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Abstract

We study a simple model of economic growth where society’s preferences are a func-
tion of consumption per capita and climate quality; and the specification of the climate
dynamics is inspired by recent work in climate science. The model is estimated to es-
tablish a reference model and we develop a new method that determines the reasonable
size of a set of surrounding models which are difficult to distinguish from the refer-
ence model. We show that robust agents who deny the effects of climate change on the
economy, behave more like agents who believe climate changes are real. This happens
because robust non-believers design policies that hedge against their worst case model
which does include an anthropogenic effect of their emissions on climate and these
changes in climate have negative effects on preferences and productivity.
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souri, Columbia; Economics Department, 1180 Observatory Drive, Madison, WI 53706-1393 and 118 Pro-
fessional Building, Columbia, Missouri, 65211-6040; wbrock@ssc.wisc.edu. Sanstad: Computation
Institute, University of Chicago; 5735 South Ellis Avenue, Chicago, IL 60637; alanhs@uchicago.edu.
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This article conducts an empirically disciplined robustness analysis in the context of a

simple Ramsey, Cass, Koopmans model of economic growth where society’s preferences at

any date are a Constant Elasticity of Substitution (CES) function of consumption per capita;

and climate quality and the specification of the climate dynamics is inspired by recent work

in climate science by Matthews et al. (2009) and Matthews, Solomon, and Pierrehumbert

(2012). The model is estimated to establish a reference model which is surrounded by

a set of alternative models which are difficult to distinguish from the reference model.

In the reference model, climate changes affect both productivity and preferences, and we

demonstrate that the two effects have different implications for optimal choices.

We develop a new method to calibrate robustness parameters in the spirit of comput-

ing detection probabilities but much less computationally demanding. This computation

empirically disciplines the robustness analysis via a parameter that determines the size of

the set of surrounding models. We show that robust agents who deny the effects of climate

change on the economy, behave more like agents who believe climate changes are real.

Overview

We begin by providing an historical context, informal motivation, and an overview of our

main results.

Climate Change and Uncertainty

Uncertainty is the hallmark of global climate change and the analysis of policies to address

it. While the basic physical principles governing the response of the planetary atmosphere

to increasing concentrations of greenhouse gases (GHGs) have been known since the nine-

teenth century, the detailed workings of the climate system and how it will be affected by

increasing GHGs produced by human society remain imperfectly understood (APS 2013).

Moreover, the capacity of numerical general circulation (climate) models to accurately pre-

dict the future course of the global climate system over multiple decades or longer is very
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limited, and subject to significant intra- and inter-model uncertainty.

Analogously, in the economics of climate change there has been considerable debate

regarding appropriate principles for analyzing the costs and benefits of GHG abatement,

particularly regarding the problem of discounting over the very long run. Even conditional

on discounting and other assumptions, however, economic and policy analysis of abatement

strategies continues to be subject to extreme uncertainty.

This state-of-affairs and the reasons behind it are receiving heightened attention from

both scientists and economists, focusing implicitly or explicitly on “integrated assessment

(IA)” models, which represent both earth system and economic dynamics, and their interac-

tions, in reduced forms, and which are the predominant analytical tools for policy analysis

of climate change on a global scale. Although uncertainty has been addressed in some

of the IA literature, since their initial development more than two decades ago integrated

assessment models have been and continue to be primarily deterministic. Pindyck (2013)

argues that IA models “are of little or no value for evaluating alternative climate change

policies,” essentially because they fail to acknowledge and address fundamental uncertain-

ties in both the workings of the climate system, and the future economic damages that

may result from climate change. In a broad-ranging critique of IA modeling, Stern (2013)

calls for a “new generation” of such models that would, among other improvements, be

developed explicitly within a risk-management framework rather than on the deterministic

foundations of the current generation.

Similarly, Roe (2013) suggests that in view of the persistent scientific and economic

uncertainty pertaining to global climate change, particularly including key IA modeling

assumptions, technical and quantitative analysis to develop policies may have “...reached

the point of diminishing returns.” He argues, moreover, that the appropriate path forward

for deliberating on and developing policies to address climate change is therefore to give

significantly greater weight to moral and ethical considerations.

Roe’s argument is especially important in the case of poorer parts of the world where

food insecurity due to the damaging impact of climate change on agriculture looms large.
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Burke and Emerick (2016) and Deschenes and Greenstone (2012) show that climate change

impacts on agriculture are substantial. Diffenbaugh et al. (2012) and Schlenker and Roberts

(2009) show that variance of damages to agriculture, especially yields on major crops, is

likely to increase as global warming proceeds. This is so primarily because plants have

an ideal temperature during their growing season and global warming is likely to produce

longer clustered periods of exceedances of ideal growing temperature during the critical

growing season for food crops.

Since agriculture is a larger share of output in poorer countries the increasing trend of

damages and increasing variance of damages to agriculture raises ethical issues of inequal-

ity, food insecurity, and much more since the wealthier developed nations can be accused

by the poorer developing world of having caused most of the climate change problem in

the first place and food security is critical to the welfare of peoples everywhere. While

our model does not explicitly include increased weights in the welfare measure on poorer

countries, because it is aggregated to the world level, our robustness analysis and estimation

could be extended to a multi-regional multisector model.

It is important to emphasize that, notwithstanding their critical perspectives on IA mod-

eling, Pindyck and Stern hold the mainstream economic opinion that large-scale GHG

abatement starting in the present has already been demonstrated to be fully justified on

cost-benefit grounds. Nevertheless, their observations and Roe’s observations highlight

the importance of uncertainty analysis in climate economics and modeling as well as the

treatment of moral and ethical issues.

Building on previous research in integrated assessment and several other areas of eco-

nomics as well as in climate science, this article addresses both of these topics. To analyze

uncertainty, we apply a methodology developed by macroeconomists based on the con-

cept of “robustness to model uncertainty” (Hansen and Sargent 2008). In this approach,

decision-makers employ mathematical models of systems such as economies but acknowl-

edge the possibility that their chosen model may not in fact be an accurate representation of

the given system. That is, they confront fundamental model uncertainty, and seek to make
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decisions that are robust to this type of uncertainty – i.e., that will yield acceptable out-

comes even in the case of an incorrect model. To incorporate the moral and ethical dimen-

sions of climate change, we explicitly include the state of the climate in decision-making

regarding the abatement of GHG emissions – that is, in addition to strictly economic con-

siderations.

There have been several previous papers adapting robustness analysis of this type to

the economics of climate change. There has also been previous work in environmental

economics on how “environmental quality” affects decision-making. However, the work

we describe in this article is the first to combine these two approaches. Moreover, our

particular treatment of robustness analysis is new to the integrated assessment literature.

In addition, we adopt a reduced-form representation of the climate based on the work of

Matthews et al. (2009) and Matthews, Solomon, and Pierrehumbert (2012), and this feature

is also new.

Existing Deterministic and Stochastic Models

High-dimensional economic-climate models, which link partial or general equilibrium mod-

els of the world economy with intermediate complexity climate models and other parts of

the carbon cycle as well as ecosystem models, are primarily deterministic. The economic

components of these models are based on a calibration philosophy that does not in most in-

stances include statistical procedures for parameterization and associated uncertainty quan-

tification (Dawkins, Srinivason, and Whalley 2001). Moreover, the size of these large mod-

els generally precludes the use of stochastic optimization methods – a consequence of the

“curse of dimensionality.”

In parallel to the development of these large IA models, a substantial body of work has

been conducted using lower-dimensional IA models following the Ramsey-Cass-Koopmans

(RCK) optimal control framework, in which a perfectly foresighted representative decision-

maker chooses dynamic paths of consumption and investment – in the context of a repre-

sentative production function which yields output given capital and labor inputs – to max-
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imize discounted intertemporal utility. This research has to a very large extent been based

directly or indirectly on the DICE (Dynamic Integrated Climate Economy) model of Nord-

haus (2008), which has come to play a paradigmatic role in this field. In brief, the DICE

template augments the basic RCK – optimal growth model with a reduced-form specifica-

tion of the climate; economic activity produces GHG emissions as a by-product, thereby

increasing global temperature, which in turn acts to reduce output. Abating these emissions

– trading off with consumption and investment – is then an additional decision dimension.

In the DICE paradigm also, most analysis has been deterministic. The tractability of the

RCK approach, however, has facilitated various forms of stochastic analysis by a number

of researchers. Following are a number of key examples.

Nordhaus and Popp (1997) developed the “PRICE” (PRobabilistic Integrated model

of Climate and Economy) variation of DICE and used it to compare five methods of esti-

mating the value of information regarding eight uncertain parameters, analyzed singly and

jointly. Kolstad (1996) created and solved a stochastic version of DICE to analyze the in-

fluence optimal policy of learning about damages caused by climate change. Extending

this work, Kelly and Kolstad (1999) implemented a stochastic variant of DICE, solved by

dynamic programming, to conduct a Bayesian analysis of learning about the relationship

between GHG levels and global mean temperature changes, in the presence of a stochas-

tic shock to temperature. Keller, Bolker, and Bradford (2004) adapted earlier versions of

DICE (Nordhaus 2008, and references) to include a climate-related environmental thresh-

old – the collapse of the Atlantic thermohaline circulation due to temperature increase -

learning, and uncertainty in the climate sensitivity, and solved this model using a global

optimization method. Crost and Traeger (2011) developed a version of DICE in a recursive

dynamic programming framework with uncertainty in damages and Epstein-Zin utility to

study the different effects of risk, risk aversion, and aversion to intertemporal substitution.

Jensen and Traeger (2013) use the stochastic DICE framework to study how uncertainty in

long-run economic growth affects optimal climate policy.

The most ambitious extension of a DICE type framework to the stochastic case is the
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work of Cai, Judd, and Lontzek (2012a), hereafter, “CJL”. Their reduced-form climate

has three layer carbon cycle dynamics and a two layer atmosphere and ocean temperature

dynamics. When these state variables are added to the state variables from the economic

dynamics, there are a total of 8 state variables. The Cai, Judd, and Lontzek (2012b) paper

extends their work to include abrupt changes in climate dynamics, e.g. tipping points

and the impact this possibility has upon the solution of the model. Tipping points can be

viewed as a form of “catastrophic” climate change and are, indeed, catastrophic, if they are

large enough (Cai, Judd, and Lontzek 2013a,b, Lenton and Ciscar 2013). The CJL model

is solved by a sophisticated (and quick) optimization algorithm that they have developed

which is quite readily adaptable to other dynamic models.

Robust Models

Broadly speaking, the work we have sketched above is in the domain of “parametric uncer-

tainty analysis.” That is, within a given model structure, key inputs or parameters – such as

those describing the dynamics of the climate system or the economy – are assumed to be

stochastic and to have associated probability distributions. The decision-making agent(s)

represented in the model then act according to, for example, expected utility maximiza-

tion or some other stochastic optimization procedure. This type of approach reflects long-

standing analytical frameworks in economics including dynamic stochastic general equi-

librium modeling.

By contrast, as noted previously the robustness analysis methodology developed by

Hansen and Sargent posits that the underlying structure of the model itself is uncertain –

a state-of-affairs that well characterizes both climate economics and climate science. One

way of framing this assumption is to suppose that there is a set of “candidate” probability

distributions representing model characteristics - described as a situation of “ambiguity”

– and that the decision-maker is averse to this ambiguity and acts accordingly. Building

on technical tools from fields including, risk-sensitive optimal control, Hansen and Sargent

have created a theory to analyze this category of problem and, in particular, to identity
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robust decision rules given model uncertainty or ambiguity.

Several researchers have introduced robustness and ambiguity aversion into climate

economics and integrated assessment modeling. Following Hansen and Sargent (2001),

Hennlock (2008, 2009) and Sterner and Hennlock (2011) incorporate robustness with re-

spect to uncertainty regarding the product of climate sensitivity and equilibrium radiative

forcing, in a model with both “clean” and “dirty” energy sectors, both of which have a

form of endogenous technical change. Lemoine and Traeger (2011) adapt DICE to include

an uncertain tipping point and learning about the threshold that triggers it, and aversion

to ambiguity regarding the threshold’s distribution. Li, Narajabad, and Temzelides (2014)

adapt the model of Golosov et al. (2014), assuming that climate change directly damages

– i.e., reduces – the capital stock, with include model uncertainty embodied in a stochastic

parameter governing the magnitude of this effect, and analyze robustness with respect to

this uncertainty in a dynamic two-person zero-sum game, pitting the social planner against

a malevolent agent (who controls the capital stock damage).

Traeger’s “GAUVAL” model (Traeger 2015) uses risk-sensitive control to model ro-

bustness but he, like all of the above treatments, does not estimate his climate economics

model on a data set like we do here. Hence, Traeger (2015), like the work reviewed above,

does not empirically discipline his robustness analysis like we do here.

In our article, the basic economic dynamics are specified as a conventional aggregative

growth model with capital accumulation, here representing the global economy, and cap-

ital, labor, and fossil fuel inputs into production. Basic climate dynamics are specified as

a trend in the temperature anomaly driven by cumulative fossil fuel emissions which is a

specification inspired by Matthews et al. (2009) and Matthews, Solomon, and Pierrehum-

bert (2012).

There are many other complementary approaches for robustness, such as Bayesian ap-

proaches, which are described in an appendix.
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Cumulative Climate Response

Using numerical simulations performed by a set of general circulation (climate) models,

Matthews et al. (2009) and Matthews, Solomon, and Pierrehumbert (2012) have shown

within a large range of cumulative emissions the increase in global average yearly temper-

ature caused by increasing GHG emissions is approximately linearly related to cumulative

emissions – they designate the slope parameter in this relationship the “Cumulative Cli-

mate Response (CCR).” The estimated value of this quantity varies across the set of climate

models they simulated, and this variation, documented by Matthews et al., can be used as

a measure of fundamental uncertainties in climate models. Given this wide variation in

CCR’s we can infer that climate scientists may not agree on what baseline model to esti-

mate. While it is beyond the scope of this article to fully explore this question, potential

lack of agreement on a baseline model prompts us to discuss other methods of dealing with

robustness analysis.

Uncertainty is incorporated into the model by adding stochastic shocks to both the eco-

nomic (production) and the climate – temperature – dynamics. These shocks represent the

decision-makers doubts about the underlying models’ specification of economic produc-

tion, technology change, climate change, and the economic costs of climate change. These

doubts are addressed by incorporating robustness into the decision rule used to solve the

model.

Robustness and Consensus Policies

We consider several different reference models. In order to make key points quickly we

shall initially assume that the known reserve of fossil fuels is infinite and that extraction

costs of fossil fuels is zero. One of the reference models, call it the “believer” model, uses

optimal parameter estimates which imply that anthropogenic climate change has a large

effect on productivity and preferences. Hence, in the “believer” model, optimal policy

is to tightly constrain fossil fuel emissions even though extraction costs are zero. An-
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other, polar opposite, reference model, call it the ‘non-believer” model, assumes there is

no anthropogenic climate change effect on production and climate quality. Hence, in the

non-believer model the optimal policy is to use an infinite amount of fossil fuels. Thus

we see that in the absence of robustness, optimal policy under these two reference models

is drastically different. Now suppose that policy makers have small doubts that the ref-

erence model is correct. As compared to the non-robust case, policy makers who use the

“believer” reference model with optimal estimates will only slightly change their behavior,

whereas policy makers who use the “non-believer” model, i.e. who deny the effects of

climate change on production and air quality will make huge changes in their behavior be-

cause, under robustness, they optimize against a “worst case” possibility that anthropogenic

climate change is real and might have a large negative effect on production and preferences

if an infinite amount of emissions occur. Figure 4 shows that robustly optimal energy use

is strongly restrained in order to keep total emissions low enough to hedge against small

doubts about the specification of its baseline model. We also show that the resulting opti-

mal decisions of the two robust agents are somewhat similar which suggests that if policy

makers could agree to adopt robust decision making procedures then there would be much

less disagreement about optimal policies. Of course the case of infinite known reserves and

zero extraction costs is an extreme case, the point remains that since both believers and

non-believers optimize against a worst case model where anthropogenic climate change

has negative impacts on preferences and productivity, their policy actions are more similar

under robustness than under non-robustness.

Empirically Disciplined Robustness

While the qualitative direction of the results we present are intuitive we believe that what

is important is our illustration of how to develop an empirically disciplined quantitative ap-

proach to robustness. While we realize that our contribution is very limited we believe that

more extensive and complete quantitative approaches to empirically disciplined robustness

analysis in more realistic climate economics models will end up following a template much
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like ours.

Since an empirically disciplined robustness analysis may not be familiar to many read-

ers we lay out the explicit steps.

Step (1): Formulate a completely specified climate-economic model with explicitly param-

eterized climate and economic dynamics that include the impacts of climate on

preferences and productivity. We call our completely specified model the ref-

erence model and it is presented in climate-economic model section when the

parameter θ (discussed below), is zero.

Step (2): Express observable implications of the model involving unknown parameters and

estimate the parameters. We estimate the model using generalized method of

moments in the estimating the climate-economic model section. Alternative esti-

mation methods, such as maximum likelihood, also could be used.

Step (3): Choose parameter values based on the estimates computed in Step (2). We choose

parameter values in the parameter selection section and in most cases set the

parameters equal to their estimated values.

Step (4): Specify perturbations of the economic climate dynamics that are parameterized

by the scalar, θ. The magnitude of the perturbations are found by solving a min-

imization problem for a given θ. When θ = 0 there are no perturbations and as

θ rises the perturbations increase. In order to save space and avoid presenting

similar things twice, we discuss the perturbations in the climate-economic model

section at the same time that we discuss the reference model.

Step (5): For many different values of θ compute the perturbations and find the maximum

value of θ such that the perturbations can not be rejected from the data. A robust

agent worries that the perturbations generated by the maximum value of θ are

possible. We approximate the maximum value of θ in the appropriate levels of

robustness subsection of the parameter selection section.
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Step (6): For the maximum value of θ, compute optimal policy by solving a robust con-

trol problem. We present several examples of optimal policy in the simulation

section.

A Climate-Economic Model

This section develops our reference model and introduces our robust perturbations.

Preferences are time additively separable where period preferences are a power function

of a CES function of consumption per capita and climate quality. Using a power function

of a CES function allows us to discuss the impact of different values of these two key pa-

rameters of preferences on the robustly optimal path of economic development and change

in the temperature anomaly of the Intertemporal Elasticity of Substitution (IES) (related to

the parameter in the power function) and the Elasticity of Substitution (related to the pa-

rameter in the CES function) between consumption per capita and our measure of climate

quality. Our measure of climate quality declines as the temperature anomaly rises.

Since it was beyond the scope of this article to gather the data necessary to produce a

serious index of climate quality, we simply assume that “climate quality” is proportional

to the inverse of the productivity damage measure used in this article. Given this rather ar-

tificial measure of “climate quality” we regard the current article as a preliminary attempt

to focus attention on the potential importance of the elasticity of substitution between con-

sumption per capita and some measure of climate quality in preferences, as well as the

usual focus of climate change on productivity. Indeed it can be shown that if the elasticity

of substitution between consumption per capita and climate quality is less than one, then no

matter how much consumption per capita grows over time, the maximal utility is bounded

above because climate quality itself is bounded above. This latter statement is true for any

measure of climate quality.

More formally, let c denote consumption per capita and Q a measure of climate quality.
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The period utility of a representative individual is

(1) U (c,Q) =
u (c,Q)1−γ − 1

1− γ

where

(2) u (c,Q) = [ϕcτ + (1− ϕ)Qτ ]
1
τ .

Hence the Intertemporal Elasticity of Substitution (IES) between utilities between periods

is IES=1/γ, and the elasticity of substitution between consumption per capita and climate

quality is 1/(1 − τ). We introduce a parameter, θ, for the robustness analysis, where the

“size” of the set of departures from the baseline model increases as θ increases. E.g. θ = 0,

indicates that we have no doubts at all about the baseline model and our doubts about our

specification increase as θ increases. When γ = 1 we interpret preferences are logarith-

mic. An appendix presents one possible argument for the inclusion of climate quality in

preferences based on ethical considerations.

In our dynamic finite horizon model preferences are

(3a)
t0+J−1∑
t=t0

βt

[
U

(
Ct
Lt
, Qt

)
+
β

2θ

∑
i=m,a,d

G2
i,t

]
+

βJW (Kt0+J , Rt0+J ,Mt0+J , St0+J , At0+J , Gd,t0+J−1, Lt0+J)
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and the constraints are for t = t0, t0 + 1, . . . t0 + J − 1

logKt+1 = log K̄t+1 + ε σkek,t+1(3b)

Rt+1 = Rt − Ft + µr(3c)

Mt+1 = (1− κm)Mt + λFt − σmGm,t(3d)

St+1 = (1− κs)St + ε σses,t+1(3e)

logAt+1 = logAt + µa − σaGa,t + ε σaea,t+1(3f)

logDt = (ωd − σdGd,t−1) |Tt − T |p(3g)

logLt+1 = log(1 + n) + logLt + ε σlel,t+1(3h)

where

Yt =
At
Dt

Kα
t F

ν
t L

1−α−ν
t(3i)

K̄t+1 = φt [Yt + (1− δ)Kt](3j)

Ct = (1− φt) [Yt + (1− δ)Kt](3k)

Tt = T +Mt + St Qt =
1

Dt

(3l)

1 ≥ φt ≥ 0 Ft, Rt+1 ≥ 0(3m)

At time t, we interpret Ct as consumption, Lt as population (which we assume is equal

to the labor force),Kt as capital, Yt as output, Tt as temperature, Yt+(1−δ)Kt as resources,

(1 − φt) as the fraction of resources consumed, log K̄t+1 as the mean of next period’s log

capital (logKt+1), Ft as fossil fuel usage,Rt as the stock of remaining available fossil fuels,

Mt as man made climate changes, St as short run shocks to temperature, At as productivity,

and Dt, as damages to productivity.

We let ek,t+1, es,t+1, ea,t+1, and el,t+1 be i.i.d. standard normal random variables. The

parameter ε multiplies the shocks and facilities a small-noise expansion described in later

sections. We let β be a discount factor which includes terms related to population growth.1
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We assume p ≥ 0, 0 < β < 1, τ ≤ 1, γ > 0, α > 0, ν > 0, and (α + ν) < 1. We let T be

the temperature level at a pre-industrial date far in the past.

We let J be the social planner’s horizon and we let the terminal value function be

(4) W (K,R,M, S,A,Gd,−1, L) = U

(
C

L
,Q

)

where

T = T +M + S, D = exp [(ωd − σdGd,−1) |T − T |p] , Q =
1

D
,(5)

Y =
A

D
KαF νL1−α−ν , C = Y + (1− δ)K, F = R.(6)

The terminal value function assumes all remaining energy is immediately used in produc-

tion and all remaining capital is immediately consumed.

The social planner wants to maximize the expected value of 3a by choice of adaptive

process for φt and Ft; and minimize it by choice of adaptive process for Gm,t, Ga,t and Gd,t

subject to the constraints 3b through 3m. Recall that robustness analysis uses the device

of the minimizing agent, solely as a mechanism to construct a policy that works well for

all departures from the estimated baseline model that lie in a constraint set whose size is

determined by the estimated uncertainty in the estimated parameters of the baseline model

(Hansen and Sargent 2008, espcially Chapter 9).

Because realistic values of κm are known to be near zero by climate scientists, our spec-

ification of man-made damages (Mt) approximately captures the CCR model of Matthews

et al. (2009) and Matthews, Solomon, and Pierrehumbert (2012).

Our reference model is general enough to include the case where the production func-

tion is for agriculture where damages from climate change can be particularly large because

most of agriculture is conducted outside and is exposed to the weather in contrast to a lot of

industrial production where adaptations such as air conditioning can shield workers from

extreme heat which would otherwise hurt productivity. In the case of agriculture Diffen-

baugh et al. (2012, page 514) say, for the example of corn, “The climate change impact
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is driven primarily by intensification of severe hot conditions in the primary corn growing

region of the US, which causes US corn price volatility to increase sharply in response to

global warming projected over the next three decades.”

There are both conditional mean and conditional variance effects at work here but Dif-

fenbaugh et al. (2012) suggest that the volatility rise may contribute the most to damage

effects as global warming proceeds. Although corn is only one crop, other agricultural

crops are impacted by excessive clusters of hot days with temperatures beyond the ideal

growing range in a similar manner (Diffenbaugh et al. 2012, Burke and Emerick 2016).

Indeed Burke and Emerick (2016) argue that even the industrial sector can be nega-

tively impacted by warming. Of course air conditioning and other forms of adaptation

can mitigate damaging effects of warming on industrial labor. While some adaptation in

agriculture obviously occurs, e.g. by changing the mix of crop varieties grown as climate

change proceeds, it may be more difficult to adapt in areas that are already warm because

we have little experience with agriculture if those areas become even warmer.

Estimating the Climate-Economic Model

This section estimates the parameters in our climate-economic model using Hansen’s (1982)

Generalized Method of Moments (GMM). Tables 1-5 display GMM estimates of param-

eters the determine world population growth, capital accumulation, temperature change,

output, and preferences. All of our estimates assume the reference model is correct. In the

reference model, ε = 1 and there is no robustness (θ = 0), so that all of the G’s are zero.

An appendix describes the data.
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Estimating Population Growth

We estimate n and σl using GMM from the moment conditions

E [logLt+1 − logLt − log(1 + n)] = 0,(7)

E
[
(logLt+1 − logLt − log(1 + n))2 − σ2

l

]
= 0(8)

which follow from Equation 3h. Since there are two moments and two parameters, the

parameters are exactly identified and the GMM test of overidentifying restrictions is not

available. The parameter estimates are presented in Table 1 and are

n = exp
[
Ē (logLt+1 − logLt)

]
− 1,(9)

σl =
√
V̄ (logLt+1 − logLt − log(1 + n))(10)

where Ē and V̄ denote the sample mean and sample variance.2

Estimating the Capital Evolution Process

We estimate δ and σk from the moment conditions:

E
[
logKt+1 − log K̄t+1

]
= 0,(11)

E
[(

logKt+1 − log K̄t+1

)2 − σ2
k

]
= 0,(12)

using GMM where

(13) K̄t+1 = Yt + (1− δ)Kt − Ct.

Although there does not exist a simple closed from expression for the estimates, the param-

eters are exactly identified and estimates are presented in Table 2.
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Estimating the Temperature Equations

An appendix shows that

Tt = (κs − κm)λ
t−1∑
j=h

(1− κm)t−j−1Fj + λFt + (1− κs)Tt + κsT(14)

is the conditional mean of time t + 1 temperature, using information at time t, where we

set h = 1751. We estimate λ, κs, T , and σs with GMM using the moments

E

(Tt+1 − Tt)⊗ z1,t
(Tt+1 − Tt)2 − σ2

s

 = 0(15)

with the instruments

z1,t =
[
1 Tt Ft Ft−1

]
,(16)

and a fixed diagonal weighting matrix,W,where for i = 1, 2 . . . 4, the (i, i) element ofW is

equal to the inverse of the sample mean of z21,it. Here z1,it is the value of the ith instrument

at time t. When λ = 0, the value of κm does not matter. If κs = 0, then T is not identified.

Estimates are presented in Table 3. Although the model performs poorly on the GMM

test of overidentifying restrictions, there is some evidence that the model has weak ex-

planatory power for data since 1952. Our estimates of λ are typically around 0.0028 and

consistent with previous studies. For example, Matthews et al. (2009) report values of

about 0.0017 based on numerical climate model simulations. Also, Leduc, Matthews, and

de Elı́a (2016) find values up to 0.0030 for higher latitude regions.3 However, our estimates

should be viewed with some caution since our instruments Tt and Ft may not be stationary.
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Estimating the Output Equations

An appendix shows

(17) logAt+1 − logAt =Mt+1 + Et+1 = µa + σaea,t+1

where Et+1 captures the change in log productivity due to temperature changes andMt+1

represents other changes:

Mt+1 = log
Yt+1

Yt
− α log

Kt+1

Kt

− ν log
Ft+1

Ft
− (1− α− ν) log

Lt+1

Lt
,(18)

Et+1 = ωd |Tt+1 − T |p − ωd |Tt − T |p .(19)

For several different values of p and ν, we estimate ωd, µa, and σa using the moments

E

(Mt+1 + Et+1 − µa)⊗ z2,t
(Mt+1 + Et+1 − µa)2 − σ2

a

 = 0,(20)

with the instruments

z2,t =
[
1 log Yt

Yt−1
log Kt

Kt−1
log Ft

Ft−1
log Lt

Lt−1
log Kt

Yt

]′
,(21)

and a fixed diagonal weighting matrix,W,where for i = 1, 2 . . . 6, the (i, i) element ofW is

equal to the inverse of the sample mean of z22,it. Here z2,it is the value of the ith instrument

at time t. The (7, 7) element of weighting matrix W is one. Although one could argue that

(22) (Tt − T )p − (Tt−1 − T )p

would be a good candidate for an instrument, we choose not to use it because it varies with

values of p and complicates comparison of the performance of different values of p. We

fix the value of T = 13.74 using the value of one of its estimates from the temperature
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equations. We also fix α at 0.4.

Table 4 presents estimates for p = 2 and p = 4. For comparison purposes we also

present results when p = 1. In this case, we interpret Et+1 as

(23) ωd (Tt+1 − Tt)

to avoid possible discontinuities in derivatives.4

There is some evidence that the model with p = 2 and ν = 0.25 provides a reasonable

representation of past data. However, we find conflicting evidence on the value of ωd.

Although its estimates are generally not significantly different from zero, the p-values of

models tell us that the model with p = 2 and ωd = 0.2997 is difficult to reject whereas

the model with ωd = 0 is easily rejected. On the basis of these results, depending upon

which test is used, one could say there is some evidence that ωd is likely to be between

approximately −0.20 and 0.70.

It is important to realize that there are many possible ways our model of economic cli-

mate change could be misspecified. For example, it is possible that increases in temperature

adversely affect growth rates through channels other than Dt (Moyer et al. 2014). To some

extent, our agents are robust to growth rate effects through the minimizing choice of Ga,t.

Calibrating Preference Parameters

In this section we estimate τ and β for several different fixed values of ϕ. We begin by

showing that out model implies that there are two rates of return that satisfy the usual Euler

equations that all available rates of return satisfy. We then estimate parameters using GMM,

following Hansen and Singleton (1982) and many subsequent authors.

We make two assumptions for the analysis in this section:

Assumption 1. The parameter p is a positive even integer.

Assumption 2. The derivative of the agent’s value function with respect to reserves is zero,

at all dates.
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Assumption 1 guarantees that |Tt − T |p is differentiable with respect to Tt. Assumption

2 guarantees that the economy is not resource constrained. Given the parameter values

we use in most of our examples in later sections, Assumption 2 is an implication of the

model, but it does not necessarily hold for all parameter values and all initial conditions.

Assumption 2 is useful in this section to simplify the calibration but we do NOT impose

this assumption in other sections of this article.

We write the utility function at time t as

Ut ≡ U

(
Ct
Lt
, Qt

)
=

(
ϕ
[
Ct
Lt

]τ
+ (1− ϕ)Qτ

t

) 1−γ
τ

1− γ
(24)

and use the following notation for derivatives:

Uxt =
∂U
(
Ct
Lt
, Qt

)
∂Xt

where Xt = Ct or Qt.(25)

Let

(26) St = β
Uct
Uct−1

be a stochastic discount factor (Hansen and Renault 2010). In an appendix, we derive the

moment conditions

Et−1StRkt = 1, Et−1StRdt = 1(27)

where

Rkt = α
Yt
K̄t

+ (1− δ)
(
Kt

K̄t

)
(28)
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is the gross return on capital and

Rdt =
YtFt−1
Yt−1Ft

[
1− κm +

(
ωd p λ

ν

)
(Tt − T )p−1

(
QtUqt
YtUct

+ 1

)
Ft

]
(29)

is a fictitious return related to optimal energy usage.5 These moments conditions are for

a non-robust version of the model in which Gm,t, Ga,t, and Gd,t, are zero. The moment

conditions are plausibly stationary versions of the usual consumption Euler equation and a

corresponding equation for optimal energy usage.

For various values of ϕ, Table 5 estimates τ and β using the moments

(30) E

(StRkt − 1)⊗ z3,t−1
(StRdt − 1)⊗ z3,t−1

 = 0

with the instruments,

(31) z3,t−1 =
[
1 Yt−1

Kt−1

Yt−1

Yt−2

Ft−1

Ft−2

Ct−1Lt−2

Ct−2Lt−1

]′
and a fixed diagonal weighting matrix,W,where for i = 1, 2 . . . 5, the (i, i) and (5+i, 5+i)

elements ofW are equal to the inverse of the sample mean of z23,it−1.Here z3,it−1 is the value

of the ith instrument at time t. We fix p = 2, γ = 1, ωd = 0.2997, ν = 0.25, λ = 0.0028,

κm = 0.001, T = 13.74, α = 0.4, and δ = 0.0573 in all specifications.

We find some evidence for values of ϕ around 0.8 and values of τ around −1.3. How-

ever, as is typical of many dynamic economic models, there is strong evidence to suggest

that the model is misspecified as the GMM test of overidentifying restrictions test fails for

all specifications. The estimated parameter values should be viewed as calibrated, or as

rough approximations, and not statistically justified estimates.

Although we only estimate preference parameters for a non-robust representative agent,

since optimal decisions do not change very much as a reasonable amount of robustness is

introduced into the economy, when γ = 1 and ω = 0.2997, the presented estimated values

are also reasonable approximations for the preference parameters of a robust representative
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agent. As we describe in later sections robust decision rules can be very different for other

parameter values (such as when ωd = 0), so its not always the case that a non-robust model

can be used to calibrate a robust model.6

For interpretation, we can decompose Rdt into three components. The first component

includes terms that represent the effect of temperature change on productivity:

Rat =
YtFt−1
Yt−1

(
ωd p λ

ν

)
(Tt − T )p−1 .(32)

This term would be zero if ωd was always zero or if Dt did not affect output. The second

component represents the direct effects of temperature change on preferences:

Rqt =
YtFt−1
Yt−1

(
ωd p λ

ν

)
(Tt − T )p−1

QtUqt
YtUct

(33)

=
Ft−1
Yt−1

(
ωd p λ

ν

)
(Tt − T )p−1

(
1− ϕ
ϕ

)
Ct

(
QtLt
Ct

)τ
.(34)

This term would be zero if ωd = 0 or if climate quality did not directly affect preferences.

The third component represents the contribution of future damages (beyond time t+ 1):

Rht =
YtFt−1
Yt−1Ft

(1− κm) .(35)

This term would be zero if man made temperature increases only lasted one period, which

happens when κm = 1. However, κm is generally thought to be near zero by climate

scientists, so this term is likely to be large.

Figure 1 graphs the three components of Rdt using our estimates and actual data. We

see that until about 1970 the Rat and Rqt components are almost identical. Starting in the

late 1970s, Rqt grows at a fast rate and starts to dominate Rat. Rat is roughly constant

between 1952 and 2000; and starts to fall in the 21st century.
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Parameter Selection

In this section, we describe the parameter values and initial conditions used in simulations

discussed in subsequent sections.

Climate and Preference Parameters

We combine our estimates for 1952-2011 with standard calibrations to set parameter values

that we believe are useful for future policy evaluation.

For the parameter values directly related to temperature we set

(36) λ = 0.0028, κs = 0.77, κm = 0.001, T = 13.74, σs = 0.0943

from the estimates for 1952-2011 of the temperature equation when κm is fixed at 0.001.

Although the estimates when κm is fixed at zero have a slightly higher p-value, there is

scientific evidence to suggest that man made damages should depreciate at a small rate

over time. In addition, our estimates for the time period 1882-2011 suggest that κm may be

much higher than zero.

For the parameter values directly related to output and damages, we set

(37) p = 2, ωd = 0.2997, µa = 0.0103, α = 0.4, ν = 0.25, σa = 0.0397

from Table 4, Panel C, the third row. Since we can not reject the hypothesis that the

parameter ωd is zero, in some examples set ωd = 0. A social planner who denies that

temperature changes effect the economy would set ωd = 0.

We set the population growth parameters and capital evolution parameters as

(38) n = 0.0172, σl = 0.002, δ = 0.0573, σk = 0.0217

24



from their estimates. We set

(39) β = 0.969 ϕ = 0.8

from the estimate of preference parameters with the highest p-value (See the 8th row of

Table 5). In most of our examples we set τ = −1.3 (which is τ ’s estimated value in the

same estimation) though we do consider other values of τ. We also usually set γ = 1 but

briefly consider other values.

We have very little information about the other parameters and we set them as:

(40) σm = 0.0001, σd = 0.2350, µr = 0.

We select the values of σm and σd, to be similar to the standard errors of estimates of λ

and ωd. This is a reasonable setting if the parametric models for temperature and damages

are correct and we are mainly worried about parameter uncertainty. Though, these val-

ues perhaps underestimate the values of σm and σd if we are worried that the parametric

specification is wrong.

In all of our examples, ε = 1 and we consider several different values for θ.

Appropriate Levels of Robustness

How robust should the representative agent be? In this section, we present a procedure

for determining reasonable levels of robustness, using past data. A reasonable amount of

robustness generates perturbations of the reference model that can not be rejected from past

data whereas an unreasonably large amount of robustness generates perturbations that can

be rejected.
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We let

Gθ1,t+1 = σmGm,t(41)

Gθ2,t+1 = σaG
θ
a,t + σdG

θ
d,t |Tt − T |

p − σdGθ
d,t−1 |Tt+1 − T |p(42)

where the superscript θ indicates that the value of θ is fixed at a particular value. Here

Gθ1,t+1 are the robust perturbations to man-made damages generated by θ and Gθ2,t+1 are the

robust perturbations to the change in log productivity generated by θ.

We introduce a parameter % and estimate % with GMM using the stacked moment con-

ditions from the temperature and output equations:

mθ
t+1 =



(
Tt+1 + %Gθ1,t+1 − Tt

)
⊗ zθ1,t(

Tt+1 + %Gθ1,t+1 − Tt
)2 − σ2

s(
Mt+1 + Et+1 + %Gθ2,t+1 − µa

)
⊗ zθ2,t(

Mt+1 + Et+1 + %Gθ2,t+1 − µa
)2 − σ2

a

(43)

for a given value of θ, where the other parameters are held fixed at the values described

in our parameter selection section, unless otherwise stated.7 The instruments, zθ1,t and zθ2,t,

may depend on the fixed value of θ.8 If the robust perturbations generated by θ were the

best description of the world then estimates of % would be near one. However, since the

reference model is a reasonably good description of the world we expect estimates of % to

be near zero.

Although a robust agent expects estimates of % to be near zero, he wants to know if

past data says that % could be as large as one. We assume the robust agent uses standard

hypothesis tests based on estimates of % and its standard error to evaluate the possibility that

% is one. If the standard error of an estimate of % is large enough so that we can not reject

its value being one, we say that the robust perturbations generated by θ are reasonable. If

we can reject % being one then the robust perturbations are too large and the value of θ

should be reduced. For a given θ, if we can not reject values of ϕ much larger than one
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then (although the robust perturbations are reasonable for this θ), the value of θ should be

increased because larger robust perturbations also will be reasonable.

This approach to determining appropriate values of the parameters shares many features

of the detection probability approach advocated by Hansen and Sargent (2008, Chapter 9).

Our approach is computationally simpler because, for a given θ, it only requires solving the

model numerically J times, where J is the horizon.9 One drawback of our approach is that

we rely on asymptotically justified standard errors and do not fully take into the limited

amount of data available.

The reasonableness of perturbations in part depends on agents preferences. Some robust

agents may be worried about extreme perturbations which are likely to occur with 10%

probability, based on estimates from previous data. Others may view 10% percent as too

extreme and only worry about perturbations that could occur with 30% probability. We

adopt a middle ground and assume agents should worry about perturbations that can occur

with about 20% probability.

When the estimate of % is very near zero,10 if the standard error of % is 0.780 then we

expect perturbations as large as those generated by θ to occur with probability 10%. If the

standard error of % is 1.188 then we expect perturbations as large as those generated by θ to

occur with probability 20%. If the standard error of % is 1.907 then we expect perturbations

as large as those generated by θ to occur with probability 30%. If the estimate of % is not

near zero then these critical values need to be adjusted.

The results in Table 6 show that estimates of % are very near zero, when the the dam-

ages parameter ωd is set at its estimated value 0.2997. When τ is between −1.3 and −1.0

reasonable values of θ are between 0.1 and 0.2. We can reject the perturbations generated

by θ ≥ 2 as being unreasonable, whereas the perturbations generated by θ ≤ 1, although

reasonable are not large enough, for a social planner who worries about perturbations that

can occur with about 20% probability.

Table 6 also shows that when the social planner uses a reference model different from

the estimated model, then larger values of % are possible. For example, when ωd = 0 and
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τ = −1.3, values of % are much bigger than zero. In this case, when θ = 0.1 or 0.2

estimates of % are even greater than one and thus regardless of the value of %’s standard

error, the social planner should be worried about the perturbations generated by 0.1 and

0.2, since his estimated % says that even larger distortions are the most likely outcome. A

social planner willing to worry about perturbations that can occur with 20% probability

will set θ to be between 0.3 and 0.4 when ωd = 0.0.11

Initial Conditions

For our simulations in subsequent sections, we let time begin in the year 2011 and set the

initial conditions accordingly. We set the values of capital and reserves to be their actual

values in 2011 (using the measurements described in our data appendix):

(44) K2011 = 158.72, L2011 = 3.67, R2011 = 1635.72.

The initial value of S is chosen so that temperature in the model directly matches actual

temperature in 2011:

(45) S2011 = T2011 −M2011 − T = −0.126

where

(46) M2011 = λ

2010∑
j=1751

(1− κm)t−j−1Fj = 0.9860

and where T2011 = 14.6 is temperature in 2011. The initial value of A is chosen so that

output matches actual output in 2011:

(47)

logA2011 = log Y2011+logD2011−α logK2011−ν logF2011−(1−α−ν) logL2011 = 1.0357
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where

(48) logD2011 = ωd |T2011 − T |p = 0.2217

and where Y2011 = 47.35 and F2011 = 9.45 are the actual values of output and carbon usage

in 2011.

Simulations

This section conducts a multitude of simulations for various values of the robustness pa-

rameter ranging from near zero robustness (where the analyst is almost certain she has

the “right” specification, i.e. the reference specification is correct) to a sizable amount of

robustness where doubts are much larger but within the range of empirically disciplined

plausible doubts.

Figures 2 thru 6 plot energy usage, consumption per-worker, temperature, output and

capital in the reference model, starting in 2011. The social planner uses robust decision

rules each period, although the reference model is correct and the minimizing distortions

do non effect future state variables. The simulations are designed to roughly match the

mean dynamics of the system. Every period the social planner uses the optimal decision

rules for the stochastic problem, but the shocks (ek,t+1, es,t+1, ea,t+1, and el,t+1) end up

always being zero. Thus, we simulate the system:

Kt+1 = φt [Yt + (1− δ)Kt] , Rt+1 = Rt − Ft + µr,(49)

Mt+1 = (1− κm)Mt + λFt, St+1 = (1− κs)St(50)

At+1 = At exp (µa) , Lt+1 = (1 + n)Lt,(51)
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where

Tt = T +Mt + St, Dt = exp (ωd |Tt − T |p) , Qt =
1

Dt

,(52)

Yt =
At
Dt

Kα
t F

ν
t L

1−α−ν
t , Ct = (1− φt) [Yt + (1− δ)Kt] ,(53)

and where φt and Ft are the optimal decision rules in the robust stochastic economy.12 The

initial date t0 = 2011 and the horizon J = 160. Although the social planner, imagines the

world as ending in 2171 we only report the values of the state for the first 100 years, in

long-horizon graphs, and the first 50 years, in short-horizon graphs.

We solve the robust model using a version of the small noise algorithm presented in

Anderson, Hansen, and Sargent (2012). In the algorithm, we compute a Taylor Series

approximation for the optimal decision rules around a deterministic dynamic game in which

ε = 0. By expanding around a deterministic dynamic game rather than a deterministic

optimal control problem, we generally achieve more accurate solutions. See Section 9.1 of

Anderson, Hansen, and Sargent (2012) for a detailed description of the algorithm.

Simulations Using Optimal Estimates

Figure 2 presents long-horizon simulations, for several values of the robustness parameter

θ, for our leading choice of parameter values listed in our parameter selection section with

γ = 1, τ = −1.3, and ωd = 0.2997.We see that the evolution of energy usage, consumption

per-person, temperature, and output do not very much as θ increases. Figure 3 presents

short horizon simulations under alternative parameter values. A higher and positive value

of τ leads to higher fuel usage and higher consumption per-worker. When γ = 0.5, the

results are almost identical to the log case. When γ = 5, fuel usage only slightly changes

but consumption per-worker is noticeably smaller.
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Simulations Assuming Temperature Changes Have No Economic Impact

Figure 4 presents simulations for a robust social planner who believes that temperature

changes have no effects on productivity or climate quality (ωd = 0). Although this social

planner denies the effects of temperature change, he wants to be robust to the possibil-

ity that he is wrong and temperature changes do affect productivity and air quality. The

time-paths of optimal energy usage, consumption per-worker, temperature and output vary

significantly as θ increases. For very small θ, energy usage can be constrained by the stock

of reserves but for θ ≥ 0.1 energy usage is mitigated mainly by the fear that the reference

model is wrong.

We see that robust agents who deny temperature effects on the economy choose sim-

ilar (but not identical) policies to robust (or non-robust) agents who believe temperature

changes affect productivity and preferences. For example, when θ = 0.4, initial choices of

energy usage and consumption per-worker in 2011 are in the same ballpark.13

Separating the Productivity and Preference Effects

In this section we discuss the different implications of the productivity and preference

effects. The first row of Figure 5 uses our optimal parameter estimates and corresponds

to the plots in Figure 2. The second row removes the productivity effect so that

(54) Yt = AtK
α
t F

ν
t L

1−α−ν
t

every period. The third row removes air quality from preferences every period from pref-

erences so that:

(55) u (c,Q) = c.

In the second row, we see that the preference effect on its own leads to a gloomy outcome.

The social planner knows that utility will eventually be limited by air quality and optimally
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decides on a large value of consumption per-worker now, which drastically decreases over

time. The social planner chooses to not accumulate much capital and capital falls thru time.

In later years (not plotted) consumption per-worker continues to fall at a fast rate after 2060.

In the third row we see that the productivity effect on its own, leads to a much more gradual

decrease in consumption per-worker and a large increase in capital. The increase in capital

partially offsets the decrease in productivity caused by temperature change. Interestingly

in the first row, where both effects are present, consumption per-worker falls only slightly

in the initial periods before eventually rising after about year 2033. The first row shows

that the combination of the productivity and preference effects are much different than a

simple linear combination of the separate effects. For example, consumption per-worker,

after an initial fall, returns to small but persistent growth in about 2033; whereas with only

the preference effect, or only the productivity effect, consumption per-worker continues to

fall over time.

Figure 6 considers the case of a planner who denies temperature changes affect pro-

ductivity and air quality; and sets ωd = 0. The planner, however, does wish to be robust

to the possibility that he is wrong and there are economic damages from climate change.

The first row of Figure 6 corresponds to the plots in Figure 4. The second row has only the

preference effect. Like the second row in Figure 5 consumption per-worker and capital fall

rapidly. The third row has only the productivity effect. We see that for values of θ ≥ 0.01

consumption is rising over time. For θ = −0.00001, consumption initially rises even faster

and then starts to fall. Capital rises at a fast rate.

Conclusions

This article has developed the first, to our knowledge, example of an empirically disciplined

robustness analysis in climate economics. It is also the first model in climate economics

to use a specification of climate dynamics built on foundations laid by recent work on

the Cumulative Climate Response, CCR (Matthews et al. 2009, Matthews, Solomon, and

Pierrehumbert 2012) which shows that the increase in the temperature anomaly to approx-
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imately linearly proportional to cumulated emissions. We estimate a baseline model of

economic growth dynamics and climate dynamics and calibrate robustness parameters to

empirically discipline the size of the set of perturbations from the baseline model.

The data on the economic impacts of climate change is sparse and subject to dis-

agreement and many interpretations. We suggest that although reasonable economists can

doubt that temperature changes affect productivity and preferences, robust economists will

roughly agree on optimal strategies. We show, in a polar example of infinite known fos-

sil fuel reserves and zero extraction costs, that although non-robust climate believers and

climate deniers choose drastically different policies, robust climate believers and climate

deniers choose somewhat similar policies. Our results suggest that if a consensus to use ro-

bust policies emerges, then there may be much less disagreement between climate believers

and deniers about policy.

Our results suggest that including both preference and productivity effects of climate

change is important and our simulations suggest that preferences for air-quality have a

different impact on optimal decisions than productivity damages. Our empirical calibration

of preferences shows that the preference affects are becoming more important over time.

While our model is very stylized and very simple it is rich enough to expose the eco-

nomic importance of changes in the IES, ES, output elasticity w.r.t. capital, output elasticity

w.r.t. to labor and energy, as well as the empirically disciplined size of the perturbation set

around the estimated baseline version of our model. Even though our model is very simple

it required development of computational methods that yield workably useful results using

only laptop computers. Better computational results will need more computer power.

Future research is needed to introduce recursive preferences, e.g., as in Hansen and

Sargent (2008, Chapter 14) and spatial transport of heat across space, e.g. as in Brock et al.

(2013). Extension of our work to the case of recursive preferences is important because

this allows effects of changing IES to be separated from effects of changing risk aversion.

More research is also needed to produce better measures of climate quality than we used

here. It would also be valuable to introduce endogenous technical change, adaptation to
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climate change as well as mitigation, better representation of climate dynamics, and back-

stop technologies. However, our model, as is, was rich enough to expose the importance of

the economic forces inherent in the robust formulation of economic-climate models.

Appendix

All the appendices are designed to be available online only.

Other Approaches To Robustness

We note that complementary techniques exist for dealing with issues closely related to the

type of robustness considered here, e.g. using Bayesian methods, for addressing model

uncertainty have been proposed in a series of papers also in the context of macroeconomics

and growth. Brock and Durlauf (2001) discussed Bayesian Model Uncertainty, Leamer’s

extreme bounds analysis, and versions of ambiguity aversion that modify Bayesian Model

Averaging. They also conduct an illustrative application to the impact of ethnolinguistic

heterogeneity to African economic growth in comparison to other countries around the

world. Brock, Durlauf, and West (2003, 2007) discussed application of closely related

approaches to economic growth policy and especially for macroeconomic policy, e.g. the

setting of “Taylor” type rules for monetary policy.

Brock, Durlauf, and West (2007) argue that in some cases where the scientific team

does not wish to take a stand on the preferences of the policy maker, it should simply

prepare a graphical summary, called an “action dispersion, welfare dispersion plot,” that

illustrates, for each model in the model uncertainty set, the optimal action chosen, the

optimal welfare produced by that optimal action, and an empirically disciplined credibility

number (e.g. a relative likelihood computed from data). In this way the policy maker

can see how optimal actions, optimal welfares, and credibility numbers are dispersed in

the model uncertainty set. In this way the policy maker’s attention is drawn towards the

cluster of models that have the most credibility given the data and is not unduly distracted

by models that have little support in the data. This kind of plot can illustrate quickly
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the type of uncertainty management problem the policy maker faces for the case of one

parameter rules in monetary policy; two and three parameter rules have also been used.

Another example of the Bayesian Model Uncertainty approach was an application by the

Bank of England; Cogley et al. (2011), for the setting of Central Bank policy. Cogley and

Sargent (2005) do an interesting Bayesian Model Uncertainty study where the posterior

probabilities over three rival models having some a priori credibility in economic science

are updated over time by a policymaker in an optimal learning framework. Brock and

Durlauf (2015) compare and contrast these various approaches to dealing with “sturdy”

policy choices that perform well over a range of uncertainties, e.g. model uncertainties,

that policy makers must face, as well as discuss critiques of received approaches to this

basic problem in policy analysis.

Preferences and Climate Ethics

IA models based on the RCK-DICE framework have analyzed optimal dynamic GHG

abatement as a problem of balancing economic consumption and well-being between present

and future generations, taking account of the costs both of climate change damages and of

abatement policies. In particular, the standard model specification omits the possibility that

human society may explicitly value climate or environmental quality as distinct from eco-

nomic consumption. This has led Roe and others to point out that in fact, future generations

may not regard a high level of consumption as adequate “compensation” for a degraded cli-

mate. In turn, this possibility has been one argument used to support approaches such as

a “precautionary” framing of abatement policy that would dictate present-day efforts to

reduce GHG emissions substantially more aggressive that those justified on cost-benefit

grounds in many IA analyses. This is one example of the view that shortcomings of eco-

nomic methodology justify a turn to instead relying upon ethical and moral criteria to for-

mulate climate policy that would avoid an unacceptably high probability of catastrophic

climate change. Many thoughtful commentators suggest that it is simply wrong for the

State to take a life and, likewise, it is simply wrong for today’s generations to bequeath a
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planet with a degraded climate to future generations.

If, on the basis of such concerns society were to take a “moral imperative” position on

climate change as suggested by Roe (2013), what imperative should be used? How would

this kind of approach actually be implemented in policy? In the IA modeling context, the

most common approach to this question has been to lower the pure rate of time prefer-

ence in models based on RCK-DICE, thereby giving greater weight to future economic

outcomes, including damages from climate change, and therefore justifying more stringent

GHG emissions abatement. However, as has been pointed out by Nordhaus and Dasgupta,

without other changes to the assumptions of such models, this can result in internal in-

consistencies that yield model outputs that actually weaken the case for more aggressive

climate policy, are contrary to empirical evidence, or both.

However, such ethical concerns are indeed within the purview of economic analysis,

and, correctly applied, economic methods can yield valuable insights about them and show

in a clear and rigorous way they might inform policy.

For example, Hoel and Sterner (2007), Sterner and Persson (2008) study the “envi-

ronmental quality” problem, analyzing the impacts of relative prices between consump-

tion goods and environmental goods for the discounting process. A potentially attractive

criterion is sustainability in genuine wealth across generations as argued by Arrow et al.

(2012). They create a measurement of well-being which includes health capital, human

capital, consumption of material goods per capita, natural capital, environmental quality,

etc., which can also include components of climate quality. They argue that proper policy

with respect to future generations requires that their measure of “comprehensive wealth”

rises over future generations.

The analysis presented in this article addresses some of the ethical concerns about cli-

mate change by taking into account climate quality in the utility function of the repre-

sentative decision-maker in our model, where the elasticity of substitution between climate

quality and consumption per capita can be less than one. In this case the utility is eventually

bounded above independently of how high consumption per capita rises due to economic

36



growth. This captures the moral intuition that there are fundamental limits to the substi-

tutability of economic consumption for climate quality.

Data

The data used in the estimations is yearly and is measured as follows:

1. Temperature: We measure temperature in degrees Celsius using data on “Combined

Land-Surface Air and Sea-Surface Water Temperature Anomalies” downloaded from

http://data.giss.nasa.gov/gistemp/ on January 8, 2016. We use the

average temperature over the calendar year. A direct link to the data is here http:

//data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt.

2. Energy: We measure energy in billions of metric tons of carbon, using data on

total world carbon usage was downloaded from http://cdiac.ornl.gov/

trends/emis/meth_reg.html on January 8, 2016. A direct link to the data is

here http://cdiac.ornl.gov/ftp/ndp030/global.1751_2011.ems.

3. Reserves: We set R to 2000 billions of metric tons of carbon and interpret this as a

measure of the stock of reserves at the beginning of 1751. Then using data on carbon

usage we deduct the cumulative carbon usage to determine reserves. Reserves in year

t are

(56) Rt = R + µr(t− 1751)−
t−1∑

i=1751

Fi

when t ≥ 1751.

4. Output, capital, consumption, and population: The data used on output, capital, con-

sumption, and population is measured with estimates from version 8.1 of the Penn

World Table (Feenstra, Inklaar, and Timmer 2015), downloaded on January 8, 2016.

We measure output using data on the real side of output in trillions of 2005 US
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dollars (series “RGDPO”, rescaled). We measure capital using data on the capital

stock in trillions of 2005 US dollars (series “CK”, converted to constant PPP and

rescaled)14. We measure (total) consumption with the sum of private consumption

(series “CSH C” times ”RGDPO”, rescaled) and 70% of government consumption

(0.7 times series “CSH G” times “RGDPO”, rescaled). Since government consump-

tion partially includes government investment, we only include 70% of government

consumption in total consumption. We measure population in billions (series “POP”,

rescaled). We sum up output, capital, consumption, and population for each country

for which data in all years (1950 to 2011) is available. If output, capital, consumption,

or population data is missing in one or more years for a country, then that country is

excluded from the data set for all years.

Of the 167 countries included in the Penn World table, the following 54 countries

have the necessary data: Argentina, Australia, Austria, Belgium, Bolivia, Brazil,

Canada, Colombia, Costa Rica, Cyprus, Democratic Republic of the Congo, Den-

mark, Ecuador, Egypt, El Salvador, Ethiopia, Finland, France, Germany, Guatemala,

Honduras, Iceland, India, Ireland, Israel, Italy, Japan, Kenya, Luxembourg, Mau-

ritius, Mexico, Morocco, Netherlands, New Zealand, Nigeria, Norway, Pakistan,

Panama, Peru, Philippines, Portugal, South Africa, Spain, Sri Lanka, Sweden, Switzer-

land, Thailand, Trinidad and Tobago, Turkey, Uganda, United Kingdom, United

States, Uruguay, and Venezuela.

The Conditional Mean of Temperature

Substituting St = Tt −Mt − T , St+1 = Tt+1 −Mt+1 − T , and Equation 3d into Equation

3e and rearranging yields

(57) Tt+1 = Tt + σses,t+1
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where we define:

Tt = Mt+1 + (1− κs) (Tt −Mt) + κsT(58a)

= (κs − κm)Mt + λFt + (1− κs)Tt + κsT .(58b)

We assume Mh = 0 for some date h far in the past, and solve Equation 3d backward. In

this article, we take h = 1751. For t > h the solution is

(59) Mt = λ
t−1∑
j=h

(1− κm)t−j−1Fj.

We substitute the result into Equation 58b to yield the conditional mean of time t + 1

temperature:

Tt = (κs − κm)λ
t−1∑
j=h

(1− κm)t−j−1Fj + λFt + (1− κs)Tt + κsT .(60)

The Change in Log Productivity

We begin by solving Equation 3i for At and replacing Dt with the expression in Equation

3g:

(61) At =
Yt exp (ωd |Tt − T |p)

Kα
t F

ν
t L

1−α−ν
t

when Gd,t−1 = 0 and ε = 0. Using an analogous expression for At+1 we write

(62) logAt+1 − logAt =Mt+1 + Et+1
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where we define

Mt+1 = log
Yt+1

Yt
− α log

Kt+1

Kt

− ν log
Ft+1

Ft
− (1− α− ν) log

Lt+1

Lt
,(63)

Et+1 = ωd |Tt+1 − T |p − ωd |Tt − T |p .(64)

Et+1 captures the change in log productivity due to temperature changes andMt+1 repre-

sents other changes. From Equation 3f, we know that

(65) Mt+1 + Et+1 = µa + σaea,t+1.

Moment Conditions From Optimization

In this appendix, we write the value function at time t as

Vt ≡

V (Kt, Rt,Mt, St, At, Gd,t−1, Lt, t) t < t0 + J − 1

W (Kt, Rt,Mt, St, At, Gd,t−1, Lt) t = t0 + J

(66)

and use the following notation for derivatives:

Vxt =
∂V (Kt, Rt,Mt, St, At, Gd,t−1, Lt, t)

∂Xt

where Xt = Kt, Rt,Mt or At when t < t0 + J − 1.

(67)

We derive moment conditions for a non-robust version of the model in which the ob-

jective at time t can be written as:

(68) Vt = max
φt,Ft

[
Ut + βEtVt+1

]

whereEt denotes expectations with respect to time t information. For t = t0, t0+1, . . . t0+
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J − 1, the time t+ 1 values of the state are:

Kt+1 = φt [Yt + (1− δ)Kt] exp (σkek,t+1) ,(69)

Rt+1 = Rt − Ft + µr,(70)

Mt+1 = (1− κm)Mt + λFt,(71)

St+1 = (1− κs)St + σses,t+1,(72)

At+1 = At exp (µa + σaea,t+1) ,(73)

Lt+1 = (1 + n)Lt exp (σlel,t+1) ,(74)

where

Dt = exp (ωd |Tt − T |p) , Qt =
1

Dt

,(75)

Ct = (1− φt) [Yt + (1− δ)Kt] ,(76)

Yt =
At
Dt

Kα
t F

ν
t L

1−α−ν
t ,(77)

Tt = T +Mt + St,(78)

Ct, Ft, Rt+1, Kt+1 ≥ 0, 1 ≥ φt ≥ 0.(79)

In this version of the problem we have assumed ε = 1; and Gm,t, Ga,t, and Gd,t are zero.

Euler equation

The first order condition for φt−1 and the envelope condition for kt can be written as:

Uct−1 = βEt−1ζtVkt(80)

Vkt =

[
α
Yt
Kt

+ (1− δ)
]
Uct(81)
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where

(82) ζt =
Kt

K̄t

= exp (σkekt) .

Combining Equations 80 and 81 yields a version of the usual consumption Euler equation

in a production economy:

Uct−1 = βEt−1

(
ζt

[
α
Yt
Kt

+ (1− δ)
]
Uct

)
(83)

= βEt−1

[
α
Yt
K̄t

+ (1− δ)
(
Kt

K̄t

)]
Uct.(84)

By defining a stochastic discount factor

(85) St = β
Uct
Uct−1

and the gross return on capital

Rkt = α
Yt
K̄t

+ (1− δ)
(
Kt

K̄t

)
(86)

we can write the Euler equation as:

(87) Et−1StRkt = 1.

The first order condition for energy

The first order condition for energy, Ft, is:

(88)
νYtUct
Ft

= βEt [Vrt+1 − λVmt+1] .
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Since assumption 2 guarantees that Vrt+1 = 0, we write the first order condition as

(89) zt = −βEtVmt+1

where we define

(90) zt =
νYtUct
λFt

.

Below we will also use a lagged version of Equation 89 which say that zt−1 = −βEt−1Vmt.

The envelope conditions for Mt is

Vmt = Uqt
∂Qt

∂Tt
− YtUct

Dt

∂Dt

∂Tt
+ (1− κm)βEtVmt+1(91)

where

∂Dt

∂Tt
= ωdp (Tt − T )p−1Dt(92)

∂Qt

∂Tt
= − 1

D2
t

∂Dt

∂Tt
(93)

= ωqp (Tt − T )p−1Qt(94)

with

(95) ωq = −ωd.

Using Equation 89 and the derivatives above, we rewrite the envelope condition in Equation

91 as

Vmt = −(1− κm)zt + Umt(96)
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where we define

Umt = p (Tt − T )p−1 (ωqQtUqt − ωdYtUct)(97)

= −ωdp (Tt − T )p−1 (QtUqt + YtUct) .(98)

Using the definition of zt−1, we write Equation 96 as:

(99) −zt−1 = −(1− κm)βEt−1zt + βEt−1Umt

where we have taken expected values at time t− 1 and multiplied all terms by β. Dividing

both sides by zt−1 gives us

(100) (1− κm)βEt−1

(
zt
zt−1

)
− βEt−1

(
Umt
zt−1

)
= 1

Since

(101)
zt
zt−1

=
YtUctFt−1
Yt−1Uct−1Ft

and

(102)
Umt
zt−1

= −

[
ωd p λ (Tt − T )p−1 (QtUqt + YtUct)Ft−1

νYt−1Uct−1

]

we can write this moment as:

(103) βEt−1

[
(1− κm)YtUctFt−1

Yt−1Uct−1Ft
+
ωd p λ (Tt − T )p−1 (QtUqt + YtUct)Ft−1

νYt−1Uct−1

]
= 1
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By defining a fictitious gross return:

Rdt =
(1− κm)YtFt−1

Yt−1Ft
+
ωd p λ (Tt − T )p−1

(
Qt

Uqt
Uct

+ Yt

)
Ft−1

νYt−1
(104)

=
YtFt−1
Yt−1Ft

[
1− κm +

ωd p λ (Tt − T )p−1 (Γt + 1)Ft
ν

]
(105)

where

Γt =
QtUqt
YtUct

(106)

=
Qt(1− ϕ)Qτ−1

t

Ytϕ
Cτ−1
t

Lτt

(107)

=

(
1− ϕ
ϕ

)(
Ct
Yt

)(
QtLt
Ct

)τ
,(108)

we can write the Euler equation for energy as:

(109) Et−1StRdt = 1

where we have used the stochastic discount factor stated in Equation 85.

For interpretation we note that we can write:

Uct = ϕu1−γ−τt

Cτ−1
t

Lτt
(110)

Uqt = (1− ϕ)u1−γ−τt Qτ−1
t(111)

Umt = p (Tt − T )p−1 u1−γ−τt

[
(1− ϕ)ωqQ

τ
t − ϕωdYt

Cτ−1
t

Lτt

]
(112)

where

(113) ut =

[
ϕ

(
Ct
Lt

)τ
+ (1− ϕ)Qτ

t

] 1
τ

.
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Table 1: Estimates of Population Growth

Parameter Estimates
n σl

0.0172 0.002
(0.0008) (0.0004)

Note: This table uses GMM to estimate the mean, n, and standard deviation, σl, of annual
world population growth rates from 1952 to 2011. Asymptotically valid standard errors are
listed in parentheses below estimates and are computed using the method of Newey and
West (1987) with 10 lags.
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Table 2: Estimates of the Capital Evolution Process

Parameter Estimates
δ σk

0.0573 0.0217
(0.0037) (0.0037)

Note: This table uses GMM to estimate the yearly depreciation rate, δ, and the stan-
dard deviation of expected next year’s world capital, σk, from 1952-2011. Asymptotically
valid standard errors are listed in parentheses below estimates and are computed using the
method of Newey and West (1987) with 10 lags.
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Table 3: Estimates of the Temperature Equation

Time period Parameter Estimates Model Test
(for t+ 1) λ κs κm T σs J-stat P-value

1882-2011 0 -0.0157 — 13.5304 0.1226 10.9767 0.0041
(0.0258) (1.0984) (0.0079)

0.0023 0.0568 0 13.7941 0.1183 1.3165 0.2512
(0.0014) (0.1911) (0.3094) (0.0065)

0.0024 0.0560 0.001 13.7927 0.1184 1.2234 0.2687
(0.0014) (0.1894) (0.312) (0.0064)

0.0032 0.0619 0.01 13.7733 0.1180 0.6929 0.4052
(0.0015) (0.1734) (0.2479) (0.0056)

1952-2011 0 -0.0229 — 13.7683 0.1114 45.7019 0
(0.0181) (0.2934) (0.006)

0.0027 0.7640 0 13.7415 0.0943 0.0711 0.7898
(0.0001) (0.1215) (0.0318) (0.005)

0.0028 0.7716 0.001 13.7407 0.0943 0.0839 0.7721
(0.0001) (0.1202) (0.0318) (0.005)

0.0036 0.7489 0.01 13.7353 0.0944 0.1610 0.6882
(0.0002) (0.1123) (0.0332) (0.0051)

Note: This table present first stage GMM estimates of the temperature equation with
annual data. Asymptotically valid GMM standard errors are listed in parentheses below
estimates and are computed using the method of Newey and West (1987) with 10 lags.
Parameters without standard errors are fixed. The J-stats measure moment condition errors
and the corresponding p-values indicate the likelihood of observing errors at least this large.
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Table 4: Estimates of the Output Equation

Parameter Estimates Model Test
p ωd µa σa J-stat P-value

Panel A: ν = 0.10
— 0 0.0081 0.0139 13.9688 0.0158

(0.0025) (0.0014)

1 0.1704 0.0105 0.0252 2.7531 0.6000
(0.1527) (0.0026) (0.0153)

2 0.2508 0.0114 0.0343 1.5638 0.8153
(0.2031) (0.0035) (0.0235)

4 0.1351 0.0092 0.0233 4.8623 0.3017
(0.1886) (0.0038) (0.0183)

Panel B: ν = 0.20
— 0 0.0069 0.0132 18.0523 0.0029

(0.0024) (0.0013)

1 0.2063 0.0098 0.0286 1.7000 0.7907
(0.1701) (0.0026) (0.0180)

2 0.2787 0.0106 0.0373 0.7346 0.9470
(0.2205) (0.0038) (0.0261)

4 0.1027 0.0078 0.0195 5.6841 0.2240
(0.1430) (0.0034) (0.0127)

Panel C: ν = 0.25
— 0 0.0063 0.0130 19.8381 0.0013

(0.0024) (0.0013)

1 0.2237 0.0094 0.0304 1.5253 0.8222
(0.1794) (0.0027) (0.0193)

2 0.2997 0.0103 0.0397 0.6847 0.9532
(0.2350) (0.0040) (0.0281)

4 0.0824 0.0070 0.0174 6.7851 0.1477
(0.1166) (0.0031) (0.0095)

Note: This table present first stage GMM estimates of the world output equation with
annual data from 1952-2011. Asymptotically valid GMM standard errors are listed in
parentheses below estimates and are computed using the method of Newey and West (1987)
with 10 lags. Parameters without standard errors are fixed. The J-stats measure moment
condition errors and the corresponding p-values indicate the likelihood of observing errors
at least this large. A dash indicates that the value of p does not matter since ωd = 0.
Standard errors are not adjusted for the pre-estimation of some of the variables.
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Table 5: Calibration of Preference Parameters

Parameter Estimates Model Test
ϕ τ β J-stat P-value

0.1 0.3332 0.9434 67.4499 0
(0.2010) (0.0030)

0.2 -0.0463 0.9503 45.5878 0
(0.2133) (0.0035)

0.3 -0.2947 0.9546 32.2615 0.0001
(0.2208) (0.0040)

0.4 -0.4965 0.9579 24.0948 0.0022
(0.2265) (0.0043)

0.5 -0.6803 0.9607 19.1975 0.0138
(0.2315) (0.0047)

0.6 -0.8628 0.9634 16.5023 0.0357
(0.2363) (0.0050)

0.7 -1.0605 0.9661 15.1745 0.0558
(0.2413) (0.0054)

0.8 -1.3001 0.9690 14.6749 0.0658
(0.2471) (0.0059)

0.9 -1.6577 0.9727 14.8111 0.0629
(0.2552) (0.0065)

Note: This table provides estimates of the (non-) robust first order conditions for optimiza-
tion, with world annual data from 1952-2011. Asymptotically valid GMM standard errors
are listed in parentheses below estimates and are computed using the method of Newey
and West (1987) with 10 lags. Parameters without standard errors are fixed. The J-stats
measure moment condition errors and the corresponding p-values indicate the likelihood
of observing errors at least this large, if the model is correct. Standard errors are not ad-
justed for the pre-estimation of some of the variables. The value of γ is fixed at one in all
rows.
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Table 6: Robustness Calibration

γ = 1 and ωd = 0.2997 γ = 1 and ωd = 0
θ / τ -1.3 -1.0 -0.1 0.1 0.5 -1.3 -1.0 -0.1 0.1 0.5

0.100 0.02 0.01 0.01 0.01 0.01 3.71 2.05 0.71 0.65 0.59
(1.71) (1.22) (0.60) (0.56) (0.51) (2.19) (1.28) (0.42) (0.39) (0.35)

0.200 0.01 0.01 0.00 0.00 0.00 1.51 0.90 0.36 0.33 0.30
(0.78) (0.56) (0.30) (0.28) (0.26) (0.95) (0.56) (0.21) (0.20) (018)

0.300 0.00 0.00 0.00 0.00 0.00 0.85 0.53 0.24 0.22 0.20
(0.44) (0.34) (0.20) (0.19) (0.18) (0.54) (0.33) (0.14) (0.13) (0.12)

0.400 0.00 0.00 0.00 0.00 0.00 0.50 0.34 0.18 0.17 0.16
(0.29) (0.23) (0.15) (0.15) (0.14) (0.32) (0.21) (0.11) (0.10) (0.09)

0.500 0.00 0.00 0.00 0.00 0.00 0.33 0.24 0.14 0.14 0.13
(0.19) (0.16) (0.12) (0.12) (0.11) (0.21) (0.15) (0.09) (0.08) (0.08)

Note: This table computes estimates of % and its standard error for various values of θ, τ,
and ωd, using world annual data from 1952 to 2011. The other parameter values are set at
the values listed in the parameter selection section. We use a fixed weighting matrix which
is a combination of the fixed weighting matrices used in Tables 3 and 4. Asymptotically
valid GMM standard errors are listed in parentheses below estimates and are computed
using the method of Newey and West (1987) with 10 lags. The standard errors are not
adjusted for the pre-estimation of the other parameters.
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Figure 1: The components of Rdt

Note: This figure plots the three components of Rdt using our optimal parameter estimates
and actual data when γ = 1, τ = −1.3, ωd = 0.2997.
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Figure 2: Long horizon simulations using the optimal estimates

Note: This figure simulates optimal energy usage (Ft), consumption per-worker (Ct/Lt),
temperature (Tt), and output (Yt) for the parameter values described in the parameter se-
lection section when γ = 1, τ = −1.3, ωd = 0.2997 for four different values of θ. The
simulations are almost identical for the four values of θ.53



2020 2030 2040 2050 2060
Year

0

2

4

6

8

10

12

E
n
e
rg

y
 u

sa
g
e

θ= 1e-05
θ= 0.01
θ= 0.1
θ= 0.4

2020 2030 2040 2050 2060
Year

0

2

4

6

8

10

12

14

C
o
n
su

m
p
ti

o
n
 p

e
r 

w
o
rk

e
r

2020 2030 2040 2050 2060
Year

0

50

100

150

200

250

300

350

C
a
p
it

a
l

Reference model simulations when γ=1.0 and τ=0.5
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Reference model simulations when γ=0.5 and τ=-1.3
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Reference model simulations when γ=5.0 and τ=-1.3

Figure 3: Short horizon simulations using alternative parameter values

Note: Each row simulates capital (Kt), energy usage (Ft), and consumption per-worker
(Ct/Lt) using different parameters. Row 1 lets τ = 0.5, row 2 lets γ = 0.5, and row three
lets γ = 5.0. The other parameters are the same as in Figure 2 and the first row of Figure
5. 54
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Figure 4: Long horizon simulations with ωd = 0

Note: This figure simulates optimal energy usage (Ft), consumption per-worker (Ct/Lt),
temperature (Tt), and output (Yt) γ = 1, τ = −1.3, ωd = 0.
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Reference model simulations without preferences for air quality

Figure 5: Short horizon simulations using the optimal estimates

Note: Each row simulates capital (Kt), energy usage (Ft), and consumption per-worker
(Ct/Lt) under different assumptions using the same parameters values as Figure 2. Row 1
lets environmental damages affect productivity and preferences. Row 2 lets environmental
damages only affect preferences. Row 3 lets environmental damages only affect productiv-
ity.
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Figure 6: Short horizon simulations when ωd = 0

Note: Each row simulates capital (Kt), energy usage (Ft), and consumption per-worker
(Ct/Lt) under different assumptions using the same parameters values as Figure 4. Row 1
lets environmental damages affect productivity and preferences. Row 2 lets environmental
damages only affect preferences. Row 3 lets environmental damages only affect productiv-
ity.
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Notes

1We interpret β as the subjective discount factor times (1 + n).

2To compute the sample variance, we divide by the sample size.
3As described in our data appendix the units of λ are Celsius per billion metric tons of carbon. Many

authors use different units such as Celsius per trillion metric tons of carbon. A λ of 0.0028 corresponds to

2.8 Celsius per trillion metric tons of carbon.
4In our data sample Tt is always greater than T so that Et+1 = ωd (Tt+1 − Tt) . However, our model

predicts that its possible that Ts+1 < T and Ts 6= Ts+1 for some s, in which case Es+1 6= ωd (Ts+1 − Ts) .
5By fictitious return, we mean that this is not necessarily a return on asset that agents can invest in usual

financial markets. However, the return satisfies the same equation that investable assets satisfy, and our model

is consistent with there either being, or not being, an investable asset with this return.
6See Figures 2 and 4; and the discussion in our simulation section.
7The moment conditions when % = 1 and ε = 1 can be derived in a similar way to the moment conditions

in earlier sections.
8For example, Gθa,t, G

θ
b,t−1, and Gθd,t are good candidates to supplement the instruments, z2,t. In our

results, we set zθ1,t = z1,t and zθ2,t = z2,t; and do not use additional instruments.
9We solve the model numerically using the method described in our simulation section. Its not computa-

tionally feasible for us to reliably compute detection probabilities using ordinary workstations with a limited

number of processors.
10By very near zero, we mean between −0.0001 and 0.0001.

11The probability that % is greater than equal to one when θ = 0.3 is about 39%. The probability that % is

greater than equal to one when θ = 0.4 is about 6%.
12In the simulation, K̄t equals Kt for all t.
13Note that Figures 2 and 4 plot many quantities though time, assuming that the different reference models

in each case are correct. This makes it difficult to compare future choices. However, in unreported results

the decision rules, as a function of the current state, are in the same ballpark for climate believers and robust

climate deniers, when θ = 0.4.

14Series “CK” is converted to constant purchasing power parity (PPP) by multiplying by series “RGDPO”

and dividing by series “CGDPO.”
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