]t t , we have that 2 1e e tt   . Thus, while the “poor” individual 

experiences low relative income (that is, except when t t ), the “rich” individual does not, 

so 
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and for any (0, )t t  and 0  , 1   we have that 
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Strict concavity and monotonicity of ( )f   imply that  
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for any (0, )t t ; namely, 
( )s t  is a strictly decreasing function. Therefore, in order for t t  

to constitute the optimal tax level, we must have that 

 lim ( 0)
t t

s t


 , 

because this condition ensures that social welfare increases all the way up to t t . This 

limit condition is equivalent to requiring that 

 
*

1

(1 ) / 2 (1 )(1 ( )
0

)

( )

f x

v t

      



, (6) 
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which, due to 
1 ( ) 0v t  , is equivalent to requiring that  

 
*

*

*

( )
(

( )

(1 )
, )

(1 ) (1 ) / 2

f x

f x


  

 



 


 

 
e , (7) 

where, obviously, 
*0 , )( 1  e . 

We see that for *( , )   e , the optimal tax lies somewhere in the range [0, )t t . 

Specifically, if ) 0(0s  , we have that 0t  , namely, the social planner will not choose to 

transfer any income, whereas if ) 0(0s  , the optimal level of the tax is given by setting (5) 

equal to zero: 

 1 2

1 2

(1 ) / 2 (1 ) (1 )( ) ( )

( ) ( )

f e t f e t

v t v t 

         


 
. (8) 

For 1  , an analysis analogous to the one undertaken above shows that we get 

exactly the same condition as (7) for t t  to constitute the optimal level of the tax.  

Two observations are worth making: (i) condition (6) is satisfied for any 0   if and 

only if 1  ; that is, if and only if the transfer is perfectly costless; (ii) the critical level of   

that is necessary for the equalization of incomes, * ,( ) e  in (7), does not depend on the 

parameter  . We summarize the preceding analysis in the following lemma. 

Lemma 1. In the case of two individuals with initial incomes 1 20 e e  , an isoelastic social 

planner who is maximizing the function ( )swf t  over 2[0, ]t e
 with [0, )  , and who is 

facing a deadweight loss of tax and transfer (0,1] , will choose the optimal tax which 

equalizes incomes, *t t , if and only if: 

(a) 1   

or 

(b) 1 
 
and *( , )   e .  

Additionally, noting that the post-transfer level of income at the point of equality 

treated as a function of   for given initial incomes 1 20 e e  , namely, * 2 1(
1

)
e e

x









, is 

increasing,10 we obtain from (7) that 
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 . 

Thus, and aligning with intuition, the critical level * ,( ) e  increases when the deadweight 

loss becomes more onerous: when more is being lost in the tax and transfer procedure, 

following the procedure will be justified only if the weight attached to low relative income is 

higher.  

Regarding the Rawlsian social welfare function, which is equivalent to the limit case 

of (3) with   , namely, to 

  1 2( ) min ( ), ( )Rswf t v t v t , 

it is easy to see that as long as 1 2 ,e t te    the Rawlsian social planner will find it optimal 

to increase the income of the “poor” individual at the expense of the “rich” individual, and 

that he will so act until reaching the point 21e t e t   , namely, until t t . Thereafter, 

transfers cannot anymore increase social welfare because they will render the “rich” “poor.” 

We thus have the following lemma. 

Lemma 2. In the case of two individuals, a Rawlsian social planner who is facing a 

deadweight loss of tax and transfer (0,1]  will choose to equalize incomes, that is, to set 

*Rt t  for any (0,1]  and any [0,1)  . 

From a comparison of Lemma 1 with Lemma 2, we see that in the presence of a 

deadweight loss of tax and transfer, the optimal choices of isoelastic social planners 

(including a utilitarian social planner and a Bernoulli-Nash social planner) differ from the 

choice of a Rawlsian social planner; only the latter chooses to distribute incomes equally. 

Moreover, because the solution to (8) depends on the value of the parameter  , we get 

that the choices of isoelastic social planners for *( , )   e  differ for different levels of 

inequality aversion. In Example 1, where we shorten the notation * ,( ) e  to * , we 

present this divergence diagrammatically for a chosen utility specification and specific values 

of the parameters.  

Example 1. Consider the following preferences and initial endowments of the two 

individuals: ( ) ln( 1)f x x  , 1 4e  , 2 13e   and, 1/ 2  . Then 6t  , and * 0.08  . In 

Figure 1 we depict the optimal tax *t  as a function of the social planner’s inequality aversion 

parameter   for three different values of * *:  0,  0.9 ,  and     . As   increases, the 

optimal tax for 0   and for *0.9   asymptotically approaches t , although it does not 
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reach t  even for large values of   and for *0.9  . Other than the Rawlsian social 

planner, represented by the limit case   , no social planner chooses to equalize 

incomes. However, when *   (or, for that matter, when *  ) all the social planners, 

regardless of their  , pursue a redistribution policy that equalizes incomes.  

 

Figure 1: The optimal tax *t  as a function of   for three different values of  : 0   

(dashed line), *0.9   (dotted line), and *   (solid line), for ( ) ln( 1)i if x x  , 1,2i  , 

1 4e  , 2 13e  , and 1/ 2  . 

In the case of a population of two individuals, we see that if an individual’s concern at 

having a low relative income is not strong enough (in the sense of not exceeding the critical 

level * ), then even a social planner’s high level of aversion to inequality,  , does not bring 

about equalization of incomes. Drawing on this insight, in the next section we present this 

note’s main result. We show that for a population of any size, the choices of all the social 

planners are identical when the individuals’ concern at having a low relative income is strong 

enough, and that the congruence obtained is that all the social planners divide the available 

income equally. Moreover, acknowledgment by the social planners of the individuals’ 

distaste for low relative income overrides the social planners’ own preference for equality.  
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4. A population of any size 

We next show that for a population of any size, the optimal choices of the isoelastic social 

planners (including the utilitarian and the Bernoulli-Nash) along with the optimal choice of a 

Rawlsian social planner are all the same if the individuals’ concern at having a low relative 

income is acknowledged, and if this concern is strong enough. 

As a preliminary, we establish that in the set ( , ) e  there exists a unique point of 

equal incomes.  

Lemma 3. There exists a unique 1( , ) (, , )nx x   e  such that 
1 nx x . 

Proof. Assuming that 1 ne e ,11 we let 

 1

1

max{ ,0}

ma

)

,0}

(

x{

n

i

i

n

i

i

x e

e

g x

x












 

for 1 )[ , nex e . Then, as a ratio of a continuous, strictly increasing, and positive function, and 

a continuous, strictly decreasing, and positive function, ( )g  is a continuous and strictly 

increasing function, 1( ) 0,g e   and lim ( )
nx e
g x


  . Thus, there exists a unique *

1( , )nex e  

such that *( )g x  , which is the solution of the equation 
1

,max{ 0}
n

i

i

xe


  

1

max{ ,0}
n

i

i

x e


  , and we set *

1 nxx x  .  

Henceforth, we will denote the unique point of equal incomes in ( , ) e , shown to 

exist in Lemma 3, by ** *, ,( )x xx .  

The proposition that follows is this note’s main result. It is helpful to highlight the 

essence of the proposition. First, if we begin with an income distribution in which all the 

incomes are equal, then no social planner chooses to interfere with the distribution. Second, 

if the social planner is a Rawlsian, then he always chooses to equalize the incomes. Third, 

there exists a critical level of the individuals’ concern at having a low relative income which 

renders the choices of the utilitarian, the Bernoulli-Nash, and, for that matter, any isoelastic 

social planner perfectly congruent with the choice of the Rawlsian; namely, they all choose 

equal income distribution.  

Proposition 1. Let the social welfare function ( )SWF   be defined on ( , ) e . Then: 

                                                      
11

 Otherwise, the distribution is equal at the outset, and any transfer permitted by the definition of the set 

( ), e  would make it unequal, and (as is easy to check) would decrease social welfare for any value of  . 
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(a) the solution of the social planner’s problem is to divide incomes equally, namely,  

*

( ; )
max ( ) ( )SWF SWF 




x e
x x , 

if and only if at least one of the following conditions holds: 

(b) the incomes are equal to begin with, namely, *

1 ... xee n  ; 

(c) the social planner is a Rawlsian, namely, ( ) ( )RSWF SWF x x ;  

(d) 
*( , )   e , where the critical level of the concern at having a low relative 

income, * ,( ) e , is such that 
*

*

*

( )(1 )
( , ) 1

( )(1 ) (1 ) /

f x

f x n


 

  

 
 

    
e  and it 

does not depend on [0, )  . 

Proof. The proof is in the Appendix. 

As long as 1  , the upper bound on * ,( ) e  in part (d) of Proposition 1 can be 

rewritten as 

 
*

*

( )
1

1
( )

1

f x

f x
n








  


. 

This formulation leads to two observations. First, because 
1




 is increasing in  , the 

smaller the leak incurred in the transfer, the smaller the upper bound on * ,( ) e ; when the 

social planner sacrifices less income in the transfer process, then a smaller level of   

suffices to entice him to equalize incomes. Moreover, when   tends (from below) to 1, 

1




 converges to infinity and, thus, * ,( ) e  converges to 0. This is in correspondence with 

the case of no leakage ( 1 ) in which independently of the magnitude of   all the 

isoelastic social planners choose an equal income distribution. Second, although the bigger 

the population the lower the upper bound on * ,( ) e , for a constant (0,1)  this bound is 

always (namely for any n) smaller than 
*

*

( )

( ) / (1 )

f x

f x  



  
 and, thus, for any population size 

this bound is essentially distanced from one. 
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5. Conclusion 

We find that for the entire class of isoelastic social welfare functions, there exists a single 

critical level of intensity of the individuals’ concern at having a low relative income which 

leads to equal distribution of incomes being the optimum for any extent of the social 

planners’ inequality aversion. 

The result that the critical level of intensity of the individuals’ concern at having a low 

relative income is the same for all levels of the isoelastic social planners’ parameter of 

inequality aversion questions the robustness of modeling the equality desired by the society 

by means of the parameter of the isoelastic social welfare function. In other words, it 

appears that the degree of the individuals’ concern at having a low relative income plays a 

distinct and more important role in the formation of the optimal redistribution policy than 

the intensity of the social planner’s inequality aversion. Further research on this issue will 

enrich our understanding of the role and relevance of the social planners’ distaste for 

inequality in shaping social preferences, and in guiding the search for a socially optimal 

income distribution. 
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Appendix  

Proof of Proposition 1  

We show that  (a) (b) (c) (d)   . We proceed in three steps. First, we remark that 

(b) (a) . Second, we show that (c) (a) . Third, we show that 

   (b) (c) (d) (a)   . 

Step 1. That (b) (a)  is obvious. 

Step 2. We next show that (c) (a) , namely, that the unique solution to the Rawlsian social 

planner’s problem, 

   1
( , ) ( , )

max ( ) max min ( ),..., (, , ) ,nRSWF u x u x
  


x e x e

x x x  (A1) 

is the equal income distribution ** *, ,( )x xx  for any 0  . The proof is by contradiction. 

We assume that
 ( , )

arg max ( )RSWF



x e

x z , where 1,..., )( nz zz  is such that 
1min{ ,..., }nz z z

1max{ ,..., }nz z , and we show that it is possible to construct a transfer from an individual 

with income higher than z  to individual(s) with income z  and obtain a ( , )y e  such that 

( ) ( )R RSWF SWFy z . Therefore, we will conclude that z  cannot constitute a maximum.  

Let { 1,.. ,{ . }: }i i iI i n z z z e     , { 1,.. ,{ . }: }i i iI i n z z z e     , 

min{ : }iz z i I I    , min{ 1,..., }:{ }ik i n z z  , { }J I I k    , and h I I   , 

where the notation A  stands for cardinality of the set A. Obviously, from the characteristics 

of the point z , it follows that I I   , and that 1h  . Let   be such that 

  
:

min ( ) / 2, m n0 i
i i

i i
i J ze

ez z z 
 

   . We define the coordinates of the point 

1( , ), ny y y
 as  

 

for 

for ,

for 

/ ,

{1, , } ,\

i

i i k

i

z i

y z i k

z i

h I I

n J





  

 




  



 

where   / ( )k I I h       if 
k kz e , and   /k II h      otherwise. It is easy to 

verify that, indeed, ( ),y e .  

We note that if 1 ... nxx   , then 1 ...( ) ( )nf x f x  , and    1 ..., ,nRI x RI x x x . 

Therefore, 1( ) .. (, . ),nu x u x x x . Hence, for any 1,..( ))., ( ,nxx x e  and any 

{1, , }nk   such that 1,min{ . }. .,k nx x x , we have that ( ) ( )R kSWF ux x . Because ( )f   is 
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an increasing function, and because a smaller difference between incomes implies a smaller 

value of the index of low relative income, it follows that for any i I I    

 

 

 

( ) ( )

( (

(1 ) ( /

, ) , )

) ( )

( / , ( ) 0,)

i i

i i

i i

R RSWF SWF

u y u z

f z h f

RI h

z

z RI z

 

 





  







 

y z

y z

y z
 

for any [0,1)   and 0 1  . Therefore, ( ) ( )R RSWF SWFy z , which contradicts the 

presumption that ( )RSWF   attains a global maximum at z . Additionally, because the 

function ( )RSWF   is continuous, it attains a global maximum on the compact set ( , ) e . 

Thus, the solution of the problem of a Rawlsian social planner, (A1), has to be a transfer such 

that the post-transfer incomes are all equal and, as shown in Lemma 3, *
x  is the unique 

point in ( , ) e  such that all the incomes are equal. This completes the proof that (c) (a)  

by contradiction. 

Step 3. We next show that if neither (b) nor (c) holds, then the solution of the isoelastic 

social planner’s maximization problem is an equal division of incomes if and only if (d) holds, 

that is,    (b) (c) (d) (a)   . 

For the sake of comprehensibility, we begin this step by presenting a simple 

“organizational” remark.  

Remark A1. Let :f X Y , nX R , Y R , and let :g Y R . We have that: 

1. If g  is increasing, then  

 
arg max ( ( )) arg max ( );

X X

g f f
 


x x

x x
 

2. If g  is decreasing, then 

 
arg min ( ( )) arg max ( )

X X

g f f
 


x x

x x
 

and 

 
arg max ( ( )) arg min ( ).

X X

g f f
 


x x

x x
 

Proof. The proof follows straightforwardly from the properties of the maxima and the 

minima of monotonous functions.  

Proceeding with the proof of step 3 of the proposition, we assume that 1 ne e  

(namely, ( )b ) and that [0, )   (namely, ( )c ). We present a detailed proof for the case 

1  ; the proof for the case of the Bernoulli-Nash social planner ( 1  ) is analogous, and 

will be discussed briefly at the end.  
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For 0  , 1  , we proceed as follows. First, we will show that Remark A1 

guarantees that the maximization problem of ( )SWF   on ( , ) e  is equivalent to the 

maximization problem of  

 

1

1

,

1
)

( )
(

n

i

i

F
u x






 
x

x

 

on ( , ) e . Second, we will show that for a sufficiently large  , namely, higher than or 

equal to a certain critical level denoted by *( , ) 1  e , the point * * *( , , ) ( , )x x  x e  is 

a global maximum of ( )F   on ( , ) e . Therefore, * ( , )x e  is also a global maximum of 

( )SWF   on ( , ) e  for 
*( , )   e  and any 0  , 1  , which yields the implication 

(d) (a) . We complete the proof by noting that if *( , )   e , then the point *
x  ceases 

to be an optimum of ( )SWF   on ( , ) e , which is equivalent to (a) (d) . 

With 0  , 1  , we consider the functions 1

1( )g x x   and 
2 ( )

1
x x

n
g





 for 

0x  . Obviously, 2 1( ( ( )))g g SWF x ( )F x . Because for  a <1 both 1( )g   and 2 ( )g   are 

increasing, whereas for 1   both 1( )g   and 2 ( )g   are decreasing then, on applying Remark 

A1 twice, we get for any 
0

nX  R  that  

12 1arg max ( ) arg max ( ( ( ))) arg max ( ( )) arg max ( )
X X X X

F g g SWF g SWF SWF   
   

  
x x x x

x x x x  

when  a <1; and that 

12 1arg max ( ) arg max ( ( ( ))) arg min ( ( )) arg max ( )
X X X X

F g g SWF g SWF SWF   
   

  
x x x x

x x x x  

when  a >1. Thus, the global maxima on any 
0

nX  R  of ( )F   and ( )SWF   coincide, 

namely, 

 arg max ( ) arg max ( )
X X

F SWF 
 


x x

x x .  

Our next task is to find the global maxima of ( )F   on ( , ) e . 

To this end, we show that for a sufficiently large  , * * *( , , )x xx  is the maximum 

of ( )F   on ( , ) e . We start with yet another remark. 

Remark A2. A local maximum of ( )F 
 on ( , ) e  is a global maximum on ( , ) e . 

Proof. Let  

1

1 1

( , ) ( , , ) : 0 for all and max{ ,0},  ,0}max{
n n

n i i i i i

i i

x x e x xx i e 
 

 
        

 
 e x . 
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We are interested in the maximization problem
( , )

max ( )F
 ex

x . Obviously, 

( , ) ( , )  e e . We seek to show that if *
y  is a maximum of ( )F   on ( , ) e , then we 

must have that * ( , )y e .  

To achieve this, we first show that for every ( , ) \ ( , )  x e e  there exists 0   

such that for 1( / , , / )nx n x n     x  we have that ( , ) x e  and that 

( ) ( ).F F  x x  

We fix ( , ) \ ( , )  x e e . Because x  does not belong to ( , ) e , we know that  

 max{ ,0} max{ ,0}.i i i ie x x e      

We take ( , ( , ))dist  x e , where dist( , )Xx  is the distance between point x  and 

the set X .12 We define 

 ,1 , 1( , , ) ( / , , / )n nx x x n x n         x . 

Because ( , ( , ))dist  x e , we know that 

 , ,max{ ,0} max{ ,0}i i i ie x x e       

holds. Thus, ( , ) x e . Moreover, because the relative incomes did not change ( RI  is 

translation invariant) and f  is an increasing function, the utility levels of all the individuals 

will increase. Thus, ( ) ( ).F F  x x  This completes the proof that for every 

( , ) \ ( , )  x e e  there exists 0   such that ( , ) x e , and that ( ) ( ).F F  x x   

This last result implies that ( )F   cannot have a maximum on ( , ) \ ( , )  e e  

because for any point ( , ) \ ( , )  x e e  in its every neighborhood in ( , ) e , there exists 

a point at which the function ( )F   attains a higher value. On the other hand, because ( )F   

is a strictly concave function - it is the sum of strictly concave functions ( )u   raised to the 

power  1-a  and divided by  1-a  - maximized on a closed subset ( , ) e  characterized by a 

concave constraint function,13 then, if a local maximum on ( , ) e  exists, then that 

maximum is also a global maximum on ( , ) e . This implies that the global maximum of 

                                                      
12

 ( , ) ind fist ( , )
X

X d



y

x x y  where ( , )d    is the Euclidean distance between two points. 

13
 In other words, the problem 

 
0

min ( ) ( ) 0:
n

F g




  
x R

x x , 

where 
1 1

( ) max{ , 0} max{ , 0}
n n

i i i i

i i

g e x x e
 

    x ,

 

is a convex optimization problem because as a sum of 

concave functions of the form ( ) max{ , 0} max{ , 0}
i i i i i i

x e x x e     , the function ( )g   is concave. 
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( )F   on ( , ) e  has to be realized on ( , ) e  and, thus, any local maximum of ( )F   on 

( , ) e  is also a global maximum. This completes the proof of Remark A2.  

Continuing with the proof of step 3 of Proposition 1, we assume that the point *
x  

was obtained by means of redistribution, that is, by means of a transfer enacted to obtain 

the allocation *
x  from the initial allocation of incomes e , as dictated by the constraints 

defining the set ( , ) e . We refer to this initial redistribution as the *
e x  transfer. Then, 

starting from *
x , we consider a second redistribution, namely, a marginal transfer of 0t   

between the individuals, subject to the conditions of the set ( , ) e , by which an allocation 

( , )y e  is to be obtained. We refer to this second redistribution as the *
x y  transfer. 

The interdependence between the initial incomes 1 )( , , ne e  and *x  mandates division of 

{1, , }I n   into three pairwise disjoint sets: 

0

*

*

*

{ : };

{ : };

{ : }.

i

i

i

I i I e x

I i I e x

I i I e x







 









   

In the case of individual i who received income in the *
e x  transfer, that is, for i I

, in the *
x y  transfer we can give to this individual either a share, denoted by [0,1]i  , of 

the amount t (that which we can give is reduced by the deadweight loss), and increase his 

income by i t  , or we can take from him a share, denoted by [0,1]i  , of the amount t 

(also reduced by the deadweight loss), namely, take back part of what he gained, in which 

case his income will be reduced by i t  . The set of the individuals from I  who receive a 

share will be denoted by 
,I 

, and the set of the individuals from whom we take a share will 

be denoted by 
,I 

, with , ,I I      and 
, ,I II    . 

In the case of an individual from whom income was taken in the *
e x  transfer, that 

is for i I , in the *
x y  transfer we can either give him a share, denoted by [0,1]i  , of 

the amount t, which represents giving back part of what was taken from him, and thus his 

income will be raised by it , or take from this individual a share of the amount t, denoted 

by [0,1]i  , and decrease his income by it . Similarly as for I , this procedure imposes 

division of a set I  into two pairwise disjoint subsets ,I   and ,I  . 

Completing the mapping out of the possibilities, in the case of an individual whose 

income did not change (
0i I ) in the *

e x  transfer, in the *
x y  transfer we can either give 

this individual a share, denoted by 
  
m

i
Î[0,1], of the amount t (that which we can give is 

reduced by the deadweight loss), in which case his income will be raised by i t  , or we can 
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take away a share, denoted by [0,1]i  , in which case his income will be lowered by it . 

These transfers define the division of 0I  into pairwise disjoint sets 
0,I   and 

0,I 
. 

Obviously, we have that
 , 0, 0, ,, ,I I I I I I I              . Thus, the coordinates 

of the point 1( ,..., )ny yy  which is obtained by any given marginal transfer that starts from 

*
x  and that does not violate the conditions of the set ( , ) e , are characterized by 

 

*

,

*

,

*

0,

*

0,

*

,

*

,

for 

for 

for 

for 

for 

for ,

;

;

;

;

;

i

i

i

i

i

i

i

t I

t I

t I

x i

x i

x i
y

x i

x i

x

t I

I

t i

t

I



 



 







 

 





 

 

 



 

 







 














 (A2) 

where 0t   is small enough so that the incomes iy  still satisfy inequalities that are 

analogous to the ones that define the sets 
,I 

 and 
,I 

; that is, *

i ix t e   for 
,i I  , and 

*

j je x t   for 
,j I  . 

Because the *
x y  transfer characterized above must not violate the conditions of 

the set ( , ) e , we have that 

 
, , 0,

, , 0,

* * *

* * *

) ) )

( ) ( ) (

( (

,)

(i i i i i i

i i i

i i i i i i

i

I I I

i I i I I

e e e

e e

x t x t x t

x t x t x t e

     

    

    

    

  

  

                 

                

  

  
 

 

which, from * *

1 1

max{ ,0} max{ ,0}
n n

i i

i i

e x x e
 

     and the characterization of I , reduces 

to 

 
, , 0, , , 0,

i i i i i

i i i i i

i

I I I I iI I

T     
              

          . (A3) 

Let  

 
, , 0, , , 0,

, , , , ,i i i i i

i i i i i

i

I IiI I I I

v          
              

          ,  (A4) 

so that condition (A3) simplifies to  

 T           . 

The *
x y  transfer yields the following change in social welfare:  
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 (A5) 

Taking the right-hand derivative of ( )t  and evaluating it at 0t   yields  

 

, , 0, , , 0,

*

*

0
1

*

0
1

*

(1 ) ( )

lim (

(

(1 ) ( ) (0)

1 ) ( )( ) lim (

(1 )

)

(

,

, )

)

i i i

I I

i i i

i i I I I I

n

t
i

n

i i i i

i

t
i

i

f x

d
RI y

dt

d
f x T T RI y

dt

x

x

f E

f



 

       



  



         







     









    
     

        



  

   

    



 

     





y

y

0
1

( 1) lim , )( .
n

t
i

i

d
T RI y

dt
 




   y

 (A6) 

Because for a given set of the weights , , , , ,ii i i i i      the ( , )iRI y y  function is linear, we 

can simplify the notation, drawing on the fact that 

 
10

( , )li ( , )m
tt

i i

d
RI y RI y

dt 
y y .  

Using the definition of the change in social welfare, ( )t  in (A5), we first note that in 

the case 0T  , we have that (0 0) 
   for any 0   and, thus, we construct the *

x y  

transfer such that 0T  . We note that for any non-equal initial allocation of incomes, that 

is, for any 1( , ), ne e e  such that 1 ne e , we can construct an *
x y  transfer such that 

0T  : from Lemma 3 we infer that we must have that *

1 ne x e   and, thus, we can take 

, {1}I   , , { }I n    and 1 0n   , with all other incomes remaining at *x . 
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Without loss of generality (the change can be accommodated by choice of the magnitude of 

t), we can set 1T    and, thus, in order for the incomes 1,..., ny y  to remain in ( , ) e , we 

must have that 

 1             , (A7) 

namely, that  

 1 and 1          . 

We, therefore, consider the minimization of the function 
1 1

( , )
n

i t

iRI y
 

 y , where y

 

is defined 

by (A2), over the set 

  [0,1]: 1 1, , , , , ,ii i i i iD                   

namely, we seek to solve 

 
1 1

min ( , )i
D

n

i t

RI y
 

 y  . (A8) 

We note that for each given division  of the set I into sets 

, 0, 0, , , ,I I I I I I            , the sub-problem 

 
, , ,

, 0 0, ,
1

( , ) ( , ) ( , )min

( , ) ( , ) ( ,, )

i I i I i I

i I

i i i
D

i i i

i I i I
t

RI y RI y RI y

RI y RI y RI y
  

     



  

  






 
 



 







  

  

y y y

y y y

  

is a problem of the minimization of a continuous function over a closed and bounded set 
nDR  and, thereby, over a compact set. Hence, a minimum exists, and we denote it by 

RI I . The number of possible divisions I  is finite; in particular, it is smaller than 6
n . In order 

to obtain a solution of (A8), it suffices then to take the minimum RI I  over all possible 

divisions, which we denote by *RI .  

Consequently, an equation analogous to (A6) for the *
x y  transfer in which 

*

1 1

( , )
n

i t

i RRI Iy
 

 y  is  
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Hence, we conclude that if * *(1 ) ( )(1 ) 0f x RI      , which is equivalent to 

*

* *

( )(1 )

( )(1 )

f x

f x RI






 


  
, 

we have that (0 0) 
  , that is, as follows from Remark A2, *

x  is a global maximum of 

( )SWF   on ( , ) e , whereas for any 
*

* *

( )(1 )

( )(1 )

f x

f x RI






 


  
 there exists a marginal *

x y  

transfer such that (0 0) 
  , that is, *

x  is not a global maximum of ( )SWF   on ( , ) e . 

We, thus, define 

 
*

*

* *

( )(1 )
( , )

( )(1 )

f x

f x RI


 



 


  
e , (A10)  

which is the critical value that we searched for. Therefore, if the incomes 1, , ne e
 are not 

equal, the choice of any isoelastic social planner with 1   is to divide the incomes equally 

if and only if *( , )   e . In addition, we obtain that the magnitude of *( , ) e  is not 

related to the degree of the social planner’s aversion to inequality,  .  

For 1  , that is, for a Bernoulli-Nash social planner, we replicate the preceding steps of the 

proof for the function 1

1

( ) ln () n , )( l
n

BN i

i

F uS xWF


 x xx  which, in view of Remark A1 with 

( ) lng x x , has the same maxima as that of the function ( )BNSWF  . As an inequality 

analogous to (A9), we obtain 

 * * *

1 (1 ) ( )( 1)(1 ) ( ) (0) ,f x RIf x E    
          

which yields 1 (0) 0 
   for any *( , )   e , rendering the point *

x  a global maximum of 

( )BNSWF   on ( , ) e , whereas for *( , )   e , the global maximum of ( )BNSWF   on 

( , ) e  is attained at a point in which not all the incomes are equal. 

To complete the proof of step 3 of the proposition, we next present a technical 

remark. We subsequently draw on this remark to characterize the critical level *( , ) e . 



24 
 

Remark A3. For 
, 0, ,h I I I        and 

, 0, ,H I I I      
 

we have that 
 

 
0

1

1
l ( , )im ( ) ( )

n

t
i

i

d
RI y h H

dt n
     




     y . 

Proof. At the point y , we have that for any ,i I    
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for 0,i I   we have that 
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for ,i I   we have that 
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and for 0,i I   we have that 
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Thus, 
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i

iRI y h t H
n
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    y , 

and  

  
0

1

1
l ( , )im ( ) ( )

n

t
i

i

d
RI y h H

dt n
     




     y . (A11) 

This completes the proof of Remark A3.  

Returning to the characterization of the critical level *( , ) e , on using (A6) we note that for 

0T  , we surely have that (0 0) 
  . Therefore, we study the case 0T  , normalizing 

1T   . From (A11) it follows that  

  *
( ) )

1
(RI h H

n
          .  (A12) 

Recalling (A7), we have that  

 and1 1,             (A13) 

and, from the definitions of h and H, we have that 

 H n h  . (A14) 

Using (A13) and (A14), (A12) simplifies to 
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Because , 0    we have that 1 1     and that 1 1    . Therefore, , , 1h    and, 

hence, 

 * 1
.

n
RI





   

Thus, returning to (A10), we have that 
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* *
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( )(1 ) ( )(1 )
( , ) 1.

1( )(1 )
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f x f x
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e  

This completes the proof of the proposition.  
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