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Specification of spatial-dynamic externalities and implications for strategic

behavior in disease control

ABSTRACT

We propose a novel, distance- and density-dependent specification of externalities that captures
spatial dynamics within and between neighboring land parcels. We apply the problem to the
short- and long-distance diffusion and control of an infectious disease in two privately-owned
and ecologically-connected vineyards. Using computational experiments to generate individual
and aggregate payoffs, we show how strategic behavior affects diffusion of the disease and the
expected present value of the resulting externality. Our results suggest that ignoring the within-
parcel spatial dynamics in the model overestimates the social cost of an externality compared to
a model that focuses on inter-parcel spatial dynamics only. We find a U-shaped relationship
between manager heterogeneity and aggregate payoffs in the presence of an externality,
suggesting both positive and negative impacts of increased heterogeneity on strategic behavior
and welfare.

Keywords: Bioeconomic models; Computational methods; Disease control; Grapevine Leafroll

Disease; Noncooperative games; Spatial-dynamic externalities.

1. Introduction

The economic research on externalities in natural resource problems has increasingly paid
attention to the dynamic and spatial characteristics of the biophysical processes generating these
externalities. Such processes often cause damages thanks to their ability to cross the boundaries

of privately-owned properties. Consequently, a natural assumption is that space matters in that it
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defines exposure to risk and private incentives to manage externalities based on location with
respect to property boundaries. For instance, the spatial heterogeneity driving the generation of
externalities and the strategic choices to control them can be defined by a land parcel’s position
on the boundary or the interior of a grid (Rich, Winter-Nelson, and Brozovic 2005a, 2005b;
Albers, Fischer, and Sanchirico 2010; Epanchin-Niell and Wilen 2012, 2015; Aadland, Sims, and
Finnoff 2015). However, spatial modeling of externalities often assumes that externalities only
matter at the boundaries between private properties (i.e., where one parcel ends and another
parcel begins). We argue that spatial considerations within a land parcel may also affect how
externalities are generated and the private incentives to manage them. Recent advancements in
computational methods and processing allow researchers to investigate within-parcel spatial
dynamics to shed light on the individual incentives that might trigger the generation of
externalities.

We propose a novel, distance- and density-dependent specification of externalities that
captures spatial dynamics within and between neighboring land parcels. We apply the problem to
the diffusion and control of an infectious disease in two privately-owned and ecologically-
connected vineyards. In our model, two vineyard managers maximize the expected net present
values of their vineyards by choosing a disease control strategy from a discrete set of strategies.
We use computational experiments to generate payoffs and show how strategic behavior affects
diffusion of the disease and the expected present value of the resulting externality. Our results
suggest that an externality model that focuses on inter-parcel spatial dynamics overestimates the
social cost of an externality compared to a model that accounts for within-parcel spatial
dynamics as well. We take advantage of our model’s specification to explore the relationship

between manager heterogeneity and welfare in the presence of an externality. We find that the



relationship is U-shaped, suggesting both positive and negative impacts of increased

heterogeneity on strategic behavior and aggregate payoffs.

2. Contributions to the literature

There is a considerable amount of recent work on spatial dynamic externalities using different
theories and models. Most studies use metapopulation models to allow for spatial interaction
between adjacent ‘grids’ representing habitat patches, forest stands, or land parcels, without
considering the within-grid population spatial dynamics (Brown and Roughgarden, 1997;
Swallow and Wear 1993; Konoshima et al. 2009; Bhat and Huffaker 2007; Horan et al. 2005;
Sanchirico and Wilen 1999). Other studies employ grid-based models, and also ignore within-
grid spatial dynamics (Rich, Winter-Nelson, and Brozovic, 2005a, 2005b; Epanchin-Niell and
Wilen, 2012, 2015; Aadland, Sims, and Finnof, 2015). Throughout this literature, one trend has
involved representing externality problems on ever larger grids by progressing from two-patch
models to NxN grid models. However, throughout this progression, spatial exposure risk remains
affected by border considerations only, and not by within-parcel spatial heterogeneity and
within-parcel spatially heterogeneous control. These models exclude situations where bio-
economic spatial dynamics contribute to the tradeoffs a manager faces within his parcel, and
consequently determine his private strategic behavior and the ensuing generation of externalities
over the entire landscape. For example, strategic disease control choices in Rich, Winter-Nelson,
and Brozovic (2005a, 2005b) are conditioned by a manager’s position on a grid’s border or a
grid’s interior but not on other measures of spatial disease dynamics within the grid. In
Epanchin-Niell and Wilen (2012, 2015), the value of containing a biological invasion differs

across parcels based on their location in space only, which is defined in relation to the landscape



boundaries. Similarly, in Aadland, Sims, and Finnoff (2015)’s forest grid, the spatial
heterogeneity driving the generation of pest externalities is defined by a cell’s position on either
the boundary or the interior of the grid. Likewise, exposure risk to a biological invasion in
Albers, Fischer, and Sanchirico (2010) depends on whether a region is located inland or in a port.

While these binary considerations of space are adequate to study essential aspects of the
private and collective management of externalities, they do not allow for understanding the
private behavior, within a parcel, that might initially generate the externality or hinder its
collective management. In the models cited above, managers do not face spatial-dynamic
temporal trade-offs in effort allocation within their parcels. Examining the impact of both within-
parcel and inter-parcel spatial dynamics on private behavior and the generation of externalities
requires new distance- and density-dependent specifications that build on the features of
metapopulation models, cellular automata, and spatial games. Such specifications can help test
whether within-parcel spatial dynamics, with measures of spatial heterogeneity that go beyond
border considerations, are also important for the production of externalities and for the incentives
to manage them.

The first contribution of this paper is to propose a novel, distance- and density-dependent
specification of externalities that includes short and long-distance dispersal mechanisms capable
of modeling a manager’s risk spatial endogeneity beyond the adjacent parcel. This specification
is derived by explicitly modeling the biophysical processes generating the spatial dynamics using
an approach that combines metapopulation and cellular automata models. Definitions of spatial
connectivity in some of the models in the literature allow managers to take into account the
implications of their actions on the adjacent land, thereby allowing for spatial-endogenous risk

(Aadland et al. 2015; Epanchin-Niell and Wilen 2015; Konoshima et al. 2008). However, due to



the focus on inter-parcel spatial dynamics and concerns over model tractability and
computational complexity, in these models, a manager’s endogeneity of spatial risk is limited to
adjacent cells and cannot span the entire landscape. That is, in such models, a manager ignores
how current management affects payoffs through multi-cell dispersal (Aadland, Sims, and
Finnoff, 2015), or views his site’s state as exogenous and solves for temporally and spatially
myopic optimal strategies (Epanchin-Niell and Wilen 2015). Aadland, Sims, and Finnoff (2015)
characterize this modeling challenge as one of accurately representing the scale mismatch
between management and dispersal. Representing this scale mismatch can be done by (1)
combining metapopulation and cellular automata models; and (2) adding a power-law, long-
distance dispersal (LDD) (Marco, Montemurro, and Cannas 2011) to the more common short-
distance dispersal (SDD) mechanism representing the biophysical process in question. Such
specification of the distance- and density-dependent externality with SDD and LDD, allows
endogenizing spatial risk over the entire landscape. Managers can then take into account how
their individual, within-grid control decisions might affect the generation of an externality and
the resulting damages at the landscape level.

The second contribution is to examine the relationship among manager heterogeneity,
strategic behavior, and aggregate payoffs. Previous literature has addressed some combination of
these three elements. Kovacs et al. (2014) introduce heterogeneity in municipal jurisdiction
access to the resource at risk, resource value, budgets, and costs. Albers, Fisher, and Sanchirico
(2010) compare spatially heterogeneous and spatially uniform policies of invasive species
control. Fenichel, Richards, and Shanafelt (2014) consider heterogeneity in managers’ property
values. Their model predicts that managers of more valuable properties will be more aggressive

in their pest control. They note that control in their case is a strategic complement and is



therefore not likely to be characterized by free-riding. Bhat and Huffaker (2007) consider
strategic interaction among managers that is driven by the possibility of free riding, breach, and
the potential need for cooperative agreement renegotiation over time. Free-riding is inherent to
their population dynamics where nuisance wildlife moves from the unmanaged to the managed
land. Rich, Winter-Nelson, and Brozovic (2005a) consider two types of agents in their models,
High and Low, which are heterogeneous in terms of production technology endowments and
whose strategic choices are conditioned by their position in space. They find that heterogeneity
among neighboring agents accelerates the progression to the less socially desirable outcome (low
disease control effort), in contrast to more socially-desirable outcomes that are achieved when
agents are homogenous. In this paper, we consider heterogeneity in resource value and its effect
on strategic behavior and welfare. We use mean-preserving expansions and contractions in the
natural resource value to explore a wider range of heterogeneity, as opposed to two heterogeneity
levels. We re-solve the problem for seven values of heterogeneity. For each level of
heterogeneity, we study the noncooperative strategic behavior of managers under simultaneous
and sequential move settings. We also consider how cooperation might affect the relationship
between heterogeneity and welfare.

The remainder of the paper is organized as follows. Section 3 introduces the spatial structure,
the detailed biophysical process, and the economic model depicting the problem facing each
vineyard manager. In addition, it specifies the cell-level diffusion model as a Markov Chain
process generating the externality within and between two grids (vineyard plots) constituting a
network (the landscape). Section 4 describes the computational experiments, the spatial and
nonspatial control strategies available to each manager, and the solution frameworks and

concepts. Section 5 presents the solutions to social planner, cooperative, and noncooperative



settings and highlights the welfare implications of the proposed externality specification. This
section also presents dynamic sensitivity analyses and a discussion of the effect of manager
heterogeneity on strategic behavior and total payoffs. Section 6 presents conclusions and
highlights the value of distance- and density-dependent specifications when modeling the

generation and management of spatial-dynamic externalities.

3. A model of externality diffusion and control

Our model considers two managers whose production processes are spatially connected on a
network, composed of the combination of two independently managed sub-networks, or grids. In
particular, we consider the case of two vineyard managers whose vines are linked through the
short- and long-distance diffusion of the grapevine leafroll disease. This is a vector-transmitted
viral disease that reduces the yield and quality of grapes and threatens vineyards worldwide. For
notation purposes, vineyard H produces high-valued wine grapes while vineyard L produces low-
valued wine grapes. Thus the manager of vineyard L has lower private incentives to control the
disease. Each manager’s action to control the disease determines his payoffs and the payoffs of
the other manager because they are connected through a biophysical network; the actions of each
of them have spatial and dynamic consequences for the neighboring vineyard.

Grid Gh represents vineyard H and is the set of 1*J cells denoted by their row and column
position (i, j). Each cell (i, j) represents a grapevine. Similarly, grid G, represents vineyard L and
consists of M*N cells denoted by their row and column position (m, n). Each grapevine is
modeled as a cellular automaton that updates its age and infection states in discrete time steps (t)
based on the infection state of its immediate neighbors and on the long-distance dispersal from

the neighboring vineyard. Each vine’s infection state transitions are governed by a Markov Chain



model. An externality emerges when the privately optimal management strategy in one vineyard
causes the disease to spread to the neighboring vineyard. We first describe the managers’ private
maximization problem; and subsequently we explore a Nash bargaining game.

3.1. Economic model
Each manager’s objective is to maximize the expected net present value (ENPV) of his vineyard
by choosing a disease control strategy from a discrete set of strategies, W, available to manage
the disease.! According to each strategy, the manager decides, for each vine (i, j) in each period t

of T discrete periods of time, whether or not to remove and replant (”wi,,-,t = 1 if removal and
replanting takes place, 0 otherwise), test for the virus (vWi,j,t = 1 if virus testing takes place, 0
otherwise), or remove without replanting (Zwl-,j,t = 1, if removal without replanting take place, 0
otherwise). The manager’s disease control decisions are based on a vine’s age state a; ; . and its
infection state s; ; ;, or equivalently, its composite age-infection state w; ; .. In the case of within-
grid (i.e., in the same vineyard), spatial disease control strategies, the manager’s decisions are
also based on the state of vines in neighboring cells.

The optimal strategy W* is the sequence of cell-level control variables {uwi,j,t s Vg o ZWi,j,t}
that allocates disease control effort over space and time so as to yield the maximum ENPV. Let E
be the expectation operator over the random cell-level (i.e., vine), revenue Twgje o and p' the

discount factor, where t € {0, 1, 2,..., 600 months}. The objective of a vineyard manager is to

Tmax
* _ * —_
rWi,j,t (1 Z 0 uWi,j,t—r) (1 ZWi,j,t)

iy 1)
Tmax
- Zt_o (uWi.f.r—r * C“i.i) - (vwi.f.t * C"i.f) - (ZWi.i.r * CZWi,j,t) TG

m]ng Yter Pt Xiijrec

! The problems faced by the two managers differ only in their initial conditions and bioeconomic
parameters. We therefore describe the model using the notation of one of them only, namely Gn.
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subject to
E(sijee1) = PTsije, 2)
where Eq. (2) is the cell-level infection state transition equation and PT is the transpose of the
infection state transition matrix P.
The objective function accounts for the total amount, the timing and the location of control
effort. If a vineyard manager decides to remove and replant a vine in cell (i, j) in period t - 7max,

then U, o s is equal to 1 and the revenue (first expression in Eq. 1) is multiplied by zero for

periodst—z+1,t—7+2,..., t — 7 + max, Where zmax IS the time it takes from planting to fruit

bearing . If a vineyard manager decides to remove a vine without replanting (zwi,].,t = 1), the

revenue from the cell corresponding to this vine equals zero from t to T. The second expression

in Eq. (1) has the cost of removal-and-replanting (Cui,j ), the cost of testing (Cvi,,-)’ and the cost of
removal-without-replanting (CZi,j)’ all pre-multiplied by their corresponding binary decision

variables. The expression also includes vine-level operating costs (c; ;), which are grid-level
operating costs divided by the number of cells.

Per-vine revenue, Twg e depends on the infection and age states of each cell. Revenue is zero
if the vine’s age a; ;. is below 7,,,4, (EQ. 3). Beyond that age, T e depends on the vine’s
infection state s; ; .. The disease causes a yield reduction of y, St compared to the yield of a
healthy vine (ysi,j,tz Heaithy) With different levels of yield reduction depending on the infection

state.? In addition, grapes from disease-affected vines are subject to a price penalty p Sut (Eq. 4)

2 Yield from a vine in the Healthy state (YSi,j,t=Healthy) is obtained by dividing per-acre yield in
plot H over the planting density.

11



when compared to the price paid for grapes harvested from healthy vines (psi,].,t= Healthy)- The
same description applies to cells (m, n) in grid (vineyard) G; .

rwi_j_t =0 if Qe < Tmax (3)

= rSi']"t (ySi'j'tzH'yS,_J’t' pSi'j'tzH'pS,_J't) lf ai,j,t 2 Tmax

Tsije = Y(sije=Healthy) * (1 - }757;) * D(syje=Healthy) * (1 = DPs, ) (4)
3.2. Model of spatial-dynamic externality diffusion

The disease can spread within and across vineyards in at least three ways (Charles et al. 2009;
Grasswitz and James 2008). First, insect vectors crawling on vineyard wires and fruiting canes
(i.e., the grid columns) can cause disease transmission to within-column, neighboring vines.
Second, vineyard management activities can facilitate vector dispersal to across-column
neighboring vines, within the same vineyard. We refer to these two dispersal mechanisms as
short-distance diffusion (SDD). Disease spread between neighboring vineyards can take place
through aerial dispersal of insect vectors (Le Maguet et al. 2013). We refer to this third dispersal
mechanism as a long-distance diffusion (LDD). All external boundaries are reflecting (i.e., when
the disease reaches the boundary of a grid, it might be bounced back inside it according to Eq. 2).
The boundary between grids (i.e., the sub-networks) is only reflecting for the SDD process. In
contrast, according to the LDD process, the disease can move off one grid along the inter-grid
boundary in search of a new host. Atallah et al. (2015) analyzed the two short-distance disease
diffusion mechanisms in an isolated vineyard. Because the present model is concerned with
externalities and strategic behavior, the disease diffusion in Atallah et al. (2015) is extended by
allowing for disease diffusion both within and between two neighboring vineyards. That is, a
Healthy (H) vine in one vineyard transitions to state Exposed-undetectable (E,) with a

probability b that depends on (1) the number and location of Infective vines immediately adjacent
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to it; and (2) the distance to and number of Infective vines in the neighboring vineyard. The
distance and density-dependence of this probability captures the impact of a manager’s private
disease control actions, within a grid, on the spatial damages borne by his neighbor at the border
of and within the adjacent grid. A manager cannot distinguish between states H and Ey until the
virus population in a vine reaches detectable levels with probability c, at which point the vine
transitions to state Exposed-detectable (Eq). A manager can detect state Eq by performing a viral
vine test.

Vines transition from state Eq to state Infective-moderate (Im) with probability d, which is
largest for young vines than for their older counterparts. Once in this state, vines develop visual
symptoms and can act as a source of infection to other vines (i.e., they become infective).
Symptoms are moderate at first (Infective-moderate, In) and transition to a high-severity state
(Infective-high, In) with a probability f. The transition matrix P in Eq. (2) governs short- and

long-distance disease diffusion and symptom evolution. It can be expressed as follows:?

(1-b) b 0 0 0
0 1—c¢ c 0 0
P=| o0 0 @(1-4d) d 0 (5)
0 0 0 a-75n f
0 0 0 0 1
In Eq. (5), b can be expressed as:
b= Pr(si,]-,tﬂ =E, |si,j,t = Healthy) (6)

3P reads from row (states in period t) to column (states in period t+1).
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1—e7nne ifsy, = (NI,NI,NI,NI)
1 — e~ B+yLuD ifSNi,j,t = (NI,NI,I,NI)
1 — e~ B+rLud if Sny;e = (NLNLNILI)
1—e~@Find if sy = (NI,NI1I)
1—e~@ndifsy = (I,NI,NI,NI)
1 — e~(a+B+yLue) if Snye = (LNLI NI
1 — e—(a+B+yLur) if sy,;, = (,NL,NLI)
1 — e—(@+2B+yLue) if sy, ;, = (LNLII)
1—e~@nd ifsy = (NLI,NI,NI)
1 — e—(a+B+yLur) if sy, ;, = (NI I,I,NI)
1 — e~(@+B+yLme) if Snie = (NLILNLI)
1 — e~ (a+2B+yLue) ifSNi,j,t = (NLI,1,I)
1— e @avind if sy = (1,1, NI,NI)
1 — e~ (2a+B+yLme) ifSNi,j,t = (I,1,I,NI)
1 — e—(2a+B+yLur) ifsy,;, = (I, NI,I)
1 — e—(a+2B+vLne) if sy, ;. = (ILL11)

In Eq. (6), SNi,,-,tiS the infectivity state of a vine’s neighborhood, which is composed of the

adjacent neighbors to the north, south, east, and west of vine (i, j). For example, SNy je= (L,

NI) is the state of a neighborhood composed of two Infective (I) north and south neighbors, one

Infective east neighbor and one Noninfective (NI) west neighbor.

Short-distance diffusion. Parameters o and £ are the within-column (north-south) and across-

column (east-west) transmission rates with a > 8> 0.# The period a vine stays in the Healthy

state before transitioning to the Exposed-undetectable state is an exponentially-distributed

random variable, with rate « for within-column disease transmission and rate S for across-

column disease transmission (Atallah et al. 2015). When two or more transmission types are

% The disease has been shown to spread preferentially along grid columns (Le Maguet et al.

2013).
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realized (e.g., one within- and two across-column events), the disease transmission is determined
by the shortest of the waiting times (Cox 1959).

Long-distance diffusion. Long-distance, vector-mediated disease diffusion from low-valued
vineyard G to its high-valued counterpart G occurs with rate y; .. Here, y, 4 . is a power-law
dispersal parameter specified by the following spatial-dynamic, distance- and density-dependent

diffusion function:

— N SM((mn)| Spne = Infective)sn
Yiae =1 Y o« ZﬁM*(Nin+1) , Yy >0 (7)
Similarly, long-distance dispersal from G to G is given by:

SIRI( (@) s1je= Infective)«j
1 —j+1)

YuLe = (N —n)~7 « 5 vy>0 (7b)

In Eq. (7a), for any vine (i, j), . u ¢ Is inversely proportional to the distance from the shared
boundary (i.e., column j for G and column N-n for G.). We choose a power-law specification
because it allows the disease long-distance diffusion to have new infection foci emerging beyond
the disease invading front, which is consistent with modeling the wind dispersal of insects
(Gibson 1997; Marco, Montemurro, and Cannas 2011). Parameter y, 4 . is also proportional to
the total number of Infective vines in G, weighted by their column position n (numerator in Eq.
7a). Weighting each Infective vine by its column position n allows vines closer to the bordering
column to contribute more to the externality than vines situated farther from the boundary (i.e.,
cell-level distance dependence). The denominator in Eq. (7a) allows the multiplier of the power-
law expression to vary between 0 and 1 as the number of Infective vines in G varies between 0
and M*N (i.e., density dependence). In the baseline case, we initialize the disease in GLand the
disease spreads to G according to Eq. (7a). Once vines in vineyard Gx become Infective, they

can act as a source of infection for Healthy vines in vineyard G according to Eq. (7b), thus
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making the externality bidirectional.> Note that this power-law specification allows local
management and dispersal to take place at different spatial scales, a modeling challenge
identified by recent bioeconomic studies (Aadland, Sims, and Finnoff 2015). This specification
of dispersal is novel in that it allows private actions of one manager in one management unit (i.e.,
the cell) to have repercussions not only on neighboring units but also on non-neighboring units
that are managed by a different manager. Combined with short-distance dispersal, this distance
and density dependent specification of long-distance dispersal allows testing whether within-
parcel spatial considerations are also important for generating externalities. This is in contrast to
extant resource and environmental economics literature, which assumes that spatial
considerations only matter in that they define the spatial limit to private actions, and that
managers ignore how their management in one cell affects payoffs through multi-cell dispersal.
For descriptions of probabilities c, d, and f, we refer the reader to Atallah et al. (2015). Short-
and long-distance disease diffusion parameters are presented in Table 1a and Figure 1.

[Insert Table 1a here]

[Figure 1]

4. Computational experiments and solution frameworks
We conducted Monte Carlo experiments, each consisting of a set of 1,000 simulations.
Experiments differ based on the strategy pairs employed in both vineyards to control the disease.
Outcome realizations for a given run within an experiment differ due to random location of

initially infected vines in the grid where the disease is initialized (G, for the baseline case), and

% In applications where the externality is asymmetric (e.g., prevailing winds), y can be given
different values in Eq. 7a and Eq. 7b. Setting y.nt. and yn,Lt to zero collapses the disease
diffusion model to a case with no externality (Atallah et al. 2015).
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stochastic disease diffusion within and between vineyards. Data collected over simulation runs
are the NPV realizations under each strategy pair.

4.1. Model initialization
Grapevines are initialized as Healthy and of age equal to zero in both vineyards Gn and G (high-
and low-valued vineyard, respectively). At t=1, seven percent of the grapevines in G are chosen
at random from U (0, M*N) to transition from state Healthy to state Exposed-undetectable.®
Subsequently, the disease spreads to Healthy vines within G according to the Markov transition
process given by Eq. (2) and Eq. (5). The Infective vines in G act as a primary source of long-
distance disease diffusion to the Healthy vines in Gn. The disease spreads from G to Gx
according to the distance- and density-dependent diffusion function y, ;. (Eq. 7a).
Subsequently, Infective vines in Gy act as a source of reinfection in G according to the distance-
and density-dependent diffusion function y ;. (Eq. 7b) and so on. Economic parameters are
presented in Table 1b.

[Insert Table 1b here]

4.2. Nonspatial, spatial, and fire-break strategies
Nonspatial strategies (strategies 1 to 8, Table 2) consist of removing and replacing vines based
on symptoms alone (Infective-moderate; Infective-high) or based on symptoms and age of
individual vines (Young: 0-5 years; Mature: 6-19 years; Old: 20 years and above).’ In the subset

of spatial strategies (strategies 9 to 18, Table 2), the manager removes and replants symptomatic

® This initialization reflects findings indicating that primary infection sources are randomly
spatially distributed (Cabaleiro et al. 2008). The disease is initialized in G assuming a higher-
valued vineyard is not likely to purchase infected plant material. In the sensitivity analysis
sections, we consider the opposite case.

" A manager might decide to strategically remove younger vines, which exhibit higher risk of
transitioning from the Exposed to the Infective state than their older counterparts (probability d in
Eq. 5).
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vines (Infective-moderate) and tests their neighbors. Neighboring vines are removed and
replaced if they test positive. In that sense, the manager's spatial disease control decisions are
based on a vine’s own state and the state of vines in neighboring cells. For example, according to
strategy ImNS (table 2), vines in cells (i-1, j) and (i+1; j) would be removed and replaced based
on the state of vine in cell (i,J); according to strategy InNSEW, vines in cells (i-1, j), (i+1; J), (i, J-
1) and (i, j+1) would be removed and replaced based on the state of vine in cell (i,j), and
similarly for all within-grid, spatial strategies.

The third subset of strategies includes fire-break strategies that consist of removing (without
replanting) vines in the border columns of a vineyard in order to create “fire-breaks’ or ‘buffer
zones’ that would reduce long-distance disease diffusion between vineyards (Strategy 19 to
Strategy 57 in Table 2). Fire-break strategies are intended to decrease the effect of spillovers
between vineyards and can give a manager control over their disease risk. All strategies are
available to both managers.

[Insert Table 2 here]
4.3. Solution frameworks and game theoretic solution concepts
We employ the objective function (Eq. 1) to rank the vineyard ENPVs under the alternative
disease control strategy pairs. We first solve the social planner problem and cooperative solution
(C). The solution to these problems is relevant for situations where one vineyard management
firm manages contiguous vineyards that produce wine grapes of different qualities. Second, we
solve for the noncooperative solution (NC). Third, whenever the cooperative surplus is strictly

positive, we find the cooperative solution that satisfies the Nash bargaining framework
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Social planner. The social planner chooses the pair of disease management strategies
(Wy , W,) that maximizes the total payoff (ENPVT), the sum of the expected net present values

of GL (ENPVL) and GH (ENPVR). The following maximization problem is solved:

onax - ENPVy + ENPV,, (8a)
subject to:

E(sijer1) = PT syt (8b)
and

E(Smnt+1) = P Smne (8c)

where Eqg. (8b) and Eqg. (8c) are the cell-level infection state transition equations in Gnand Gy,
respectively. Note that the managers do not face a common or shared state variable: each
manager contends with the stochastic evolution of the disease in his vineyard (Eg. 8b and 8c)
while not knowing the status of the disease in the neighboring vineyard. They only observe the
control strategy being adopted by the neighboring manager (expect for the simultaneous-move
case).

Noncooperative disease control. We use the Nash equilibrium solution concept to solve a
simultaneous-move game where the managers do not cooperate and do not share any information
about their strategies. We use the subgame perfect Nash equilibrium concept to solve a
sequential game with asymmetry of information where one player moves first and the other
player makes his choice accordingly (Tirole, 1988). In both simultaneous and sequential move
cases, we consider situations where the disease starts in G and in Gn.

Cooperative disease control: Nash bargaining game. To solve the cooperative disease control
game, we use the static axiomatic approach, specifically the Nash bargaining game (Nash 1953;

Binmore, Rubinstein, and Wolinsky 1986). The Nash bargaining game here is similar to the one
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used in Munro (1979) to solve for the payoffs in a static, cooperative game with side payments
and fixed disagreement payoffs. The relationship between the two players, as described by Nash
(1953), interpreted by Luce and Raiffa (1967, p. 138), and applied in Munro (1979) and others,
consists of the players entering in a binding agreement at the beginning of the game whereby
each receives the return they would expect without an agreement and half of the cooperative
surplus. If the two vineyards are cooperatively managed, the two managers solve the Nash
bargaining game, the solution to which is the unique pair of cooperative payoffs

(ENPV§, ENPVE) that solves the following maximization problem (Nash 1953; Munro 1979;
Sumaila 1997):

c _ NC c _ NC
{ENPVTZ},agNPVL} (ENPVy; — ENPVL®) (ENPV; — ENPV'®), 9

subject to:

ENPV¢ > ENPVNC, (10)
and subject to the disease diffusion functions in Gn (Eg. 8b) and G (Eg. 8c). The maximand in
Eqg. (9), known as the Nash product, is the product of the differences between the cooperative
and noncooperative payoffs from Gnand G, and inequality (10) is the incentive compatibility
constraint. Under the standard axioms of bargaining theory, Eq. (9) has the following unique

solution (Muthoo 1999):8
ENPV§ = ENPVJ€ +§ (ENPVE — ENPVNO) (11)
ENPVf = ENPVNC + % (ENPVE — ENPVNO) (12)

In the solution described by Eq. (11) and Eq. (12), ENPVY¢and ENPV}N¢ are the expected

noncooperative payoffs (i.e., the disagreement points) for Gy and G, respectively and

8 The axioms are individual rationality, invariance to equivalent utility representations,
symmetry, and independence of irrelevant alternatives.
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(ENPVE — ENPVNC) is the expected cooperative surplus. The expected cooperative surplus is
defined as the difference between the total expected cooperative payoff (ENPVS = ENPV§ +
ENPVYE) and the total expected noncooperative payoff (ENPVXC = ENPVYC + ENPVNC). The
expected cooperative surplus is also a measure of the Pareto-inefficiency caused by

noncooperative disease control.®

5. Externality control, heterogeneity and strategic behavior

5.1. Social planner and cooperative control

If the vineyards are managed by a single entity, or a social planner, the total payoff is highest
($122,000/acre) when the disease is managed in both vineyards under strategy ImNS, which
targets symptomatic vines and their two within-column neighbors (Table 3). If the vineyards are
individually managed and the managers agree to cooperatively control the disease, the Nash
bargaining solution consists of (InNS, ImNS) with payoffs (80, 42) after the managers equally
share the cooperative surplus according to Eq. (11) and Eq. (12) (Table 3).

[Insert Table 3 here]

5.2. Noncooperative control

In a simultaneous game, we find a unique Nash equilibrium pair of strategies that consists of
no control in either vineyard, with payoffs (60, 22) for the managers of the high, and low-valued
vineyards, respectively (Table 3; see Table Al in Appendix for the payoff matrix). In a
sequential game where the low-valued vineyard moves first, (no control, no control) is the
subgame perfect Nash equilibrium. The payoffs from the solution to the Nash bargaining

problem indicate that, if the two vineyard managers cooperate and agree to implement spatial

% Our result is a special case of the solution to the generalized (or asymmetric) Nash bargaining
game where players have the same ‘bargaining power’ (Muthoo 1999, p. 35).
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Strategy ImNS in their respective vineyards, there is a cooperative surplus of $40,000 for the two
acres. This surplus is statistically significant at the 1% level and represents a welfare (ENPVT)
gain of approximately 47% over the noncooperative outcome. These benefits to cooperation are
consistent with previous findings from studies on the cooperative management of fisheries
(Sumaila 1997) and nuisance wildlife species (Bhat and Huffaker 2007).

Interestingly, we find that the social planner solution can be achieved, without cooperation,
when the high-value manager moves first. In that case, his optimal strategy is spatial control
ImNS. Given Gx’s commitment to spatially control the disease, GL’s value of control increases
due to the strategic complement nature of disease (or pest) control with neighbor-to-neighbor
spillovers (Fenichel, Richards, and Shanafelt 2014). G_’s optimal strategy is spatial control,
ImNS, as well, with payoff $31,000/acre. The strategic complement nature of transboundary
disease control also explains why (no control, no control) is the subgame perfect Nash
equilibrium strategy in a sequential game where G, moves first as well as in a simultaneous
game.

5.3. Welfare effects of the externality specification

We measure the welfare implications of including the detailed within-parcel, spatial,
biophysical process in our specification of the externality and its control. We do so by
comparing the model’s outcomes to those obtained from management decisions using strategies
that ignore the within-parcel spatial dynamics of the biophysical process. We restrict the set of
disease control strategies to those that are nonspatial and those that consist of “fire-breaks” (1
through 8, and 10 through 57, Table 2). Including the inter-parcel, spatial strategies leads to
strategy (ImNS, ImNS), with total payoffs of $122,000. Ignoring within-parcel spatial

considerations leads to the strategy pair (no control, no control) and total payoffs of $82,000,
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thus overestimating the social cost of the externality in the social planner setting, the Nash
bargaining game, and the noncooperative sequential game where Gu moves first. 1° For the
settings where (no control, no control) is the subgame Nash perfect equilibrium strategy pairs —
the simultaneous game and the sequential game where G, moves first — welfare remains
(unsurprisingly) the same regardless of whether or not within-parcel spatial considerations are
taken into account.

5.4. Dynamic sensitivity analysis

We conduct a dynamic sensitivity analysis to examine the effect of changes in the values of
key within-parcel and across-parcel disease diffusion parameters on the externality’s welfare
impacts. These parameters are the short-distance parameter «a in Eg. 6; the long-distance
diffusion parameter y in Eq. (7a) and Eq. (7b); the vineyard size parameters I, J, M, and N in
these same equations; and disease initialization.

First, we find that reducing the value of the short-distance parameter a by half (from 4.2 to
2.1) causes aggregate welfare to increase by 52% in a noncooperative, simultaneous game or in a
noncooperative, sequential game where G. moves first and none of the managers controls the
disease. The increase in welfare ensuing from a reduction in a is more modest, 3%, in a
nooncooperative game where Gy moves first or in a Nash bargaining game where both managers
spatially control the disease (percent changes are obtained by comparing payoffs in Table 4 with
those in Table A2 of the appendix). Reduction in the value of the short-distance parameter can be
achieved by increasing the distance between grapevines within the grid’s columns and suggests
that individual, within-parcel choices about the physical configuration of the vineyard can

directly impact the welfare effects of an externality.

10 This welfare increase is for two one-acre vineyards, over 50 years.
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Second, we solve the baseline problem for larger and smaller values of the long-distance
transmission coefficienty. 1 For a larger long-distance transmission coefficient (i.e., where
disease transmission is characterized by a more rapid decline over space and the vineyards are
therefore less ecologically connected), the manager of the lower-value vineyard spatially controls
the disease, in which case the G does not need to control (Table A3-a of the appendix). The
outcome (no control, InNS) does not depend on the type of game played. If the long-distance
transmission coefficient has a smaller value than in the baseline case, none of the managers
control the disease in any of the noncooperative game solutions and the strategy pair (ImNS, Exit)
is the central planner’s solution (Table A3-b of the appendix). These results identify an upper
bound for the long-distance diffusion coefficient where the externality does not trigger any
control in the neighboring vineyard, and a lower bound where the externality is large enough to
warrant removal of the lower-valued vineyard by a central planner. Changes in the value of y can
be achieved by modifying the biophysical environment that affects the extent to which the
vineyards are ecologically connected, such as physical barriers or other pest management
practices that reduce the flow of insect vectors.

Third, we explore the effect of the relative vineyard size. Recall that in the baseline case, GH
is larger than G, the NE strategy pair is (no control, no control), and the noncooperative payoffs
are 32% lower than the cooperative or social planner payoffs, generated by the strategy pair
(ImNS, ImNS). If the relative size of the vineyards is reversed (G larger than Gu) or if both

vineyards are large, we obtain the same strategy pair solutions. The noncooperative,

1 The ratio of new infections caused by long-distance diffusion between vineyards to total new
infection events is 90% for t=12 months, and decreases to 69%, 34%, and 21% for t=100, 300,
and 600 months, respectively (results are expected values from 1,000 simulations conducted for
G, under the baseline case and a strategy of no control in both vineyards).
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simultaneous game’s total payoffs are 31 and 41% lower than the cooperative payoffs, if G is
larger or both are large, respectively (Table A4- b and c). However, if both vineyards are smaller,
strategy (ImNS, InNS) is the strategy pair solution in all frameworks and the externality is
minimized (Table A4- c). The results from these three vineyard size scenario analysis are driven
by disease population dynamics: a larger vineyard has a larger population of Susceptible
grapevines, which speeds disease diffusion and renders disease control less effective (and less
cost-effective) than a strategy of no control.

Fourth, we explore the implications of the disease beginning in the high-valued vineyard, as
opposed to the most likely case where the disease starts in the low-valued vineyard. Initializing
the disease in Gn instead of G leads to the Nash equilibrium (ImNS, ImNS) no matter whether the
game is simultaneous or sequential, noncooperative or cooperative (Table A5 of the appendix).
In the baseline case, an uncontrolled lower-valued vineyard provides a reserve for the disease,
affects the incentives for control in G, and leads to the Nash equilibrium (no control, no
control).

5.5. Heterogeneity, strategic behavior, and total payoff

We now turn to addressing whether and how manager heterogeneity affects strategic disease
control decisions and total payoffs. Although our focus is on strategic (noncooperative) behavior,
we also solve the Nash bargaining game to gain insight on the differences between cooperative
and noncooperarive outcomes under increased heterogeneity. To that end, we solve the problem
for five additional price pairs under all noncooperative and cooperative settings: starting with the
baseline price pair (Table 4, case 5), we consider four mean-preserving price gap contractions

(Table 4, cases 1 to 4) and two mean-preserving price gap expansions (Table 4, cases 6 and
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7).1213 Results in Table 4 show that the price gap has a substantial influence on the managers’
strategic behavior and their payoffs. These results can be discussed in terms of three distinct
management situations. First, in cases 1 through 4, both managers choose Strategy ImNS
regardless of whether the game is simultaneous or sequential, cooperative or noncooperative. In
these cases, prices received for grapes in both vineyards are high enough for the managers to
afford Strategy ImNS and the price gap is small enough for the incentives of both players to be
aligned.

[Insert Table 4 here]

In contrast, in cases 5 through 7, the price gap is large enough for the managers to have
different privately optimal disease control strategies. In cases 5 and 6, the strategy pair (no
control, no control) constitutes a unique Nash equilibrium in a simultaneous game. In the
baseline case 5, G opts for no control when he moves first, while Gn opts for InNS when he
moves first. Then, because of strategic complementarity in disease control, the second mover
chooses the same strategy as the first mover. The unique subgame perfect Nash equilibrium is
therefore (no control, no control) if G moves first and (ImNS, 1mNS) if Gn moves first. In case 6,
however, due to the low price received by G, (no control, no control) is the Nash equilibrium of
the simultaneous game and the subgame perfect Nash equilibrium in the sequential game, no
matter which manager moves first (Table 4, case 6). The greater heterogeneity in prices in case 6
also causes the cooperative solution to be different compared to case 5. Here, the Nash
bargaining solution consists of Gn paying G ($34,000/acre) to exit production (Strategy 16Col

or Exit), in which case there is no externality and Gn controls the disease in his vineyard through

12 Note that the price gap is equal to zero in case 1 and it increases as we move to case 7.

13 When conducting price expansions, we also increase the quality penalty (linearly with the
price) up to an upper bound of 70%.
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strategy ImNS. After this transfer, both managers are better off compared to the noncooperative
solution ($97,000 vs. $72,000 for Gx and $28,000 vs. $3,000 for G ; Table 4, case 6). The Nash
bargaining solution improves the aggregate payoffs by 67% when compared with the
noncooperative solution (percent difference between $126,000 and $75,000 in Table 4, case 6).
In case 7, the price received by G is low enough for Strategy 16Col or Exit (exiting production)
to be privately optimal, in which case G implements spatial control 1mNS regardless of whether
the game is simultaneous or sequential, cooperative or noncooperative.

Along the various degrees of manager heterogeneity represented in the six noncooperative
setting cases (cases 1 through 6, simultaneous and sequential settings), total payoff is
monotonically decreasing in the level of heterogeneity (i.e., the magnitude of price gap) between
cases 1 and 6. Cases 6 and 7, on the other hand, represent a range where the relationship between
price gap (more generally, heterogeneity) and total payoff (more generally, social welfare)
becomes U-shaped (Figure 2, panel a). The shape of the curve is unchanged in a cooperative
game but the effect of increased heterogeneity is less pronounced. First, Nash bargaining reduces
the magnitude of the decline in total payoffs for cases 5 and 6. Second, it shifts the inflexion
point of the U-shaped curve to the left, that is, the curvature takes place at a lower level of
heterogeneity (in case 5 instead of case 6) (Figure 2, panel b). Figure 2 shows that there is a
critical range of heterogeneity in resource value that substantially reduces welfare and that it is
exactly in this range that cooperative control is welfare-improving in comparison to
noncooperative control.

[Insert Figure 2 here]

6. Conclusions
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In this paper, we examined how metapopulation models and cellular automata can be
combined to develop a novel distance- and density-dependent specification of externalities that
acknowledges the importance of inter- and intra-parcel spatial dynamics in the generation and
control of externalities. Our specification is general in that it can be collapsed to represent
metapopulation models only, cellular automata models only, or a combination of the two, with
short-distance diffusion only, long-distance diffusion only, or with both, depending on the
characteristics of the process generating the externalities.

We used this specification to solve spatial noncooperative and cooperative games that
endogenize spatial risk beyond the immediate neighborhood and capture the inter- and intra-
parcel private incentives to control. We found that within-parcel spatial decisions can generate
the externality and may lead to inefficient outcomes in the decentralized management of public
bads. We also showed that noncooperative strategic spatial decisions within the parcel can lead
to efficient outcomes even in the absence of Coasian bargaining (Coase 1960). Finally, we have
characterized the relationship among resource value heterogeneity, strategic behavior, and total
payoffs. Our analysis, with heterogeneity, allows of different, first-move-dependent,
noncooperative equilibria ranging from no control to spatial control to entire vineyard removal.

Our work contributes to the growing literature that examines the spatial-dynamic nature of
externalities by increasing the spatial dimension of the problem and the number of players
making strategic decisions. We show that increased computational power that has allowed
researchers to consider larger grids and a greater number of players, can also be used to
understand the spatial-dynamics within a parcel that determine the generation of externalities and

private incentives to control. Our results suggest that ignoring the complex biophysical details of
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the within-parcel spatial dynamics can lead to misleading measures of welfare impacts of
externalities.

Our model makes valuable contributions to the literature can be extended to examine other
types of spatial-dynamic externalities. Yet, it has several limitations that should be addressed in
future research. For instance, the model does not offer clear insights into the cooperative
management of externalities in which disagreement payoffs (i.e., noncooperative payoffs) are not
fixed, agreement renegotiation is needed and there are more than two players. In such situations,
differential games with N players might be appropriate but solution methods for such games
require restrictive assumptions about the state equations and game solutions are not guaranteed
(Bressan 2011). In parallel to the on-going research on whether stable solutions exist, future
research might use evolutionary or learning dynamics to explore whether solutions to spatial-
dynamic externalities in N-player bargaining games are achievable (Smead et al. 2014). Such
effort might identify reasons why desirable solutions might not be attainable and the mechanisms

that might be implemented to increase the likelihood of reaching these solutions.
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Fig. 1 Short-distance diffusion is governed by a for within-column dispersal and g for across-
column dispersal; Long-distance diffusion between H (right) and L (left) is governed by y; ;
(fromHto L) and y, ; (from L to H). Shaded cell represents Infective vine.
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Fig. 2 Total payoffs for each of the seven price differential cases, in a noncooperative,
sequential game where GL moves first (panel a), and in a cooperative, Nash bargaining game
(panel b). Each data point is an expected value obtained from 1,000 simulations.
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Tablela
Disease diffusion parameters

Parameter Description Value Unit
a Within-column H to E, transition rate 4.2 month 1
p Across-column H to Ey transition rate 0.014 month 1
y Distance-dependence, power-law 3 unitless

parameter
Tmax Period from planting until fruit bearing 36 months

Sources: Values of parameters o and S are obtained from model calibration in Atallah et
al. (2014) using data in Charles et al. (2009) with validation using data in Cabaleiro and
Segura (2006) and Cabaleiro et al. (2008). The value of parameter value y is obtained
from Cabaleiro and Segura (1997). Parameter value for zmax is from White (2008).
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Table1lb

Economic parameters faced by managers of vineyards G and G,

Vineyard Gy Vineyard Gn
Vineyard layout
Grid dimensions (rows*columns) %] 68*23=1,564 M=N 49*16=784
Grid row (vine) spacing (ft.) 4 5
Grid column spacing (ft.) 7 11
Revenue parameters
Per-vine revenue i Random T Random
L.J. mn,
Grapes price ($/ton) Ds, .. 5,058 Ps. . 726
Price penalty (%) f;;"—; 70 Do _ ) 0
L.J. MM,
Yield (tons/acre) Ve 4.5 Ve, 10
Yield (tons/acre/month) 0.375 0.834
Planting density (vines/acre) dGH 1,564 dGL 784
Yield (tons/vine/year) Vi 0.0029 Vi 0.0128
Yield (tons/vine/month) 0.0002 0.0011
Yield reduction (%)? j};‘—; Depends on j;"—”r Depends on
- Sz'_._;l'_.r . Sm,n_;l',r
5§ = Exposed *TT;;E 30 "IE-.:I‘:‘:L_I?F-:E 30
5 = Infectious. moderate ¥ ':__h::hn 50 "IE':I_":IT_:I‘]"L 50
alib=17 PIL L L =L
5 = Infectious, high y:_.:_:;?‘ 75 *’anzﬁ 75
Cost parameters
Roguing and replanting ($/vine) €, . 14.6 €, 14.6
L. m.mn
Roguing ($/vine) c,. . 8 c. 8
Lj M.
Testing ($/vine) C,. . 2.6 c, 2.6
L.j mmn
Operating costs ($/vine) C: 3.6 Corm 2.8
Discount factor (month %) p 0.9959 p 0.9959

2 Note that managers are unable to observe yield reduction for each grapevine; instead they
observe average yield.

b The discount factor is equivalent to an annual discount rate of 5%.

Sources: Values for vineyard H’s parameters are from Cooper, Klonsky, and De Moura (2012)
and values for vineyard L’s parameters are from Verdegaal, Klonsky, and De Moura (2012).
Grape prices are from the California Department of Food and Agriculture (2014). Removal and
replanting costs are from Klonsky and Livingston (2009).

38



Table 2
Disease control strategies: definitions and acronyms

Strategies Acronym
Nonspatial strategies
1 Removing and replacing all vines that are Infective. |
2 Removing and replacing all vines that are Infective-moderate. Im
3 Removing and replacing all vines that are Infective-high. In
4 Removing and replacing vines that are Infective-moderate and Young. ImY
5 Removing and replacing vines that are Infective-moderate and Mature. InM
6 Removing and replacing vines that are Infective-moderate and Old. InO
7 Removing and replacing vines that are Infective-high and Mature. IhM
8 Removing and replacing vines that are Infective-high and Old. IhO
Spatial strategies
9 Removing and replacing Infective-moderate vines in addition to testing their two InNS
within-column neighbors then removing and replacing those that test positive.
10 Removing and replacing Infective-moderate vines in addition to testing their two InNSEW
across-column neighbors and two-within column neighbors then removing and
replacing those that test positive.
11 Removing and replacing Infective-moderate vines in addition to testing their four InNS2EW
within-column neighbors and two across-column neighbors then removing and
replacing those that test positive.
12 Removing and replacing Infective-moderate vines in addition to testing their four InNS2EW2
within-column and four within-row neighbors then removing and replacing those that
test positive.
13 Removing and replacing Young, Infective-moderate vines in addition to testing their ImY-NS
two within-column neighbors then removing and replacing those that test positive.
14 Removing and replacing Mature, Infective-moderate vines in addition to testing their ImM-NS
two within-column neighbors then removing and replacing those that test positive.
15 Removing and replacing Old, Infective-moderate vines in addition to testing their two ImO-NS
within-column neighbors then removing and replacing those that test positive.
16 Removing and replacing Young, Infective-moderate vines in addition to testing their ImY-NSEW
two across-column neighbors and two-within column neighbors then removing and
replacing those that test positive.
17 Removing and replacing Mature, Infective-moderate vines in addition to testing their InM-NSEW
two across-column neighbors and two-within column neighbors then removing and
testing those that test positive.
18 Removing and replacing Old, Infective-moderate vines in addition to testing their two InO-NSEW
across-column neighbors and two-within column neighbors then removing and
replacing those that test positive.
‘Fire-break’ strategies
19 Removing all the vines in the bordering column in GL. 1Col
20 Removing all the vines in two bordering columns in GL. 2Col
34 Removing all the vines in all 16 columns Gi. 16Col or Exit
35 Removing all the vines in the bordering column in Gn. 1Col
36 Removing all the vines in two bordering columns in Gh. 2Col
57 Removing all the vines in all 23 columns Gu. 23Col or Exit

Note: Strategies are assumed to be implemented at t=24, which corresponds to the moment when initially
infected vines in GL develop visual symptoms. Note that strategies 25 and 42 correspond to total vineyard
removal for the smaller and larger vineyards, respectively.

Source: Nonspatial and spatial strategies are from Atallah et al. (2014).
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Table 3
Expected payoffs under the social planner, noncooperative, and cooperative solutions

Expected Payoffs? ($1,000/acre over 50 years)

Strategies Payoff Payoff  Total Cooperative  Cooperative
(G, Gu) to Gu to G,  payoff Surplus® Payoffto Gy Payoffto G
Social planner solution

(ImNS, InNS) 91 (3)° 31 (5) 122 N/A N/A N/A

Cooperative solution
(ImNS, InNS) 91 (3) 31 (5) 122 40" 80 42

Simultaneous game or sequential game, G. moves first
(no control, no control) 60 (3) 22 (1) 82 N/A N/A N/A

Sequential game, Gy moves first
(ImNS, 1sNS) 91 (3) 31 (5) 122 N/A N/A N/A

N/A is not applicable.

2 Expectations are obtained from 1,000 simulations; payoffs are computed for the baseline prices pn=$5,058/ton and
pL=$726/ton.

b Cooperative Surplus= Total payoff (Cooperative)-Total payoff ( Noncooperative)

¢ Standard deviations in parentheses.

*** Statistically significant at the 1% level.
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Table 4
Solution strategy pairs and expected payoffs; disease starts in Gy.

Prices @ Setting Solution strategy pairs Expected payoffs

Case Pr:Pr Gy Gy ENPV,,ENPV, ENPV,
(%/ton) ($1,000/acre)

1 1912,1912  Simultaneous ImNS, InNS 17,150 167
Sequential-GL moves first ImNS, ImNS 17,150 167
Sequential-Gn moves first ImNS, ImNS 17,150 167
2 2198, 1626  Simultaneous ImNS, InNS 35,121 156
Sequential-GL moves first ImNS, ImNS 35,121 156
Sequential-Gn moves first ImNS, ImNS 35,121 156
3 2485, 1339  Simultaneous ImNS, InNS 54, 92 146
Sequential-GL moves first ImNS, ImNS 54,92 146
Sequential-Gn moves first ImNS, ImNS 54,92 146
4 2771,1053  Simultaneous ImNS, InNS 72,62 134
Sequential-GL moves first ImNS, ImNS 72,62 134
Sequential-Gn moves first ImNS, ImNS 72,62 134
5 3058, 766 Social planner® ImNS, ImNS 91,31 121
(baseline) Simultaneous no control, no control 60, 22 82
Sequential-GL moves first no control, no control 60, 22 82
Sequential-Gn moves first ImNS, ImNS 91,31 121
Nash bargaining ° ImNS, ImNS 80, 42 121
6 3344, 480 Social planner® ImNS, Exit 131, -5 126
Simultaneous no control, no control 72,3 75
Sequential-GL moves first no control, no control 72,3 75
Sequential-Gn moves first  no control, no control 72,3 75
Nash bargaining ° ImNS, Exit 97,28 126
7 3631, 194 Simultaneous ImNS, Exit 151, -5 146
Sequential-GL moves first ImNS, Exit 151, -5 146
Sequential-Gn moves first ImNS, Exit 151, -5 146

@ Recall that prices in cases 1 through 6, and prices in cases 6 and 7 are obtained through a mean-preserving
contraction and a mean-preserving expansion of prices in the baseline case (case 5), respectively.

b\We only report the social planner and Nash bargaining solutions when they are different from the
noncooperative solutions.

41



Appendix

Table Al
Normal form game payoff matrix for the baseline case (payoffs in $1,000)
G
no control @ ImY ImNS
no control 60° 22 81 -11 98 -5
G ImY 41 1 81 -11 93 -5
InNS -20 1 25 -11 91 31

@Underbars indicate a player’s payoff of dominant strategy, given the strategy of the other player.
b Payoffs of the welfare-maximizing solution pair are in bold.

Table A2
Effect of a smaller short-distance diffusion parameter (a=2.1): normal
form game payoff matrix (payoffs in $1,000)

GL
no control ImNS
G no control 60 23 98 27
ImNS -14 23 93 32

aUnderbars indicate a player’s payoff of dominant strategy, given the strategy of the other player.
b Payoffs of the welfare-maximizing solution pair are in bold.

Table A3
Effect of (a) larger (y=3.5) and (b) smaller (y=1.5) long-distance diffusion
parameter: normal form game payoff matrix (payoffs in $1,000).

(@) y=3.5 GL
no control ImNS Exit
no control 782 23 103 29°v 93 -5
GH ImNS 12 23 95 31 110 -5
Exit -11 23 -11 31 -11 -5

(b) y=1.5 GL
no control ImNS Exit
no control -13 19 34 -77 52 -5
GH ImNS -316 21 13 14 94 -5
Exit -11 23 -11 30 -11 -5

aUnderbars indicate a player’s payoff of dominant strategy, given the strategy of the other player. Two underbars indicate the
payoffs of the Nash equilibrium strategy pair.
b Payoffs of the welfare-maximizing solution pair are in bold.
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Table A4
Effect of vineyard relative size: normal form game payoff matrix;
(@) G is larger than Gn; (b) vineyards are both big; (c) vineyards

are both small (payoffs in $1,000)

@ G. larger GL
no control ImNS
GH no control -59: 298 -59 285
ImNS -84 384 -65 414>
(b) Both large GL
no control ImNS
GH no control 71 -37 104 -44
ImNS 10 -37 103 -44
(©) Both small GL
no control ImNS
GH no control 243 22 345 24
ImNS 208 23 368 32

aUnderbars indicate a player’s payoff of dominant strategy, given the strategy of the
other player. Two underbars indicate the payoffs of the Nash equilibrium strategy pair.
b Payoffs of the welfare-maximizing solution pair are in bold.
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Table A5
Expected payoffs under the social planner, noncooperative, and cooperative solutions,
case where disease starts in Gy

Setting Solution strategy pairs Expected Payoffs?
Gy, Gy, ENPVy; ENPV,  ENPV;
Simultaneous InNS, 1mNS 5,76 81
Sequential-G_ moves first ImNS, 1nNS 5,76 81
Sequential-Gy moves first InNS, 1mNS 5,76 81

@ Expectations are obtained from 1,000 simulations over 50 years; payoffs are in $1,000/acre and are
computed for the baseline prices pn=$5,058/ton and pL=$726/ton.
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