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Abstract 
 
Fruit producers in the Eastern United States face a wide range of weather-related risks during the 
growing season, and many of these events have the capacity to largely impact yields and 
profitability.  This research examines the economic implications associated with responding to 
these risks for sweet cherry production in three different systems: using high tunnels to protect 
the crop, purchasing revenue insurance products, and employing weather insurance schemes.  
The analysis considers a distribution of revenue flows and costs using detailed price, yield, and 
weather data between 1984 and 2013.  Our results show that the high tunnel system generates the 
largest net return if significant price premiums exist for earlier and larger fruit.  Under most 
conditions, the results also indicate that net returns for the system that uses revenue-based crop 
insurance exceed those for the system that uses weather insurance products.   
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Alternative strategies to manage weather risk in perennial fruit crop production 
 

Introduction 

Producing high-value fruit crops in the Northeast and in the Great Lakes region presents both 

opportunities and challenges for growers.  Many of the opportunities are related to the growing 

trend for local food that has generated direct sales to consumers of more than $1.3 billion 

nationally in 2012.  Of this total, approximately $330 million occurred in Michigan, New York, 

Massachusetts, Pennsylvania, and Wisconsin, which showcase the importance of local foods in 

these states (USDA, 2014a).  Many of the challenges facing fruit growers in these regions relate 

to weather risks such as extreme winter temperature events, late-spring frosts, hail, and excess 

precipitation occurring prior to harvest (Collier et al., 2008).     

National participation levels by perennial fruit crop growers in federal crop insurance 

programs vary from 80% for blueberries to slightly over 50% for apricots, with around 75% for 

cherries and plums in 2011 (RMA, 2013).  As shown in Table 1, the participation levels, 

measured as acres enrolled in the program as a share of total planted or bearing acres, are more 

than 50% for most perennial crops in 2014 and the average national participation level is 

approximately 70%. However, this general trend is not consistent across all states. The 

participation level for cherries, peaches and pears is relatively low in New York and insurance 

products are unavailable for pears, plums and strawberries in Michigan. We also observe the 

availability of high tunnels (sometimes referred to as climatic modification technologies) for fruit 

and vegetable producers in the Northeast as an alternative risk management tool. High tunnels 

are used to mitigate weather risks and also enable an extended growing and harvest window 

which may lead to higher prices for fruit sold in periods with low supply (Lang, 2009). In 

addition to high tunnels and standard crop insurance products, there is interest among some 
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stakeholders for weather-index based insurance products to hedge against specific weather perils 

commonly facing specialty crop growers.   

Fruit growers are increasingly interested in better understanding how the adoption of high 

tunnels, compared to market-based tools like crop insurance, will affect yields, local food sales, 

and farm profitability.  Although there is a large literature examining risk management strategies 

for program crops in the United States, there is very little research that has evaluated the 

economic implications of adopting various risk management strategies for specialty crop 

producers (Belasco et al., 2013; Lindsey et al., 2009). The purpose of this research is to develop 

a framework to evaluate various risk management strategies—including high tunnels, crop 

insurance and weather insurance—for small- to medium-sized1 fruit crop growers in the Eastern 

United States.  Our empirical example focuses on fresh sweet cherry production in Michigan and 

New York State.  For each system, we simulate a distribution of prices, yields, and costs over 20 

years to consider the typical life cycle of a perennial fruit orchard.  We provide results to 

summarize the net returns to each risk management tool using various criteria to evaluate and 

rank the different strategies.   

Risk Management for Specialty Crops 

Various unfavorable weather conditions affect specialty crop production, which has led to an 

increase in the attention given to risk management strategies by growers.  Perennial fruit crops in 

the Northeast are particularly susceptible to a wide range of weather perils. Frost injuries during 

the bloom period in late spring have severely impacted apples, cherries and grapes in the 

Northeast in 2002, 2007 and 2012 (Baule et al., 2014).  For cherry production, there is also a 

significant risk associated with fruit cracking due to heavy rainfall just prior to the harvest season 

(Lang, 2013).  Fruit cracking occurs during the fruit ripening stage when excessive water is 
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absorbed through the fruit surface or through the root system and the skin splits or “cracks” 

(Simon, 2006). Fruit that has cracked due to excessive water is not marketable.  Figure 1 presents 

the frequency of two weather events for sweet cherry production in Michigan and New York 

between 1984 and 2013.  The thick bar show the occurrence of spring frost before and during the 

bloom stage in Maple City, Michigan measured by degree days on the left vertical axis.  The thin 

lines represent the frequency of excessive rainfall during the harvest season (in Maple City, 

Michigan and in Sodus Center, New York) measured by precipitation days on the right vertical 

axis. 

The U.S. federal crop insurance program (FCIP) is a safety net that provides ex ante 

protection against price, yield, or revenue risks facing agricultural producers (Barnett, 2014). 

Participation level and acres insured increased significantly following the Federal Crop 

Insurance Reform Act of 1994 and the Agricultural Risk Protection Act of 2000.  Although the 

increase in premium subsidies was for both major field crops and specialty crops, the 

participation level in federal crop insurance program has historically been higher for field crop 

growers than for fruit and vegetable growers.  Acres enrolled in the program as a share of total 

planted or bearing acres has increased from 17% to 73% between 1990 and 2011 for fruits and 

nuts; it increased from 16% to 32% for vegetable crops and it increased from 38% to 85% for the 

major field crops during the same period (RMA, 2013). The revenue-based plans—such as actual 

revenue history (ARH)—have been implemented on a pilot basis for cherries, navel oranges and 

strawberries starting in 2009, 2011 and 2012 respectively (FCIC, 2010). Under the ARH policy, 

historical revenue, rather than historical yield, is insured against losses from yield shortfalls, 

inadequate market prices, or both. 
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Since weather insurance payoffs are derived from objective weather outcomes that are 

caused-oriented, weather insurance reduces the costly administrative and operational expenses 

associated with monitoring farmer behavior.  Such transparency between the insured and the 

insurer relieves concerns of the adverse selection problem and may lower the transaction costs 

incurred from asymmetric information between two parties (Barnett, 2014; Moschini and 

Hennessy, 2001).  Given several advantages of weather-index based insurance over conventional 

crop insurance, weather insurance schemes have been regarded as a potentially effective risk 

management tool among major program crops (Musshoff et al., 2011; Turvey, 2001; Vedenov 

and Barnett, 2004). For the application to specialty crops, Turvey et al (2006) developed a 

unique method to price weather insurance products for ice wine.  Fleege et al. (2004) found 

improved net income from using weather derivative to hedge against heat risk for nectarines, 

raisin grapes and almonds in California.  The use of weather insurance has also attracted the 

attention of policy makers. Under the Agricultural Act of 2014, subsidized pilot products for 

weather-index based insurance schemes that are provided by a private insurance company 

became available in 2015 for crops that have no available insurance products or have low 

participation rates for existing insurance products (Chite, 2014).  

High tunnels are temporary unheated greenhouses that provide a protected environment 

for various fruits, vegetables, and cut flowers (Carey et al, 2009). Modified growing conditions 

within the tunnel, via temperature, sunlight, moisture and pest control, may increase marketable 

yields and enhance fruit quality compared to crops produced in an open-field (Waterer, 2003; 

Demchak 2009).  Furthermore, if the use of high tunnels can effectively extend the harvest 

window for a crop, it is expected that it will allow producers to capture premium prices for these 

crops that are available earlier in the season (Cheng and Uva, 2008; Curtis et al., 2014). Others 
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have found that the use of high tunnels may lead to greater net economic benefits compared to 

crop insurance in the production of oranges and strawberries (Lindsey et al., 2009; Belasco et al., 

2013). However, the economic benefits of adopting high tunnels to manage weather risks depend 

greatly on the premiums that can be expected for higher quality and earlier fruit (Waterer, 2003; 

Robinson and Dominquez, 2013; Maughan et al., 2015).  In addition, in 2009 the Environmental 

Quality Incentives Program (EQIP) began to provide cost-sharing funds for high tunnel 

production systems that extend the growing season in an environmentally-friendly and energy-

efficient manner (NRCS, 2011). 

Conceptual Framework  

A simulation model is developed to characterize the distribution of revenues and costs associated 

with the adoption of risk management strategies for sweet cherries in Michigan and New York 

State. We consider four risk management systems: status quo, high tunnels (the climatic 

modification technology), revenue-based crop insurance, and weather insurance, and we examine 

and compare the net returns over a 20-year period in a net present value (NPV) analysis.  While 

an application is made to fresh sweet cherry production in Michigan and New York here, the 

framework could be used to assess similar questions for other perennial specialty crops in humid 

continental climate regions where producers have the option to invest in alternative production 

technologies and available insurance products.   

The net returns from risk management strategy S is shown in equation (1), where 

subscript r denotes a region and subscript t denotes time: 



 r ,t
S  Pr,t Qr ,t Cr ,t

T

net returns from crop sale and production, NRr ,t
C

    Ir,t
S () r ,t

S

net return from insurance participation, NRr ,t
I

    r  MI, NY; t  1,...,20             (1) 
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In equation (1),  r ,t
S  represents the profit per acre for system S , which is comprised of net 

returns from the harvest, NRr ,t
C , and net returns from purchasing insurance, NRr ,t

I ; Pr ,t  and Qr ,t  

are the market price and yield, and its product represents the future gross revenue, R
r ,t
 P

r ,t
Q

r ,t
; 

production cost, Cr,t
T  Cr ,t  r ,t , is comprised of the cost under the baseline that is held constant 

under all scenarios, C
r ,t

, and the technology cost (the high tunnel in this study), 
r ,t

,  which 

includes both one-time construction cost of the high tunnel and its associated annual variable 

cost; Ir ,t
S  and  r ,t

S  represent the indemnities and the premiums respectively for different 

insurance products. In the case of federal crop insurance program,   is the level of coverage 

used to determine the indemnity payout and the associated subsidy. In the analysis of the weather 

insurance products,   represents the weather index used to determine the payout function that 

insures farmers against the crop loss caused by a specific weather event as well as the premiums.   

Uncertainty in future price and production associated with unexpected weather events 

requires us to carefully consider the stochastic process for prices and yields. Price and Wetzstein 

(1999) modeled stochastic peach prices and yields, and therefore the stochastic revenue, to 

determine the optimal entry and exit revenue threshold decision in orchard investment.  Richards 

and Manfredo (2003) priced the revenue insurance for grapes using similar stochastic process for 

both price and yield. Uncertainty in price, P , and yield, Q, for sweet cherries could be 

represented by a geometric Brownian motion process:   

  

dP

P
 

P
dt 

P
dz

P
                     (2)  and 

                    (3)Q Q Q

dQ
dt dz

Q
    
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Where dP and dQ  represent the change in per acre price and in per acre tons of fruit,  is the 

drift rate or rate of change in price and yields, and   is the standard deviation.  The percentage 

change in price and yield, 
 

dP

P
 and 

dQ

Q
, are normally distributed with mean  T  and variance 

 2T , with increment change in time T . The Wiener process, denoted by dz , represents the 

time-independent random shock that follows a standard normal distribution and defines the 

correlation between variables ( dz
P
dz

Q
 dt , dz

P
2  dz

Q
2  dt ), and   is the correlation 

coefficient between price and yield. 

Applying Ito’s Lemma, the stochastic process of gross revenue, R  PQ , follows the 

geometric Brownian motion (Turvey et al., 2014): 

dR

R

R

P
dP 

R

Q
dQ 

1

2

2 R

P2
dP2 

1

2

2 R

Q2
dQ2 

1

2

2 R

PQ
dPdQ                       (4)  

where R P  Q, R Q  P,  2 R P2  0, 2 R Q2  0 and 2 R PQ  1. Substituting 

(2) and (3) into (4) gives the stochastic process for revenue: 

 dR  
R
Rdt 

P
Rdz

P


Q
Rdz

Q
                                                (5) 

where 
R
 

P
 

Q
 

P


Q
; R is lognormally distributed such that the percentage change in 

R  over time interval T , is normally distributed with mean 
R
T  and variance, 

R
2T , where  


R
2  

P


Q
 2

P


Q
. By Ito’s lemma, the differential of change in logarithm of R  over time, 

d ln(R), occurs with normally distributed mean (R


1

2


R
2 )T  and variance 

R
2T  (Turvey et al., 

2014). Annual forecasted crop revenue could then be derived from the following lognormal Ito’s 

process:  
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  Rt
 R

t1
e

((PQ
1

2
 P

2 
1

2
Q

2 )dtN (0,1, )( P
2 Q

2 2 PQ )
1

2 dt )
                                (6)   

Market price and yield data for fresh sweet cherries in Michigan and New York are 

available from the USDA’s National Agricultural Statistical Service from 1984 to 2013 (NASS, 

2015)2. Detailed annual cost data for sweet cherry production are not available for Michigan and 

New York, and therefore we use the data available from California, Washington and Oregon to 

characterize costs in Michigan and New York State (Grant et al., 2011; Washington State 

University, 2009; West et al., 2012). In these Western U.S. region, the total per acre costs range 

from $9,848 to $14,456 while the corresponding crop sales per acre range from $11,900 to 

$22,400, and the resulting cost-revenue ratio ranges from 45% to 86%. To generate net return 

flows in our framework we project future costs by multiplying the gross revenue simulated in 

equation (6) with an average cost-revenue ratio as shown in equation (7), specific to Michigan 

and New York respectively,  


C

r ,t
 R

r ,t

C
R







                                               (7)  

In equation (7), 
 

C
R

 represents the historical cost-revenue ratio and is multiplied by a specific 

distribution function that is used as a proxy to characterize the cost and revenue relationship, 

where  R  denotes the historical revenue flows.  We use Producer Purchase Index for “Other 

fruits and berries” between 1984 and 2013 (BLS, 2015) to retrieve the historical cost flows, C . 

Calculating Net Returns in each System 

The general framework presented in equation (1) is used to quantify the net returns in each 

system.  The forecasted net returns for growers of sweet cherries in region r (Michigan or New 

York) under the baseline (status quo) scenario are simply:  
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
r ,t
B  R

r ,t
C

r ,t
                                               (8) 

Where the simulated gross revenues and costs are calculated following equation (6) and (7) 

respectively.  We expand upon the calculation of net returns in the baseline system to consider 

specific factors that impact revenues and costs in each of the other three systems.    

High Tunnels 

Relative to the net returns described above, the adoption of high tunnels to mitigate risk will lead 

to increased costs and potentially higher revenue flows. The calculation of net returns in the 

system that includes high tunnels is outlined in equation (9): 


r ,t
T   R

r ,t
 (C

r ,t
 

r ,t
)                                            (9) 

where   represents the revenue multiplier due to improvements in fruit quality, increases in 

yield, and increases in the per unit price associated with an advanced marketing window.  From 

available experimental data that describe yields and prices for sweet cherries produced under 

high tunnels in New York during 2010 and 2012, the crop value per acre under the high tunnel 

system is expected to vary from 1.27 to 3.4 times higher than the crop value without high 

tunnels.  Similar experimental data from research at Michigan State University shows that the 

value of the crop produced in high tunnels is between 1.3 to 2.5 times higher than the value for 

fruit produced in an open field3. We consider a range of values between 25% and 150% (or 

equivalent revenue multipliers between 1.25 and 2.50) to describe this premium for fruit 

produced in a high tunnel.   

The cost of establishing high tunnels is approximately $40,000 per acre. While high 

tunnel structures could remain relatively maintenance free, other variable costs including plastic 

covers every four years ($4,000 per acre) and annual labor costs for various tasks ($1,200 per 
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acre) are expected (Blomgren and Frisch, 2007). All of these additional costs specific to the high 

tunnel system are captured in 
r ,t

.  

Revenue-based Crop Insurance 

Focusing on the ARH pilot program for sweet cherries, the calculation used to determine net 

returns for a grower adopting crop insurance needs to consider the costs of enrolling in the 

program as well as the indemnity.  Net returns to the grower are outlined in equation (10): 


r ,t
CI  

r ,t
B  I

r ,t
CI (

C
)

r ,t
CI                                    (10)   

where Ir ,t
CI (C )  Max(C  Rr  Rr ,t ,0) is the indemnity as a function of the coverage level, C ; 


r ,t
B  is the same as it was defined in equation (8). Approved or certified revenue, denoted by

R
r
, 

is determined by the historical average of grower revenue based on the past four to ten years, 

while R
r ,t

 is the actual revenue in year t and region r. In our analysis, we simulate the actual 

revenue based on yield and price patterns observed between 1984 and 2013. The crop insurance 

premium is defined by: 

, ,( ( ,0)) (1 ( ))                     (11)CI
r t C r r t CE Max R R          

For the premium to be actuarially fair, the pre-subsidy premium level is equal to the 

expected loss or the expected indemnity. The cost of insurance to the grower is determined by 

subtracting the premium from the subsidy received (denoted as ζ), which, as a percentage of the 

premium, varies by the level of coverage the grower selects. In our analysis, we consider all the 

coverage levels from 50% to 75% and subsidies from 67% to 55% (RMA, 2015).  

Weather insurance 

Weather insurance products are indexed to weather variables that are linked to specific events 

affecting crop size, crop prices, or crop quality.  For sweet cherry production in the Northeast 
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and in the Great Lakes region, spring frost and summer precipitation (leading to fruit cracking) 

are the two main weather risks.  A hard frost in the late spring (after the budding process has 

begun) has the capacity to decrease bud survival through the flowering stage. Tolerance to the 

freezing temperature varies by stage of development as well as by growing environment and crop 

types; sweet cherries are relatively vulnerable to frost damage compared to other perennial stone 

fruit crops such as peaches and plums (Miranda et al., 2005).  

Two types of weather-index based insurance programs are considered in our analysis: 

frost insurance and harvest season rain insurance.  The net returns to the grower that adopts 

weather insurance are described in equation (12). 

, , , , , , ,( ) (1 ),    , ; , ,             (12)WI B WI WI F E C
r t r t r t r t r t r t r tI W sub WI FI RI W W W W         

Here the frost insurance is denoted by FI , and harvest rain insurance is denoted as RI.  The 

variable W
r ,t
F  measures the occurrence of spring frost; W

r ,t
F  is the sum of the daily deficit amount 

in observed temperature falling below the critical thresholds that cause 90% bud kill. Since FCIP 

began to subsidize weather-index based insurance in 2015, we consider both the unsubsidized 

and subsidized scenario for weather insurance in our analysis. The subsidy rate is denoted by 

sub  in equation (12); we set it to 0 to consider the case with no subsidy and also consider a 

range of subsidy rates from 10% to 50%.  The indemnity function for frost insurance is:  

I
r ,t
FI (W

r ,t
F ) 

r
F W

r ,t
F                                          (13)    

where 
r
F  is the unit payout growers will receive for each degree deficit. The unknown frost 

index, W
r ,t
F , is approximated by the probabilistic information on potential frost damages, denoted 

as 

W

r ,t
F , generated using detailed historical weather records from 1984 to 2013 as shown in 

equation (14). 
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  
W

r ,t
F  max(T

r ,s
C  T

r ,t ,s,d
,0),

d


s
          t  1984,...,2013                   (14)   

Here we use T
r ,s
C  to denote the critical temperature at stage s  for 90% bud kill, which is 

commonly used to identify the bud injury at different stages of development (Murray, 2011); 


T
r ,t ,s, d  is the daily temperature observed at stage s from 1984 to 2013; d  denotes the number of 

days in each stage.  

We consider two types of harvest rain insurance, and develop two indices to capture the 

effect of summer precipitation: an excess rain index, W
r ,t
E , and a cumulative rain index, W

r ,t
C . 

Similar to the design of the frost index, the excess-rain index is characterized by the following 

indemnity function,  

I
r ,t
RI (W

r ,t
E ) 

r
E W

r ,t
E                                             (15)  

where W
r ,t
E  is measured as the sum of daily rainfall during the harvest season exceeding the 

threshold that causes fruit cracking; 
r
E  is the unit payout growers receive for every excess inch 

of rainfall. The excess rainfall index, W
r ,t
E , is approximated by the probabilistic information on 

potential excess rain damages, denoted as 

W

r ,t
E , generated using detailed historical weather 

records from 1984 to 2013 as shown in equation (16). 

  
W

r ,t
E  max( R

r ,t ,d
 R

r
C ,0)

d
 ,                 t  1984,...,2013                                   (16)  

In equation (16), R
r
C  represents the precipitation threshold, 


R

r ,t ,d
 is the daily precipitation during 

the period 1984 to 2013, and d  denotes the length in days in the harvest season.   
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The cumulative rainfall index considers the sum of rainfall during the harvest season. 

Based on the historical precipitation data (Heimfarth and Musshoff, 2011; Skees et al., 2011), the 

stochastic cumulative rainfall index is specified as: 

  
W

r ,t
C  R

r ,t ,d
d
 ,              t  1984,...,2013                           (17)  

which is used to approximate the cumulative rainfall in a given period denoted by W
r ,t
C  such that 

the payoff for the weather insurance is 


I

r ,t
RI (W

r ,t
C ) 

r
C max(W

r ,t
C  W

r
,0)                                 (18) 

where 
r
C  represents the per unit amount the grower will be compensated if the observed 

accumulated rainfall level goes above the strike level, 
W

r
.   

For all weather insurance products, the actuarially fair premiums are set equal to the 

expected loss (or the expected indemnity) discounted by a risk-free interest rate, i, during time 

interval, t , if an unfavorable weather event occurs.  The calculation of the premium, denoted as 

,
WI
r t , is shown in equation (19). 


r ,t
WI  E(I

r ,t
WI (W )) exp(i  t)                             (19) 

To price the weather insurance products we use detailed data on precipitation and 

temperature collected over the period 1984 to 2013 from the National Climatic Data Center.  The 

weather data are used to specify late spring frost events and harvest rain events for sweet cherry 

production regions in Michigan and in New York (NCDC, 2014). Leelanau county and Wayne 

county are the top sweet cherry producing counties in Michigan and New York respectively; they 

account for 60% of total bearing acreage in Michigan and for 48% of total bearing acreage in 

New York (USDA, 2014b).  Therefore, we collect the weather data for Maple City, Michigan 
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and Sodus Center, New York as they are located in the representative counties and both have 

data available over the period from 1984 to 2013.4   

Given agronomic information that describes the range of dates for specific crop 

development stages (i.e., green tip and the key bloom dates), we identify the critical times for 

spring frost (in April and early May) with temperatures that would kill 90% of the buds (Murray, 

2011) in the calculation of the frost index.  Because the historical data in New York State do not 

show any cases of temperatures falling below the critical points, we do not consider this type of 

weather insurance product in New York.  Our rainfall indices are generated based on the 

information that describes the typical harvest windows in late June and early July in both states 

(NASS, 2006).  

In our analysis we set the critical precipitation threshold in the rain index, R
r
C , to one 

inch; the maximum observed level for this index was 2.2 for Michigan and 3.74 for New York. 

We set the strike level in the cumulative rainfall index, 
W

r
, equal to the mean amount of 

accumulated rainfall between 1984 and 2013.  According to the best-fit distribution of historical 

weather patterns, we use an exponential distribution to characterize all weather-related indices.  

The per unit payouts for each weather index in each state are set by assuming that, in the worst 

year, indemnities received by the growers will not exceed 25% of the highest observed level of 

crop revenue.  A series of iterated simulations are then used to determine the prices and the 

indemnities for the various weather insurance products (Musshoff et al., 2011; Turvey et al., 

2006). 

Results 

We employ Monte Carlo simulation techniques to generate the annual net per acre return over a 

20-year period from adopting various risk management strategies for sweet cherry production in 
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Michigan and New York.  We consider the effects for a status quo scenario (no risk management 

strategy) plus four risk management strategies in Michigan, and under the status quo scenario 

plus three risk management strategies in New York (as weather insurance related to frost is not 

relevant in New York State).  Using an iterative procedure we calculate the net present value per 

acre for each system at a discount rate of 8% (Song et al., 2011).  We also consider other 

discount rates within a reasonable range and find that it does not change the general thrust of the 

results we present below.  Table 2 shows the key parameters and distribution assumptions for 

prices and yields (in Michigan and New York) used in the simulation.   

A summary of the results for Michigan is presented in Table 3 and a summary of the 

results for New York is presented in Table 4. The information in the tables summarizes the 

distribution of net returns to each risk management strategy. We show six levels of revenue 

premiums (ranging between 25% and 150%) for the fruit produced in the high tunnel system; the 

premiums are based on the observed revenue premiums for cherries produced in both open field 

and under high tunnels in field experiments in the two regions. We include six levels of coverage 

for crop insurance from 50% to 75%, and six subsidy levels for weather insurance from 0 to 

50%.  

The results in Table 3 show that, in Michigan, the high tunnel system yields the highest 

expected returns across all the risk management strategies when we assume a high revenue 

premium for the marketed fruit (at or above 150%). The expected returns to the crop insurance 

and weather insurance products are greater than the status quo across all the coverage and 

subsidy levels. The crop insurance strategy provides a relatively high level of expected returns 

that increase with the coverage level and a relatively low coefficient of variation that remains 

stable across coverage levels. The coefficient of variation results for the weather insurance 
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products decrease with the subsidy level, indicating that weather insurance would be preferred 

only when subsidized and as subsidies to the premium increase. Harvest rain insurance generates 

higher returns compared to crop insurance and compared to high tunnels if we assume low 

revenue premiums (less than 125%).  At the 5th percentile of the net returns distribution, the 

results show that the crop insurance is preferred to all other risk management strategies and 

adoption of high tunnels is the riskiest strategy regardless of the revenue premium.   At the 95th 

percentile, the results show that all the strategies generate higher expected returns than the status 

quo, and that the greatest return occurs with the adoption of the high tunnel system (for all 

revenue premium levels).   

Table 4 shows that in New York State the expected net returns per acre with high tunnels 

(with a revenue premium at or above 125%) are the highest compared to all other strategies.  

With either crop insurance across the various coverage levels or with weather insurance (harvest 

rain insurance) across the various subsidy levels, we see higher net returns than with the status 

quo scenario.  Similar to the results in Michigan, we also see that the crop insurance strategy 

does not always outperform the weather insurance strategy.  Crop insurance leads to higher net 

returns compared to weather insurance only under the highest coverage level (at 75% coverage). 

Weather insurance starts to outperform crop insurance with coverage below 60% and when 

subsidies to premiums exceed 30%. The coefficient of variation is the highest for the high tunnel 

systems that assume higher revenue premiums.  The coefficient of variation is relatively stable 

(between 2 and 3) among the status quo, crop insurance, and weather insurance scenarios.  At the 

5th percentile, crop insurance would be the preferred strategy (the option with the smallest 

negative returns), followed by the status quo and weather insurance; at the 5th percentile, the least 

preferred strategy is high tunnels. At the 95th percentile, the weather insurance strategy generates 
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higher net returns than the crop insurance strategy; however, overall the high tunnel strategy 

would generate the highest net return.    

Discussion 

Managing weather risk in the production of specialty crops in humid, cool temperature regions is 

critical for maintaining fruit quality, ensuring local supply, and generating sustainable profits for 

growers.  The key weather risks involved in growing sweet cherries in Michigan and New York 

include late-spring frosts (that reduce the quantity of buds) and excessive rain during harvest 

season (that leads to fruit cracking).  Various strategies to mitigate these risks are available and 

have been considered to some degree by industry stakeholders; these include high tunnels, crop 

insurance, and weather insurance.  The efficacy of different risk management tools varies by 

region, by producers’ attitudes toward risk, as well as by their exposure to weather events. The 

purpose of this research is to evaluate the long-term economic impacts of adopting the various 

risk management strategies for sweet cherry production in Michigan and New York.  We 

develop a framework using Monte Carlo simulation methods that will aid farm business 

managers to make better-informed decisions regarding the adoption of various contemporary risk 

management tools for specialty crops. 

We use historical yield, price, and weather data to simulate the expected net returns under 

different risk management scenarios. Our findings show that the adoption of high tunnels is the 

preferred strategy if a relatively large revenue multiplier is assumed.5 All of the risk management 

options outperform the status quo system in both Michigan and New York. Overall, the results 

indicate that a higher revenue premium would be needed in Michigan (relative to New York) in 

order for the high tunnel system to dominate the insurance-based strategies.   
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This research adds to the growing body of work that examines risk management issues 

for specialty crops by focusing carefully on the tools that can be applied to perennial fruit crops 

in the Northeast and Great Lakes region of the United States.  We also contribute to the 

development of a modeling framework that could be used to study the economics of alternative 

risk management tools for a range of specialty crops facing substantial risks related to spring and 

summer weather events. Although we observe an increase in the number of subsidized crop 

insurance products available for specialty crop growers, it is not clear that such programs are the 

optimal strategy for managing risk by all fruit and vegetable producers in the Northeast and in 

the Great Lakes region.  Our findings suggest that more consideration should be given to other 

risk management tools including the high tunnel initiative as part of the EQIP and the pilot 

weather-indexed based insurance programs for specialty crops as proposed in the Agricultural 

Act of 2014. 
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Endnotes 
 
1 In 2012, more than 90% of the sweet cherries, tart cherries, peaches, blackberries and 
strawberries in New York were produced on farms that are less than 25 acres. In Michigan, more 
than 80% of the sweet cherries, grapes, peaches and strawberries are produced on farms that 
were less than 25 acres (USDA, 2014b).  
 
2 The most ideal dataset for yield is at the county- or the farm-level, however, these data are not 
available for sweet cherries and we use state-level yield data for the simulation analysis. The 
bearing acreage is only available for total sweet cherry production, therefore the yield per acre is 
used as a proxy for fresh sweet cherries. Since the price in New York is not disclosed for sweet 
cherries in fresh utilization, we assume, based on anecdotal evidence from growers, that 90% of 
sweet cherry production goes to the fresh market.  
 
3 The high tunnel field data and phenological stage estimates for sweet cherries in New York and 
Michigan were collected from research trials at the New York State Experiment Station and 
Michigan State University; detailed information is available upon request.   
 
4 Using state-level yield data may lead to basis risk that would undermine the accuracy in pricing 
weather insurance and in empirically identifying the weather-yield relationship to determine the 
indemnities incurred from specific weather events.  Basis risks here refer to both local basis risk 
and geographical basis risk. Choosing the counties that are the most representative growing 
regions for sweet cherries in Michigan and New York could reduce the geographical basis risk, 
however, it is difficult to remove the local basis risk where there exists a stochastic relationship 
between the specified weather indices and yield variation.   
 
5 Widespread adoption of high tunnels could increase the availability of early season fruit, and 
this in turn could reduce the capacity for the system to generate substantial revenue premiums for 
all producers.  Here we assume that any adoption of high tunnels has no such effect and would 
not have a dampening effect on the potential price premiums.  
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Source: NCDC (2014); Murray (2011); NASS (2006) 

Note: Degree-days is the sum of the difference in degrees between the critical temperature killing 90% of the buds during the growth stage in late 
spring and the observed temperature. Precipitation-days is the sum of the difference in precipitation between 1 inch and the observed rainfall.   
 

Figure 1. Spring frost and harvest rain events facing sweet cherry growers in Michigan and New York, 1984-2013 
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Table 1. Federal crop insurance for perennial fruit crops: Participation rates and liabilities in 2014 
Participation rate: selected states and national level 

FCIP RMA acres Liabilities NASS acres California Washington Oregon Florida Michigan New York U.S.
Apples APH  248,643  1,089,063,482  327,380 0.37 0.89 0.52 0.78 0.81 0.76
apricot APH  6,251  14,327,516  10,840 0.57 0.69 0.58
avocado APH  38,209  84,425,927  59,600 0.69 0.30 0.64
banana APH  409  1,486,924  900 0.45
blueberries APH  65,885  176,740,045  82,630 0.76 0.49 0.28 0.60 0.67 N/A 0.80
boysenberries  500 N/A N/A
cherries ARH  89,248  465,331,157  127,950 0.88 0.89 0.40 0.53 0.24 0.70
cranberries APH  32,101  99,912,594  40,500 0.34 0.40 0.79
dates  8,200 N/A
figs APH  4,076  5,820,584  7,200 0.57 0.57
peach APH  71,813  166,306,198  102,750 0.81 0.46 0.74 0.32 0.70
nectarines APH  16,629  34,480,839  22,600 0.33 0.54 0.74
grapes APH  604,927  1,489,814,925  1,049,600 0.57 0.80 0.32 0.73 0.56 0.58
table grapes APH  81,321  285,944,613  110,000 0.74 0.74
raisins DOL 191891457 200,000
guavas  100 N/A
kiwifruit  3,900 N/A N/A
olives APH  25,336  28,511,163  40,000 0.63 0.63
papaya APH  57  241,573  1,300 0.04
pears APH  33,342  97,450,589  49,300 0.75 0.70 0.69 N/A 0.05 0.68
pecans PRV  157,723  237,339,887  N/A 
plums APH  14,272  22,970,621  20,500 0.74 0.54 0.45 N/A 0.70
prunes APH  45,798  78,590,431  48,000 0.95 0.95
raspberries  18,050 N/A N/A N/A N/A
strawberry ARH  26  325,080  61,310 0.001 N/A N/A N/A N/A N/A 0.0004

citrus 
APH/DOL

/ARH  669,444  1,117,368,802  782,300 0.85 0.87 0.86
walnut APH  148,493  349,109,949  290,000 0.51 0.51
hazelnut  30,000 N/A N/A
almond APH  720,494  2,187,339,139  860,000 0.84 0.84
pistachio APH  92,172  295,237,074  215,000 0.42 0.43
macadamia nuts APH  11,934  18,957,463  160,000 0.07
Total  3,178,603  8,538,988,032  4,730,410 0.62 0.80 0.28 0.84 0.66 0.64 0.72
 
Source: Aggregate data from RMA (2014) and NASS (2014, 2015)  
Note: An empty cell indicates that the state does produce (or produces very little) of the crop; N/A indicates that the state does produce the crop but that crop 
insurance is not currently available.    
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Table 2. Baseline parameters used in the Monte Carlo simulation analysis 
 

Simulation 
parameters 

Original data Brownian motion process     

Mean 
Standard
deviation

Initial Value 
(2013) Drift Volatility Correlation 

Cost-revenue 
ratio

Michigan price 2300 584.94 2290 0.033 0.029 
-0.43 

Lognormal yield 2.97 0.96 3.47 -0.01 0.737 
revenue 7946 -0.245 0.725 

      
New York price 2210 768.86 3370 0.054 0.185 

-0.51 
Triangle yield 1.52 0.51 1.49 -0.01 0.43 

revenue 5587 -0.068 0.374 
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Table 3. Summary statistics for the NPV results in Michigan ($/acre) 
 

Expected 
 value 

Distribution percentile 

System CV Median Skewness 5th Positive 95th

Status quo 4,956 8 2,778 20 -16,148 30th 516 27,738

          

High tunnel 
Revenue 25% -44,771 -6 -53,280 8 -166,497 85th 3,245 97,560
Premium 50% -32,808 -7 -48,449 -11 -162,003 85th 19,425 139,962

75% -17,233 -26 -43,477 45 -156,011 80th 9,956 170,809

100% -9,270 -34 -38,530 11 -147,693 75th 5,154 210,041

125% 5,368 71 -32,818 19 -145,986 70th 2,300 251,254

150% 18,935 31 -28,766 63 -140,795 70th 11,511 284,341

Crop Insurance     

Coverage level 75% 11,435 5 6,134 30 -10,567 20th 937 43,378

70% 11,088 5 6,216 29 -10,647 20th 1,152 41,765

65% 10,309 6 5,819 28 -11,256 20th 838 39,654

60% 9,667 6 5,540 28 -11,629 20th 642 38,180

55% 9,190 6 5,398 27 -11,909 20th 527 36,617

50% 8,639 6 5,169 26 -12,440 20th 368 35,216
Frost Insurance (Degree days) 

Subsidy 0% 5,688 12 257 31 -15,998 50th 257 33,589

 10% 6,203 11 772 31 -15,483 45th 10 34,104

20% 6,718 10 1,287 31 -14,968 45th 525 34,619

30% 7,233 9 1,802 31 -14,453 40th 369 35,133

40% 7,748 9 2,316 31 -13,938 35th 188 35,648

50% 8,262 8 2,831 31 -13,424 30th 31 36,163
Harvest rain insurance (Precipitation days) 

Subsidy 0% 5,951 12 -723 29 -16,355 55th 162 36,597

10% 6,667 11 -7 29 -15,639 55th 878 37,313

20% 7,383 10 709 29 -14,923 50th 709 38,029

30% 8,099 9 1,425 29 -14,207 45th 586 38,745

40% 8,815 8 2,142 29 -13,491 40th 559 39,461

50% 9,531 8 2,858 29 -12,775 35th 562 40,177
Harvest rain insurance (Cumulative rainfall) 

Subsidy 0% 5,789 13 -812 29 -16,686 55th 37 35,917

10% 6,520 11 -81 29 -15,956 55th 767 36,647

20% 7,250 10 649 29 -15,226 50th 649 37,377

30% 7,980 9 1,379 29 -14,495 45th 543 38,107

40% 8,710 8 2,109 29 -13,765 40th 556 38,837

50% 9,440 8 2,840 29 -13,035 35th 511 39,568
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Table 4. Summary statistics for the NPV results in New York ($/acre) 
 

Expected 
value 

Distribution percentile 
System CV Median Skewness 5th Positive 95th

Status quo 5,775 2 3,720 8 -3,487 20th 415 20,707
          
High tunnel 
Revenue  25% -39,266 -3 -49,168 6 -152,820 85th 15,231 98,106
Premium 50% -23,926 -6 -39,917 20 -141,579 75th 404 132,562

75% -12,501 -10 -31,263 4 -133,557 70th 2,537 165,987
100% 1,085 130 -21,376 5 -126,591 65th 3,778 193,095
125% 16,846 10 -12,776 6 -122,315 60th 4,647 245,422
150% 28,941 6 -3,908 6 -113,837 55th 5,183 267,428

Crop insurance 
Coverage level 75% 7,616 2 4,962 8 -2,214 15th 594 25,224

70% 7,353 2 4,817 8 -2,308 15th 511 24,154
65% 7,004 2 4,595 8 -2,512 15th 357 23,256
60% 6,781 2 4,487 8 -2,655 15th 312 22,580
55% 6,505 2 4,277 8 -2,884 15th 165 21,917
50% 6,307 2 4,142 8 -3,003 15th 49 21,429

Harvest rain insurance (Precipitation days) 
Subsidy 0% 5,845 3 2,382 10 -4,571 35th 497 25,622

10% 6,164 3 2,700 10 -4,252 30th 224 25,941
20% 6,482 2 3,019 10 -3,934 30th 543 26,259
30% 6,800 2 3,337 10 -3,615 25th 237 26,578
40% 7,119 2 3,656 10 -3,297 25th 555 26,896
50% 7,437 2 3,974 10 -2,979 20th 265 27,214

Harvest rain insurance (Cumulative rainfall) 

Subsidy 0% 5,874 3 2,372 11 -4,563 35th 514 25,806
10% 6,191 3 2,690 11 -4,245 30th 249 26,123
20% 6,508 2 3,007 11 -3,928 30th 566 26,441
30% 6,826 2 3,325 11 -3,610 25th 245 26,758
40% 7,143 2 3,642 11 -3,293 25th 562 27,075
50% 7,461 2 3,959 11 -2,976 20th 279 27,393
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