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Collinearity in Structural Models of Market Power

A structural model due to Just and Chern (1980) has been widely used to estimate

market power based on market-level data.1 Bresnahan (1982) used a simple linear structural

model to illustrate the method and to demonstrate that identification problems can arise. The

linear model has been estimated by many competent econometricians (two recent applications

are Jans and Rosenbaum, 1996, and Deodhar and Sheldon, 1997). Unfortunately, this linear

model is fundamentally flawed due to a previously unrecognized multicollinearity problem.

We discovered this problem when we tried to estimate a simulated linear model. The

simulations demonstrated that a loglinear model could be reliably estimated; however, a linear

model produced completely unreliable estimates due to severe multicollinearity problems.

In this paper, we demonstrate that an econometrician trying to estimate the linear

model faces three very unattractive possibilities. First, if the true model is not linear, the

estimates are biased (simulations in Hyde and Perloff, 1995, illustrate that misspecification

biases in the estimates of market power may be severe). Second, if the true model is linear

and the equations hold exactly, the variables are perfectly collinear so that the model cannot

be estimated. Third, if the true linear model equations hold with errors, one can estimate the

equations, but the estimated coefficients are likely to be highly unstable and unreliable due to

nearly perfect collinearity.

1 Over a hundred studies have used this approach. For a partial list, see Bresnahan
(1989) or Carlton and Perloff (2000).
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Structural Model of Market Power

In most studies based on industry-level data, the econometrician starts by assuming

that the market consists of identical firms (or makes other similar assumptions), so that the

"average" market power of these firms can be estimated. Typically, in this approach, the

"true" model reflects the behavior of a single firm that may not be profit-maximizing.

Problems arise when both the marginal cost and demand curves are linear. Following

Bresnahan (1982), suppose that the marginal cost curve is

(1)MC η αw βr γQ εc,

where w is the wage, r is the rental rate on capital, Q is market output, and εc is an error

term.2 Also following Bresnahan, the demand curve is

(2)p φ0 φ1 φ2Z Q φ3Y εd ,

where p is price, Z is an exogenous variable (such as the price of a substitute, a proxy for

taste changes, or income) that rotates the demand curve, Y is an additive exogenous variable,

and εd is an error term. The slope of the demand curve is p’ ≡ dp/dQ = -[φ1 + φ2Z].

2 This functional form is used by Bresnahan (1982) and others. Notice that this specifica-
tion implies that the cost function is not homogeneous if γ is nonzero.
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Following Just and Chern (1980), Bresnahan (1982), and Lau (1982), we use a

parameter λ to nest various market structures.3 Specifically, we define an "effective"

marginal revenue function as

MR (λ) p λp Q p λ [φ1 φ2Z ]Q .

If λ = 0, marginal revenue equals price and the market is competitive; if λ = 1, marginal

revenue equals the marginal revenue of a monopoly; if λ lies between 0 and 1, the degree of

market power lies between that of monopoly and competition. For example, with n identical

Cournot firms, λ equals 1/n.

The optimality or equilibrium condition is that the industry sets its effective marginal

revenue equal to its marginal cost, MR(λ) = MC, so p = MC + λ[φ1 + φ2Z]Q, or

(3)p η αw βr [λ (φ1 φ2Z ) γ ]Q εc .

The econometrician simultaneously estimates Equations 2 and 3 to obtain an estimate of λ,

the measure of market power. Bresnahan (1982) and Lau (1982) show that λ is identified in

the linear model only if φ2 ≠ 0 (the ZQ interaction term matters) or γ = 0 (marginal cost does

not vary with output: constant returns to scale).

3 Some researchers view λ as a conjectural variation, while others describe it as the
outcome of an unknown game, where λ is a summary measure of the gap between p and MC.
Bresnahan (1989) and Corts (1999) discuss these alternative interpretations.
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Perfect Collinearity

Even if the linear model is correctly specified and identified, it has a fundamental

problem of multicollinearity. As we show in the appendix, the six regressors in Equation 3,

the constant, w, r, Y, ZQ, and Q, are perfectly collinear if the equations hold exactly (εd = εc

= 0). To make this intuition clear, we consider the special case where Y, w, and r are

irrelevant (φ3 = α = β = 0) and marginal cost does not vary with output (γ = 0). We can

solve for the equilibrium value of Q by substituting for p from Equation 2 into Equation 3:

Q
φ0 η

(1 λ)(φ1 φ2Z )
.

We now show that the right-hand-side variables in the optimality equation, Q and ZQ, are

perfectly collinear by demonstrating that the weighted sum of these two variables is a

constant. Let the weight on Q be λφ1 and the weight on ZQ be λφ2, then

λφ1Q λφ2ZQ λ(φ1 φ2Z )Q λ(φ1 φ2Z )
φ0 η

(1 λ)(φ1 φ2Z )
λ

1 λ
(φ0 η)

Thus, when the demand and optimality equations hold exactly, the optimality equation

suffers from perfect multicollinearity. This perfect multicollinearity creates a problem

(Greene, 1990, p. 278) that is more fundamental than the one Bresnahan (1982) and Lau

(1982) discuss where only λ cannot be identified. Here, due to perfect linear dependency,

none of the coefficients can be estimated.
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Nearly Perfect Collinearity

If the demand and optimality equations do not hold exactly (εd ≠ 0 and εc ≠ 0), one

can mechanically estimate this system of equations, but the right-hand-side variables are

nearly perfectly collinear, which creates the usual problems:

1. Coefficients may have large standard errors (low precision) even though they are

jointly highly significant.

2. Coefficients may have the "wrong" sign or an implausible magnitude.

3. Estimates may be very sensitive to addition or deletion of a few observations or

the deletion of an apparently insignificant variable.

We illustrate these multicollienarity problem using simulations. Tables 1 and 2

summarize a 1,000 replications of experiments with 50 observations each. We set α = β = γ

= δ1 = δ2 = η = 1, φ3 = 0, δ0 = 10, λ = 0.5. Both εd and εc are distributed N(0, σ), where σ

= σd = σs.
4

If we were to set σ ≡ σd = σc ≤ 0.00001, the model cannot mechanically be estimated

because of virtually perfect collinearity. With a slightly larger amount of noise, we can

mechanically estimate the model. In the tables, we report simulations for σ equal to 0.001,

0.5, 1, and 2.

We estimated the model using two-stage least square (2SLS), three-stage least squares

(3SLS), and nonlinear three-stage least squares (NL3SLS). Except where otherwise noted, the

tables report the 2SLS estimates. Both 3SLS and NL3SLS produce similar results.

4 The exogenous variables are constructed as random variable where w ~ N(3, 1), r ~
N(0, 1), Z ~ N(10, 1). Two additional instruments are created by adding an additional
random variable drawn from N(0, 1) to w and to r.
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Table 1 shows several summary statistics. Because we used 2SLS, the R2 for the

demand and optimality equations may lie between -∞ and 1. When relatively little error is

added to the equations (σ = 0.001), the R2 for these two equations is virtually one in every

experiment. As the error grows, the mean R2 measures falls, and is negative when σ is at

least one for the optimality equation and two for the demand equation.

Although the demand equation, Equation 2, can be accurately estimated, the optimality

equation, Equation 3, suffers from extreme multicollinearity (even with a large error). When

σ = 0.001, the average condition number (the square root of the ratio of the largest to the

smallest characteristic root of the regressors) is at least 1,433 in our examples and as high as

6.4 × 107 (same order of magnitude as with the infamous Longley data).5 Belsley et al.

(1980) suggest that condition numbers above 20 indicate potential problems. Similarly, in an

auxiliary regression where we regress one of the right-hand-side variables, ZQ, on the others

(w, r, and Q), the average R2 is at least 0.91 (and virtually 1.0 when σ = 0.001).

Table 2 shows the coefficient estimates. With 2SLS, the multicollinearity in the

optimality equation does not affect the demand equation, so we are able to estimate it very

well (at least when σ ≤ 1). For example, the true value of the coefficient on Q in the demand

equation, φ1, is 1. As Table 2 shows, the average estimated value for φ1 is 1.0 (with a

standard deviation of 0.004) when σ = 0.001, 0.99 (1.98) when σ = 0.5, and 0.97 (3.96) when

σ = 1. The other two demand coefficients are estimated equally well.

5 We are reporting the condition number using the actual right-hand-side variables, w, r,
ZQ, and Z. If we replace the latter two with the instrumental estimates, the condition number
rises by at least several orders of magnitude.
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In contrast, we cannot accurately estimate the optimality equation coefficients due to

the extreme collinearity. The true value α, the coefficient on w in the optimality equation, is

1. The average estimated value ranges from 0.46 to 0.49 with standard deviations that range

between 0.88 and 1.04. The true value of the scale parameter, γ, is 1, but the average of the

estimates range from 5.85 to 5.73 with large standard deviations (between 7.89 and 8.66). In

the optimality Equation 3, the estimated standard deviations remain relatively unchanged as

the size of the error terms fall (whereas the estimated standard deviations shrink in the de-

mand equation as the error terms fall).

Typically, we are most interested in the market power coefficient, λ, which equals 0.5

in our experiments. With the 2SLS estimates, we obtain two estimates of λ.6 As a practical

matter, both provide nearly identical estimates in our experiments.7 As the table shows, the

average estimate of λ using 2SLS is usually negative and has a very large standard deviation.

When σ > 0.001, the average of the 3SLS estimates is either negative or much above 1.0

(outside the plausible range). Even when σ = 0.001 and the average, 0.46, is close to the true

value, the standard deviation is gigantic (8.98).

6 First, we can divide the estimate of the coefficient on the Q term, λφ1, in the optimal-
ity Equation 3 by the estimate of φ1 in the demand Equation 2. Second, we can divide the
estimate of the coefficient on the ZQ term in Equation 3, λφ2, by the estimate of φ2 from
Equation 2.

7 Imposing the restriction that the two estimates are equal in our NL3SLS model does not
improve our estimates meaningfully.
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Conclusions

Studies of market power based on market-level data are commonly used. Many of

these studies have employed a linear specification that avoids the identification problem

described by Bresnahan (1982) and Lau (1982). However, we demonstrate that estimates

based on the linear model inherently suffer from multicollinearity problems, which makes

such estimates by nature unreliable.
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Appendix

We demonstrate that the w, r, ZQ, and Q terms in Equation 3 are perfectly collinear εd

= εc = 0. We show this result by demonstrating that there exist nonzero coefficients χ1, χ2,

χ3, and χ4 such that

(A1)QZ χ1Q χ2w χ3r χ4Y χ5 0 .

To show that Equation A1 holds, we first solve for the equilibrium output, Q, as a function of

the exogenous variables and parameters:

(A2)Q
φ0 φ3Y η α w βr

(λ 1)(φ1 φ2Z ) γ
.

Substituting Q from Equation A2 into Equation A1 and rearranging terms, we obtain

(A3)ζ1Z ζ2YZ ζ3wZ ζ4rZ ζ5Y ζ6w ζ7r ζ8 0 ,

where ζ1 = φ0 - η + (λ + 1)φ2χ5, ζ2 = φ3 + (λ + 1)φ2χ4, ζ3 = -α + (λ + 1)φ2χ2, ζ4 = -β +

(λ + 1)φ2χ3, ζ5 = φ3 + [(λ + 1)φ1 + γ]χ4, ζ6 = -αχ1 + [(λ + 1)φ1 + γ]χ2, ζ7 = -βχ1 +

[(λ + 1)φ1 + γ]χ3, and ζ8 = [φ - η]χ1 + [(λ + 1)φ1 + γ]χ5. If we set ζi = 0 for i = 1,..., 7, we

have a seven-equation system in five unknowns, with the unique solution:

χ1 = [(λ + 1)φ1 + γ]/[(λ + 1)φ2]

χ2 = α/[(λ + 1)φ2]

χ3 = β/[(λ + 1)φ2]

χ4 = -φ3/[(λ + 1)φ2].

χ5 = [φ0 - η]/[(λ + 1)φ2].
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Thus, there exist χ1,..., χ5 such that Equation 4 holds, so the linear model is perfectly

collinear and cannot be estimated.
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Table 1
Linear Model Simulation Summary Statistics

σ = 0.001 σ = 0.5 σ = 1 σ = 2

Model

R2 Demand Equation 1.00
(0.3E-6)

0.76
(0.07)

0.32
(0.22)

-0.15
(0.52)

R2 Optimality Equation 1.00
(0.1E-4)

0.51
(2.67)

-0.41
(8.13)

-1.85
(19.85)

Multicollinearity Checks

R2 Auxiliary Equation* 1.00
(0.3E-6)

0.91
(0.03)

0.91
(0.03)

0.96
(0.01)

Condition number 6.4E7
(1.8E7)

1,433.2
(483.2)

1,614.9
(575.13)

2,643.2
(1,027.1)

Note: Standard deviations in parentheses.

* R2 of the auxiliary regression of ZQ on w, r, and Q.
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Table 2
Linear Model Simulation Estimates

True
Coefficient

Average Estimated Coefficient (Standard Deviation)

σ = 0.001 σ = 0.5 σ = 1 σ = 2

2SLS

Demand

φ0 10 10.00
(0.001)

9.96
(0.33)

9.86
(0.65)

9.46
(1.20)

φ1 1 1.00
(0.004)

0.99
(1.98)

0.97
(3.96)

0.88
(7.80)

φ2 1 1.00
(0.004)

0.99
(0.21)

0.97
(0.42)

0.87
(0.82)

Optimality

α 1 0.46
(0.88)

0.46
(0.91)

0.47
(0.93)

0.49
(1.04)

γ 1 5.85
(7.89)

5.85
(8.15)

5.78
(8.21)

5.73
(8.66)

λ 0.5 -0.31
(1.31)

-0.29
(1.34)

0.09
(11.48)

-1.53
(30.41)

3SLS

λ 0.5 0.46
(8.98)

-0.61
(24.34)

27.28
(844.28)

1.22
(25.57)

The demand curve is p = φ0 - φ1Q - φ2ZQ + εd.

The optimality condition is p = η + αw + βr + [λ(φ1 + φ2Z) + γ]Q + εc.


