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Specification of spatial-dynamic externalities and implications for strategic 

behavior in disease control 

 

ABSTRACT 

We propose a novel, distance- and density-dependent specification of externalities that captures 

spatial dynamics within and between neighboring land parcels. We apply the problem to the 

short- and long-distance diffusion and control of an infectious disease in two privately-owned 

and ecologically-connected vineyards. Using computational experiments to generate individual 

and aggregate payoffs, we show how strategic behavior affects diffusion of the disease and the 

expected present value of the resulting externality. Our results suggest that ignoring the within-

parcel spatial dynamics in the model overestimates the social cost of an externality compared to 

a model that focuses on inter-parcel spatial dynamics only. We find a U-shaped relationship 

between manager heterogeneity and aggregate payoffs in the presence of an externality, 

suggesting both positive and negative impacts of increased heterogeneity on strategic behavior 

and welfare. 

Keywords: Bioeconomic models; Computational methods; Disease control; Grapevine Leafroll 

Disease; Noncooperative games; Spatial-dynamic externalities.  

 

1. Introduction 

The economic research on externalities in natural resource problems has increasingly paid 

attention to the dynamic and spatial characteristics of the biophysical processes generating these 

externalities. Such processes often cause damages thanks to their ability to cross the boundaries 

of privately-owned properties. Consequently, a natural assumption is that space matters in that it 
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defines exposure to risk and private incentives to manage externalities based on location with 

respect to property boundaries. For instance, the spatial heterogeneity driving the generation of 

externalities and the strategic choices to control them can be defined by a land parcel’s position 

on the boundary or the interior of a grid (Rich, Winter-Nelson, and Brozovíc 2005a, 2005b; 

Albers, Fischer, and Sanchirico 2010; Epanchin-Niell and Wilen 2012, 2015; Aadland, Sims, and 

Finnoff  2015). However, spatial modeling of externalities often assumes that externalities only 

matter at the boundaries between private properties (i.e., where one parcel ends and another 

parcel begins). We argue that spatial considerations within a land parcel may also affect how 

externalities are generated and the private incentives to manage them. Recent advancements in 

computational methods and processing allow researchers to investigate within-parcel spatial 

dynamics to shed light on the individual incentives that might trigger the generation of 

externalities.  

We propose a novel, distance- and density-dependent specification of externalities that 

captures spatial dynamics within and between neighboring land parcels. We apply the problem to 

the diffusion and control of an infectious disease in two privately-owned and ecologically-

connected vineyards. In our model, two vineyard managers maximize the expected net present 

values of their vineyards by choosing a disease control strategy from a discrete set of strategies. 

We use computational experiments to generate payoffs and show how strategic behavior affects 

diffusion of the disease and the expected present value of the resulting externality. Our results 

suggest that an externality model that focuses on inter-parcel spatial dynamics overestimates the 

social cost of an externality compared to a model that accounts for within-parcel spatial 

dynamics as well. We take advantage of our model’s specification to explore the relationship 

between manager heterogeneity and welfare in the presence of an externality. We find that the 
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relationship is U-shaped, suggesting both positive and negative impacts of increased 

heterogeneity on strategic behavior and aggregate payoffs. 

 

2. Contributions to the literature 

There is a considerable amount of recent work on spatial dynamic externalities using different 

theories and models. Most studies use metapopulation models to allow for spatial interaction 

between adjacent ‘grids’ representing habitat patches, forest stands, or land parcels, without 

considering the within-grid population spatial dynamics (Brown and Roughgarden, 1997; 

Swallow and Wear 1993; Konoshima et al. 2009; Bhat and Huffaker 2007; Horan et al. 2005; 

Sanchirico and Wilen 1999). Other studies employ grid-based models, and also ignore within-

grid spatial dynamics (Rich, Winter-Nelson, and Brozovíc, 2005a, 2005b; Epanchin-Niell and 

Wilen, 2012, 2015; Aadland, Sims, and Finnof, 2015). Throughout this literature, one trend has 

involved representing externality problems on ever larger grids by progressing from two-patch 

models to NxN grid models. However, throughout this progression, spatial exposure risk remains 

affected by border considerations only, and not by within-parcel spatial heterogeneity and 

within-parcel spatially heterogeneous control. These models exclude situations where bio-

economic spatial dynamics contribute to the tradeoffs a manager faces within his parcel, and 

consequently determine his private strategic behavior and the ensuing generation of externalities 

over the entire landscape. For example, strategic disease control choices in Rich, Winter-Nelson, 

and Brozovíc (2005a, 2005b) are conditioned by a manager’s position on a grid’s border or a 

grid’s interior but not on other measures of spatial disease dynamics within the grid. In 

Epanchin-Niell and Wilen (2012, 2015), the value of containing a biological invasion differs 

across parcels based on their location in space only, which is defined in relation to the landscape 
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boundaries. Similarly, in Aadland, Sims, and Finnoff (2015)’s forest grid, the spatial 

heterogeneity driving the generation of pest externalities is defined by a cell’s position on either 

the boundary or the interior of the grid. Likewise, exposure risk to a biological invasion in 

Albers, Fischer, and Sanchirico (2010) depends on whether a region is located inland or in a port.  

While these binary considerations of space are adequate to study essential aspects of the 

private and collective management of externalities, they do not allow for understanding the 

private behavior, within a parcel, that might initially generate the externality or hinder its 

collective management. In the models cited above, managers do not face spatial-dynamic 

temporal trade-offs in effort allocation within their parcels. Examining the impact of both within-

parcel and inter-parcel spatial dynamics on private behavior and the generation of externalities 

requires new distance- and density-dependent specifications that build on the features of 

metapopulation models, cellular automata, and spatial games. Such specifications can help test 

whether within-parcel spatial dynamics, with measures of spatial heterogeneity that go beyond 

border considerations, are also important for the production of externalities and for the incentives 

to manage them. 

The first contribution of this paper is to propose a novel, distance- and density-dependent 

specification of externalities that includes short and long-distance dispersal mechanisms capable 

of modeling a manager’s risk spatial endogeneity beyond the adjacent parcel. This specification 

is derived by explicitly modeling the biophysical processes generating the spatial dynamics using 

an approach that combines metapopulation and cellular automata models. Definitions of spatial 

connectivity in some of the models in the literature allow managers to take into account the 

implications of their actions on the adjacent land, thereby allowing for spatial-endogenous risk 

(Aadland et al. 2015; Epanchin-Niell and Wilen 2015; Konoshima et al. 2008). However, due to 
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the focus on inter-parcel spatial dynamics and concerns over model tractability and 

computational complexity, in these models, a manager’s endogeneity of spatial risk is limited to 

adjacent cells and cannot span the entire landscape. That is, in such models, a manager ignores 

how current management affects payoffs through multi-cell dispersal (Aadland, Sims, and 

Finnoff, 2015), or views his site’s state as exogenous and solves for temporally and spatially 

myopic optimal strategies (Epanchin-Niell and Wilen 2015). Aadland, Sims, and Finnoff (2015) 

characterize this modeling challenge as one of accurately representing the scale mismatch 

between management and dispersal. Representing this scale mismatch can be done by (1) 

combining metapopulation and cellular automata models; and (2) adding a power-law, long-

distance dispersal (LDD) (Marco, Montemurro, and Cannas 2011) to the more common short-

distance dispersal (SDD) mechanism representing the biophysical process in question. Such 

specification of the distance- and density-dependent externality with SDD and LDD, allows 

endogenizing spatial risk over the entire landscape. Managers can then take into account how 

their individual, within-grid control decisions might affect the generation of an externality and 

the resulting damages at the landscape level.         

The second contribution is to examine the relationship among manager heterogeneity, 

strategic behavior, and aggregate payoffs. Previous literature has addressed some combination of 

these three elements. Kovacs et al. (2014) introduce heterogeneity in municipal jurisdiction 

access to the resource at risk, resource value, budgets, and costs. Albers, Fisher, and Sanchirico 

(2010) compare spatially heterogeneous and spatially uniform policies of invasive species 

control. Fenichel, Richards, and Shanafelt (2014) consider heterogeneity in managers’ property 

values. Their model predicts that managers of more valuable properties will be more aggressive 

in their pest control. They note that control in their case is a strategic complement and is 
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therefore not likely to be characterized by free-riding. Bhat and Huffaker (2007) consider 

strategic interaction among managers that is driven by the possibility of free riding, breach, and 

the potential need for cooperative agreement renegotiation over time. Free-riding is inherent to 

their population dynamics where nuisance wildlife moves from the unmanaged to the managed 

land. Rich, Winter-Nelson, and Brozovíc (2005a) consider two types of agents in their models, 

High and Low, which are heterogeneous in terms of production technology endowments and 

whose strategic choices are conditioned by their position in space. They find that heterogeneity 

among neighboring agents accelerates the progression to the less socially desirable outcome (low 

disease control effort), in contrast to more socially-desirable outcomes that are achieved when 

agents are homogenous. In this paper, we consider heterogeneity in resource value and its effect 

on strategic behavior and welfare. We use mean-preserving expansions and contractions in the 

natural resource value to explore a wider range of heterogeneity, as opposed to two heterogeneity 

levels. We re-solve the problem for seven values of heterogeneity. For each level of 

heterogeneity, we study the noncooperative strategic behavior of managers under simultaneous 

and sequential move settings. We also consider how cooperation might affect the relationship 

between heterogeneity and welfare.  

The remainder of the paper is organized as follows. Section 3 introduces the spatial structure, 

the detailed biophysical process, and the economic model depicting the problem facing each 

vineyard manager. In addition, it specifies the cell-level diffusion model as a Markov Chain 

process generating the externality within and between two grids (vineyard plots) constituting a 

network (the landscape). Section 4 describes the computational experiments, the spatial and 

nonspatial control strategies available to each manager, and the solution frameworks and 

concepts. Section 5 presents the solutions to social planner, cooperative, and noncooperative 
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settings and highlights the welfare implications of the proposed externality specification. This 

section also presents dynamic sensitivity analyses and a discussion of the effect of manager 

heterogeneity on strategic behavior and total payoffs. Section 6 presents conclusions and 

highlights the value of distance- and density-dependent specifications when modeling the 

generation and management of spatial-dynamic externalities.  

 

3.  A model of externality diffusion and control  

Our model considers two managers whose production processes are spatially connected on a 

network, composed of the combination of two independently managed sub-networks, or grids. In 

particular, we consider the case of two vineyard managers whose vines are linked through the 

short- and long-distance diffusion of the grapevine leafroll disease. This is a vector-transmitted 

viral disease that reduces the yield and quality of grapes and threatens vineyards worldwide. For 

notation purposes, vineyard H produces high-valued wine grapes while vineyard L produces low-

valued wine grapes. Thus the manager of vineyard L has lower private incentives to control the 

disease. Each manager’s action to control the disease determines his payoffs and the payoffs of 

the other manager because they are connected through a biophysical network; the actions of each 

of them have spatial and dynamic consequences for the neighboring vineyard.  

Grid GH represents vineyard H and is the set of I*J cells denoted by their row and column 

position (i, j). Each cell (i, j) represents a grapevine. Similarly, grid GL represents vineyard L and 

consists of M*N cells denoted by their row and column position (m, n). Each grapevine is 

modeled as a cellular automaton that updates its age and infection states in discrete time steps (t) 

based on the infection state of its immediate neighbors and on the long-distance dispersal from 

the neighboring vineyard. Each vine’s infection state transitions are governed by a Markov Chain 
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model. An externality emerges when the privately optimal management strategy in one vineyard 

causes the disease to spread to the neighboring vineyard. We first describe the managers’ private 

maximization problem; and subsequently we explore a Nash bargaining game.   

3.1. Economic model 

Each manager’s objective is to maximize the expected net present value (ENPV) of his vineyard 

by choosing a disease control strategy from a discrete set of strategies, 𝒲𝒲, available to manage 

the disease.1 According to each strategy, the manager decides, for each vine (i, j) in each period t 

of T discrete periods of time, whether or not to remove and replant (𝑢𝑢𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 = 1 if removal and 

replanting takes place, 0 otherwise), test for the virus (𝑣𝑣𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 = 1 if virus testing takes place, 0 

otherwise), or remove without replanting (𝑧𝑧𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 = 1, if removal without replanting take place, 0 

otherwise). The manager’s disease control decisions are based on a vine’s age state 𝒂𝒂𝑖𝑖,𝑗𝑗,𝑡𝑡 and its 

infection state 𝒔𝒔𝑖𝑖,𝑗𝑗,𝑡𝑡, or equivalently, its composite age-infection state 𝒘𝒘𝑖𝑖,𝑗𝑗,𝑡𝑡. In the case of within-

grid (i.e., in the same vineyard), spatial disease control strategies, the manager’s decisions are 

also based on the state of vines in neighboring cells. 

The optimal strategy 𝒲𝒲∗ is the sequence of cell-level control variables {𝑢𝑢𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 , 𝑣𝑣𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 , 𝑧𝑧𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡} 

that allocates disease control effort over space and time so as to yield the maximum ENPV. Let E 

be the expectation operator over the random cell-level (i.e., vine), revenue 𝑟𝑟𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡  , and ρt the 

discount factor, where t ∈ {0, 1, 2,…, 600 months}. The objective of a vineyard manager is to  

 𝑚𝑚𝑚𝑚𝑚𝑚
𝒲𝒲

E ∑ 𝜌𝜌𝑡𝑡𝑡𝑡∈𝑇𝑇 ∑  �
𝑟𝑟𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 ∗ �1 −� 𝑢𝑢𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡−𝜏𝜏

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

τ=0
� ∗ �1 − 𝑧𝑧𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡�

−� �𝑢𝑢𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡−𝜏𝜏 ∗ 𝑐𝑐𝑢𝑢𝑖𝑖,𝑗𝑗 �
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

τ=0
− �𝑣𝑣𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 ∗ 𝑐𝑐𝑣𝑣𝑖𝑖,𝑗𝑗�  − �𝑧𝑧𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 ∗ 𝑐𝑐𝑧𝑧𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡

� − 𝑐𝑐𝑖𝑖,𝑗𝑗
�(𝑖𝑖,𝑗𝑗)∈𝐺𝐺         (1) 

                                                           
1 The problems faced by the two managers differ only in their initial conditions and bioeconomic 
parameters. We therefore describe the model using the notation of one of them only, namely GH.  
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subject to 

 E(𝒔𝒔𝑖𝑖,𝑗𝑗,𝑡𝑡+1) = 𝑷𝑷T 𝒔𝒔𝑖𝑖,𝑗𝑗,𝑡𝑡,                (2) 

where Eq. (2) is the cell-level infection state transition equation and PT is the transpose of the 

infection state transition matrix P. 

The objective function accounts for the total amount, the timing and the location of control 

effort. If a vineyard manager decides to remove and replant a vine in cell (i, j) in period t - τmax, 

then 𝑢𝑢𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡−𝜏𝜏 is equal to 1 and the revenue (first expression in Eq. 1) is multiplied by zero for 

periods t – τ + 1, t – τ + 2,…, t – τ + τmax, where τmax is the time it takes from planting to fruit 

bearing . If a vineyard manager decides to remove a vine without replanting (𝑧𝑧𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 = 1), the 

revenue from the cell corresponding to this vine equals zero from t to T. The second expression 

in Eq. (1) has the cost of removal-and-replanting (𝑐𝑐𝑢𝑢𝑖𝑖,𝑗𝑗 ), the cost of testing (𝑐𝑐𝑣𝑣𝑖𝑖,𝑗𝑗), and the cost of 

removal-without-replanting (𝑐𝑐𝑧𝑧𝑖𝑖,𝑗𝑗), all pre-multiplied by their corresponding binary decision 

variables. The expression also includes vine-level operating costs (𝑐𝑐𝑖𝑖,𝑗𝑗), which are grid-level 

operating costs divided by the number of cells. 

Per-vine revenue, 𝑟𝑟𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 , depends on the infection and age states of each cell. Revenue is zero 

if the vine’s age  𝑎𝑎𝑖𝑖,𝑗𝑗,𝑡𝑡 is below 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 (Eq. 3). Beyond that age, 𝑟𝑟𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 , depends on the vine’s 

infection state 𝒔𝒔𝑖𝑖,𝑗𝑗,𝑡𝑡. The disease causes a yield reduction of 𝑦𝑦𝑆𝑆𝚤𝚤,𝚥𝚥,𝑡𝑡� , compared to the yield of a 

healthy vine (𝑦𝑦𝑆𝑆𝑖𝑖,𝑗𝑗,𝑡𝑡=𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑦𝑦) with different levels of yield reduction depending on the infection 

state.2  In addition, grapes from disease-affected vines are subject to a price penalty 𝑝𝑝𝑠𝑠𝚤𝚤,𝚥𝚥,𝑡𝑡� (Eq. 4) 

                                                           
2 Yield from a vine in the Healthy state (𝑦𝑦𝑆𝑆𝑖𝑖,𝑗𝑗,𝑡𝑡=𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑦𝑦) is obtained by dividing per-acre yield in 
plot H over the planting density. 
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when compared to the price paid for grapes harvested from healthy vines (𝑝𝑝𝑆𝑆𝑖𝑖,𝑗𝑗,𝑡𝑡=𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑦𝑦). The 

same description applies to cells (m, n) in grid (vineyard) 𝐺𝐺𝐿𝐿.  

 𝑟𝑟𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 = 0 𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖,𝑗𝑗,𝑡𝑡 <  𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥                (3) 

                  = 𝑟𝑟𝑆𝑆𝑖𝑖,𝑗𝑗,𝑡𝑡 �𝑦𝑦𝑆𝑆𝑖𝑖,𝑗𝑗,𝑡𝑡=𝐻𝐻 ,𝑦𝑦𝑆𝑆𝚤𝚤,𝚥𝚥,𝑡𝑡� , 𝑝𝑝𝑆𝑆𝑖𝑖,𝑗𝑗,𝑡𝑡=𝐻𝐻 ,𝑝𝑝𝑠𝑠𝚤𝚤,𝚥𝚥,𝑡𝑡��  𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖,𝑗𝑗,𝑡𝑡 ≥  𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 

 𝑟𝑟𝑠𝑠𝑖𝑖,𝑗𝑗,𝑡𝑡  = 𝑦𝑦(𝑠𝑠𝑖𝑖,𝑗𝑗,𝑡𝑡=𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑦𝑦) ∗ �1 − 𝑦𝑦𝑆𝑆𝚤𝚤,𝚥𝚥,𝑡𝑡�� ∗ 𝑝𝑝(𝑠𝑠𝑖𝑖,𝑗𝑗,𝑡𝑡=𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑦𝑦)  ∗ (1 − 𝑝𝑝𝑠𝑠𝚤𝚤,𝚥𝚥,𝑡𝑡�)             (4) 

3.2. Model of spatial-dynamic externality diffusion 

The disease can spread within and across vineyards in at least three ways (Charles et al. 2009; 

Grasswitz and James 2008). First, insect vectors crawling on vineyard wires and fruiting canes 

(i.e., the grid columns) can cause disease transmission to within-column, neighboring vines.  

Second, vineyard management activities can facilitate vector dispersal to across-column 

neighboring vines, within the same vineyard. We refer to these two dispersal mechanisms as 

short-distance diffusion (SDD). Disease spread between neighboring vineyards can take place 

through aerial dispersal of insect vectors (Le Maguet et al. 2013). We refer to this third dispersal 

mechanism as a long-distance diffusion (LDD). All external boundaries are reflecting (i.e., when 

the disease reaches the boundary of a grid, it might be bounced back inside it according to Eq. 2). 

The boundary between grids (i.e., the sub-networks) is only reflecting for the SDD process. In 

contrast, according to the LDD process, the disease can move off one grid along the inter-grid 

boundary in search of a new host. Atallah et al. (2015) analyzed the two short-distance disease 

diffusion mechanisms in an isolated vineyard. Because the present model is concerned with 

externalities and strategic behavior, the disease diffusion in Atallah et al. (2015) is extended by 

allowing for disease diffusion both within and between two neighboring vineyards. That is, a 

Healthy (H) vine in one vineyard transitions to state Exposed-undetectable (Eu) with a 

probability b that depends on (1) the number and location of Infective vines immediately adjacent 
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to it; and (2) the distance to and number of Infective vines in the neighboring vineyard. The 

distance and density-dependence of this probability captures the impact of a manager’s private 

disease control actions, within a grid, on the spatial damages borne by his neighbor at the border 

of and within the adjacent grid. A manager cannot distinguish between states H  and Eu until the 

virus population in a vine reaches detectable levels with probability c, at which point the vine 

transitions to state Exposed-detectable (Ed). A manager can detect state Ed by performing a viral 

vine test.  

Vines transition from state Ed to state Infective-moderate (Im) with probability d, which is 

largest for young vines than for their older counterparts. Once in this state, vines develop visual 

symptoms and can act as a source of infection to other vines (i.e., they become infective). 

Symptoms are moderate at first (Infective-moderate, Im) and transition to a high-severity state 

(Infective-high, Ih) with a probability f. The transition matrix P in Eq. (2) governs short- and 

long-distance disease diffusion and symptom evolution. It can be expressed as follows:3  

 P =  

(1 − 𝑏𝑏) 𝑏𝑏 0 0 0
0 1 −  𝑐𝑐 𝑐𝑐 0 0
0 0 (1 − 𝑑𝑑) 𝑑𝑑 0
0 0 0 (1 − 𝑓𝑓) 𝑓𝑓
0 0 0 0 1

             (5) 

In Eq. (5), 𝑏𝑏 can be expressed as:  

 𝑏𝑏 = Pr�𝑠𝑠𝑖𝑖,𝑗𝑗,𝑡𝑡+1 = 𝐸𝐸𝑢𝑢 � 𝑠𝑠𝑖𝑖,𝑗𝑗,𝑡𝑡  =  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑦𝑦)           (6) 

                                                           
3P reads from row (states in period t) to column (states in period t+1).   
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=

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

                      1 − 𝑒𝑒−𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡  if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁) 

             1 − 𝑒𝑒−(𝛽𝛽+𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡) if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁, 𝐼𝐼,𝑁𝑁𝑁𝑁) 

             1 − 𝑒𝑒−(𝛽𝛽+𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡) if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁, 𝐼𝐼)

         1 − 𝑒𝑒−(2𝛽𝛽+𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡) if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁, 𝐼𝐼, 𝐼𝐼)
              1 − 𝑒𝑒−(𝛼𝛼+𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡) if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝐼𝐼,𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁)

       1 − 𝑒𝑒−�𝛼𝛼+𝛽𝛽+𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡� if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝐼𝐼,𝑁𝑁𝑁𝑁, 𝐼𝐼,𝑁𝑁𝑁𝑁)

       1 − 𝑒𝑒−�𝛼𝛼+𝛽𝛽+𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡� if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝐼𝐼,𝑁𝑁𝐼𝐼,𝑁𝑁𝑁𝑁, 𝐼𝐼)

  1 − 𝑒𝑒−�𝛼𝛼+2𝛽𝛽+𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡� if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝐼𝐼,𝑁𝑁𝑁𝑁, 𝐼𝐼, 𝐼𝐼)
                1 − 𝑒𝑒−(𝛼𝛼+𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡) if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝑁𝑁𝑁𝑁, 𝐼𝐼,𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁)

         1 − 𝑒𝑒−�𝛼𝛼+𝛽𝛽+𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡� if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝑁𝑁𝑁𝑁, 𝐼𝐼, 𝐼𝐼,𝑁𝑁𝑁𝑁)

         1 − 𝑒𝑒−�𝛼𝛼+𝛽𝛽+𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡� if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝑁𝑁𝑁𝑁, 𝐼𝐼,𝑁𝑁𝑁𝑁, 𝐼𝐼)

    1 − 𝑒𝑒−�𝛼𝛼+2𝛽𝛽+𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡� if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝑁𝑁𝑁𝑁, 𝐼𝐼, 𝐼𝐼, 𝐼𝐼)
             1 − 𝑒𝑒−(2𝛼𝛼+𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡) if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝐼𝐼, 𝐼𝐼,𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁)

     1 − 𝑒𝑒−�2𝛼𝛼+𝛽𝛽+𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡� if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝐼𝐼, 𝐼𝐼, 𝐼𝐼,𝑁𝑁𝑁𝑁)

     1 − 𝑒𝑒−�2𝛼𝛼+𝛽𝛽+𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡� if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝐼𝐼, 𝐼𝐼,𝑁𝑁𝑁𝑁, 𝐼𝐼)

1 − 𝑒𝑒−�2𝛼𝛼+2𝛽𝛽+𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡� if 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 =  (𝐼𝐼, 𝐼𝐼, 𝐼𝐼, 𝐼𝐼)

 

In Eq. (6), 𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡is the infectivity state of a vine’s neighborhood, which is composed of the 

adjacent neighbors to the north, south, east, and west of vine (i, j). For example,  𝑠𝑠𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡= (I, I, I, 

NI) is the state of a neighborhood composed of two Infective (I) north and south neighbors, one 

Infective east neighbor and one Noninfective (NI) west neighbor.  

Short-distance diffusion. Parameters α and β are the within-column (north-south) and across-

column (east-west) transmission rates with α > β > 0.4 The period a vine stays in the Healthy 

state before transitioning to the Exposed-undetectable state is an exponentially-distributed 

random variable, with rate α for within-column disease transmission and rate β for across-

column disease transmission (Atallah et al. 2015). When two or more transmission types are 

                                                           
4 The disease has been shown to spread preferentially along grid columns (Le Maguet et al. 
2013). 
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realized (e.g., one within- and two across-column events), the disease transmission is determined 

by the shortest of the waiting times (Cox 1959). 

Long-distance diffusion. Long-distance, vector-mediated disease diffusion from low-valued 

vineyard GL to its high-valued counterpart GH occurs with rate 𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡. Here, 𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡 is a power-law 

dispersal parameter specified by the following spatial-dynamic, distance- and density-dependent 

diffusion function: 
 

  𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡 = 𝑗𝑗− 𝛾𝛾 ∗   ∑ ∑ � (𝑚𝑚,𝑛𝑛)| 𝑠𝑠𝑚𝑚,𝑛𝑛,𝑡𝑡 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�∗𝑛𝑛𝑀𝑀
𝑚𝑚

𝑁𝑁
𝑛𝑛

∑ 𝑀𝑀∗(𝑁𝑁−𝑛𝑛+1)𝑁𝑁
𝑛𝑛

 , 𝛾𝛾 > 0          (7a) 

Similarly, long-distance dispersal from GH to GL is given by: 

 𝛾𝛾𝐻𝐻,𝐿𝐿,𝑡𝑡 = (𝑁𝑁 − 𝑛𝑛)− 𝛾𝛾 ∗   
∑ ∑ � (𝑖𝑖,𝑗𝑗)| 𝑠𝑠𝑖𝑖,𝑗𝑗,𝑡𝑡= 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�∗𝑗𝑗𝐽𝐽

𝑗𝑗
𝐼𝐼
𝑖𝑖

∑ 𝐼𝐼∗(𝐽𝐽−𝑗𝑗+1)𝑗𝑗
𝑖𝑖

 , 𝛾𝛾 > 0          (7b) 

In Eq. (7a), for any vine (i, j), 𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡 is inversely proportional to the distance from the shared 

boundary (i.e., column j for GH and column N-n for GL). We choose a power-law specification 

because it allows the disease long-distance diffusion to have new infection foci emerging beyond 

the disease invading front, which is consistent with modeling the wind dispersal of insects 

(Gibson 1997; Marco, Montemurro, and Cannas 2011). Parameter 𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡 is also proportional to 

the total number of Infective vines in GL, weighted by their column position n (numerator in Eq. 

7a). Weighting each Infective vine by its column position n allows vines closer to the bordering 

column to contribute more to the externality than vines situated farther from the boundary (i.e., 

cell-level distance dependence). The denominator in Eq. (7a) allows the multiplier of the power-

law expression to vary between 0 and 1 as the number of Infective vines in GL varies between 0 

and M*N (i.e., density dependence). In the baseline case, we initialize the disease in GL and the 

disease spreads to GH according to Eq. (7a). Once vines in vineyard GH become Infective, they 

can act as a source of infection for Healthy vines in vineyard GL according to Eq. (7b), thus 
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making the externality bidirectional.5 Note that this power-law specification allows local 

management and dispersal to take place at different spatial scales, a modeling challenge 

identified by recent bioeconomic studies (Aadland, Sims, and Finnoff 2015). This specification 

of dispersal is novel in that it allows private actions of one manager in one management unit (i.e., 

the cell) to have repercussions not only on neighboring units but also on non-neighboring units 

that are managed by a different manager. Combined with short-distance dispersal, this distance 

and density dependent specification of long-distance dispersal allows testing whether within-

parcel spatial considerations are also important for generating externalities. This is in contrast to 

extant resource and environmental economics literature, which assumes that spatial 

considerations only matter in that they define the spatial limit to private actions, and that 

managers ignore how their management in one cell affects payoffs through multi-cell dispersal. 

For descriptions of probabilities c, d, and f, we refer the reader to Atallah et al. (2015). Short- 

and long-distance disease diffusion parameters are presented in Table 1a and Figure 1. 

[Insert Table 1a here] 

[Figure 1] 

 

4. Computational experiments and solution frameworks 

We conducted Monte Carlo experiments, each consisting of a set of 1,000 simulations. 

Experiments differ based on the strategy pairs employed in both vineyards to control the disease. 

Outcome realizations for a given run within an experiment differ due to random location of 

initially infected vines in the grid where the disease is initialized (GL, for the baseline case), and 

                                                           
5 In applications where the externality is asymmetric (e.g., prevailing winds), γ can be given 
different values in Eq. 7a and Eq. 7b. Setting γL,H,t. and γH,L,t to zero collapses the disease 
diffusion model to a case with no externality (Atallah et al. 2015). 
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stochastic disease diffusion within and between vineyards. Data collected over simulation runs 

are the NPV realizations under each strategy pair.  

4.1. Model initialization 

Grapevines are initialized as Healthy and of age equal to zero in both vineyards GH and GL (high- 

and low-valued vineyard, respectively). At t=1, seven percent of the grapevines in GL are chosen 

at random from U (0, M*N) to transition from state Healthy to state Exposed-undetectable.6 

Subsequently, the disease spreads to Healthy vines within GL according to the Markov transition 

process given by Eq. (2) and Eq. (5). The Infective vines in GL act as a primary source of long-

distance disease diffusion to the Healthy vines in GH. The disease spreads from GL to GH 

according to the distance- and density-dependent diffusion function 𝛾𝛾𝐿𝐿,𝐻𝐻,𝑡𝑡  (Eq. 7a). 

Subsequently, Infective vines in GH act as a source of reinfection in GL according to the distance- 

and density-dependent diffusion function  𝛾𝛾𝐻𝐻,𝐿𝐿,𝑡𝑡  (Eq. 7b) and so on. Economic parameters are 

presented in Table 1b. 

[Insert Table 1b here] 

4.2. Nonspatial, spatial, and fire-break strategies 

Nonspatial strategies (strategies 1 to  8, Table 2) consist of removing and replacing vines based 

on symptoms alone (Infective-moderate; Infective-high) or based on symptoms and age of 

individual vines (Young: 0-5 years; Mature: 6-19 years; Old: 20 years and above).7 In the subset 

of spatial strategies (strategies 9 to 18, Table 2), the manager removes and replants symptomatic 

                                                           
6 This initialization reflects findings indicating that primary infection sources are randomly 
spatially distributed (Cabaleiro et al. 2008). The disease is initialized in GL assuming a higher-
valued vineyard is not likely to purchase infected plant material. In the sensitivity analysis 
sections, we consider the opposite case.  
 
7 A manager might decide to strategically remove younger vines, which exhibit higher risk of 
transitioning from the Exposed to the Infective state than their older counterparts (probability d in 
Eq. 5). 
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vines (Infective-moderate) and tests their neighbors. Neighboring vines are removed and 

replaced if they test positive. In that sense, the manager's spatial disease control decisions are 

based on a vine’s own state and the state of vines in neighboring cells. For example, according to 

strategy ImNS (table 2), vines in cells (i-1, j) and (i+1; j) would be removed and replaced based 

on the state of vine in cell (i,j); according to strategy ImNSEW,  vines in cells (i-1, j), (i+1; j), (i, j-

1) and (i, j+1) would be removed and replaced based on the state of vine in cell (i,j), and 

similarly for all within-grid, spatial strategies.  

The third subset of strategies includes fire-break strategies that consist of removing (without 

replanting) vines in the border columns of a vineyard in order to create ‘fire-breaks’ or ‘buffer 

zones’ that would reduce long-distance disease diffusion between vineyards (Strategy 19 to 

Strategy 57 in Table 2). Fire-break strategies are intended to decrease the effect of spillovers 

between vineyards and can give a manager control over their disease risk. All strategies are 

available to both managers.  

[Insert Table 2 here] 

4.3. Solution frameworks and game theoretic solution concepts 

We employ the objective function (Eq. 1) to rank the vineyard ENPVs under the alternative 

disease control strategy pairs. We first solve the social planner problem and cooperative solution 

(C). The solution to these problems is relevant for situations where one vineyard management 

firm manages contiguous vineyards that produce wine grapes of different qualities. Second, we 

solve for the noncooperative solution (NC). Third, whenever the cooperative surplus is strictly 

positive, we find the cooperative solution that satisfies the Nash bargaining framework  
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Social planner. The social planner chooses the pair of disease management strategies 

(𝒲𝒲𝐻𝐻 ,𝒲𝒲𝐿𝐿) that maximizes the total payoff (ENPVT), the sum of the expected net present values 

of GL (ENPVL) and GH (ENPVH). The following maximization problem is solved: 

  𝑚𝑚𝑚𝑚𝑚𝑚
(𝒲𝒲𝐻𝐻 ,𝒲𝒲𝐿𝐿) 

 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐻𝐻 + 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐿𝐿,            (8a) 

subject to: 

  𝐸𝐸(𝒔𝒔𝑖𝑖,𝑗𝑗,𝑡𝑡+1) = 𝑷𝑷𝑇𝑇 𝒔𝒔𝑖𝑖,𝑗𝑗,𝑡𝑡,            (8b) 

and 

  𝐸𝐸(𝒔𝒔𝑚𝑚,𝑛𝑛,𝑡𝑡+1) = 𝑷𝑷𝑇𝑇 𝒔𝒔𝑚𝑚,𝑛𝑛,𝑡𝑡            (8c) 

where Eq. (8b) and Eq. (8c) are the cell-level infection state transition equations in GH and GL, 

respectively. Note that the managers do not face a common or shared state variable: each 

manager contends with the stochastic evolution of the disease in his vineyard (Eq. 8b and 8c) 

while not knowing the status of the disease in the neighboring vineyard. They only observe the 

control strategy being adopted by the neighboring manager (expect for the simultaneous-move 

case). 

Noncooperative disease control. We use the Nash equilibrium solution concept to solve a 

simultaneous-move game where the managers do not cooperate and do not share any information 

about their strategies. We use the subgame perfect Nash equilibrium concept to solve a 

sequential game with asymmetry of information where one player moves first and the other 

player makes his choice accordingly (Tirole, 1988). In both simultaneous and sequential move 

cases, we consider situations where the disease starts in GL and in GH.  

Cooperative disease control: Nash bargaining game. To solve the cooperative disease control 

game, we use the static axiomatic approach, specifically the Nash bargaining game (Nash 1953; 

Binmore, Rubinstein, and Wolinsky 1986). The Nash bargaining game here is similar to the one 
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used in Munro (1979) to solve for the payoffs in a static, cooperative game with side payments 

and fixed disagreement payoffs. The relationship between the two players, as described by Nash 

(1953), interpreted by Luce and Raiffa (1967, p. 138), and applied in Munro (1979) and others, 

consists of the players entering in a binding agreement at the beginning of the game whereby 

each receives the return they would expect without an agreement and half of the cooperative 

surplus. If the two vineyards are cooperatively managed, the two managers solve the Nash 

bargaining game, the solution to which is the unique pair of cooperative payoffs 

(𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐻𝐻𝐶𝐶 ,𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐿𝐿𝐶𝐶) that solves the following maximization problem (Nash 1953; Munro 1979; 

Sumaila 1997):  

  𝑚𝑚𝑚𝑚𝑚𝑚
{𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐻𝐻,   𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐿𝐿}

 (𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐻𝐻𝐶𝐶 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐻𝐻𝑁𝑁𝑁𝑁) (𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐿𝐿𝐶𝐶 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐿𝐿𝑁𝑁𝑁𝑁),                    (9) 

subject to: 

   𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐶𝐶 ≥ 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑁𝑁𝑁𝑁,                 (10) 

and subject to the disease diffusion functions in GH (Eq. 8b) and GL (Eq. 8c). The maximand in 

Eq. (9), known as the Nash product, is the product of the differences between the cooperative 

and noncooperative payoffs from GH and GL, and inequality (10) is the incentive compatibility 

constraint. Under the standard axioms of bargaining theory, Eq. (9) has the following unique 

solution (Muthoo 1999):8  

  𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐻𝐻𝐶𝐶 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐻𝐻𝑁𝑁𝑁𝑁 + 1
2

 (𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑇𝑇𝐶𝐶 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑇𝑇𝑁𝑁𝑁𝑁)           (11) 

  𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐿𝐿𝐶𝐶 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐿𝐿𝑁𝑁𝑁𝑁 +  1
2

 (𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑇𝑇𝐶𝐶 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑇𝑇𝑁𝑁𝑁𝑁)          (12) 

In the solution described by Eq. (11) and Eq. (12), 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐻𝐻𝑁𝑁𝑁𝑁and 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐿𝐿𝑁𝑁𝑁𝑁 are the expected 

noncooperative payoffs (i.e., the disagreement points) for GH and GL, respectively and 
                                                           
8 The axioms are individual rationality, invariance to equivalent utility representations, 
symmetry, and independence of irrelevant alternatives. 
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(𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑇𝑇𝐶𝐶 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑇𝑇𝑁𝑁𝑁𝑁) is the expected cooperative surplus. The expected cooperative surplus is 

defined as the difference between the total expected cooperative payoff (𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑇𝑇𝐶𝐶 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐻𝐻𝐶𝐶 +

 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐿𝐿𝐶𝐶) and the total expected noncooperative payoff (𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑇𝑇𝑁𝑁𝑁𝑁 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐻𝐻𝑁𝑁𝑁𝑁 + 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐿𝐿𝑁𝑁𝑁𝑁). The 

expected cooperative surplus is also a measure of the Pareto-inefficiency caused by 

noncooperative disease control.9  

 

5. Externality control, heterogeneity and strategic behavior 

5.1. Social planner and cooperative control 

If the vineyards are managed by a single entity, or a social planner, the total payoff is highest 

($122,000/acre) when the disease is managed in both vineyards under strategy ImNS, which 

targets symptomatic vines and their two within-column neighbors (Table 3). If the vineyards are 

individually managed and the managers agree to cooperatively control the disease, the Nash 

bargaining solution consists of (ImNS, ImNS) with payoffs (80, 42) after the managers equally 

share the cooperative surplus according to Eq. (11) and Eq. (12) (Table 3). 

[Insert Table 3 here] 

5.2. Noncooperative control 

In a simultaneous game, we find a unique Nash equilibrium pair of strategies that consists of 

no control in either vineyard, with payoffs (60, 22) for the managers of the high, and low-valued 

vineyards, respectively (Table 3; see Table A1 in Appendix for the payoff matrix). In a 

sequential game where the low-valued vineyard moves first, (no control, no control) is the 

subgame perfect Nash equilibrium. The payoffs from the solution to the Nash bargaining 

problem indicate that, if the two vineyard managers cooperate and agree to implement spatial 

                                                           
9 Our result is a special case of the solution to the generalized (or asymmetric) Nash bargaining 
game where players have the same ‘bargaining power’ (Muthoo 1999, p. 35).  
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Strategy ImNS in their respective vineyards, there is a cooperative surplus of $40,000 for the two 

acres. This surplus is statistically significant at the 1% level and represents a welfare (ENPVT) 

gain of approximately 47% over the noncooperative outcome. These benefits to cooperation are 

consistent with previous findings from studies on the cooperative management of fisheries 

(Sumaila 1997) and nuisance wildlife species (Bhat and Huffaker 2007). 

Interestingly, we find that the social planner solution can be achieved, without cooperation, 

when the high-value manager moves first. In that case, his optimal strategy is spatial control 

ImNS. Given GH’s commitment to spatially control the disease, GL’s value of control increases 

due to the strategic complement nature of disease (or pest) control with neighbor-to-neighbor 

spillovers (Fenichel, Richards, and Shanafelt 2014).  GL’s optimal strategy is spatial control, 

ImNS, as well, with payoff $31,000/acre. The strategic complement nature of transboundary 

disease control also explains why (no control, no control) is the subgame perfect Nash 

equilibrium strategy in a sequential game where GL moves first as well as in a simultaneous 

game.   

5.3. Welfare effects of the externality specification  

We measure the welfare implications of including the detailed within-parcel, spatial, 

biophysical process in our specification of the externality and its control.  We do so by 

comparing the model’s outcomes to those obtained from management decisions using strategies 

that ignore the within-parcel spatial dynamics of the biophysical process.  We restrict the set of 

disease control strategies to those that are nonspatial and those that consist of ‘fire-breaks’ (1 

through 8, and 10 through 57, Table 2). Including the inter-parcel, spatial strategies leads to 

strategy (ImNS, ImNS), with total payoffs of $122,000. Ignoring within-parcel spatial 

considerations leads to the strategy pair (no control, no control) and total payoffs of $82,000, 
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thus overestimating the social cost of the externality in the social planner setting, the Nash 

bargaining game, and the noncooperative sequential game where GH moves first. 10 For the 

settings where (no control, no control) is the subgame Nash perfect equilibrium strategy pairs – 

the simultaneous game and the sequential game where GL moves first – welfare remains 

(unsurprisingly) the same regardless of whether or not within-parcel spatial considerations are 

taken into account.   

5.4. Dynamic sensitivity analysis  

We conduct a dynamic sensitivity analysis to examine the effect of changes in the values of 

key within-parcel and across-parcel disease diffusion parameters on the externality’s welfare 

impacts. These parameters are the short-distance parameter 𝛼𝛼 in Eq. 6; the long-distance 

diffusion parameter 𝛾𝛾 in Eq. (7a) and Eq. (7b); the vineyard size parameters I, J, M, and N in 

these same equations; and disease initialization.  

First, we find that reducing the value of the short-distance parameter 𝛼𝛼 by half (from 4.2 to 

2.1) causes aggregate welfare to increase by 52% in a noncooperative, simultaneous game or in a 

noncooperative, sequential game where GL moves first and none of the managers controls the 

disease. The increase in welfare ensuing from a reduction in 𝛼𝛼 is more modest, 3%, in a 

nooncooperative game where GH moves first or in a Nash bargaining game where both managers 

spatially control the disease (percent changes are obtained by comparing payoffs in Table 4 with 

those in Table A2 of the appendix). Reduction in the value of the short-distance parameter can be 

achieved by increasing the distance between grapevines within the grid’s columns and suggests 

that individual, within-parcel choices about the physical configuration of the vineyard can 

directly impact the welfare effects of an externality.  

                                                           
10 This welfare increase is for two one-acre vineyards, over 50 years. 
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Second, we solve the baseline problem for larger and smaller values of the long-distance 

transmission coefficient 𝛾𝛾. 11  For a larger long-distance transmission coefficient (i.e., where 

disease transmission is characterized by a more rapid decline over space and the vineyards are 

therefore less ecologically connected), the manager of the lower-value vineyard spatially controls 

the disease, in which case the GH does not need to control (Table A3-a of the appendix). The 

outcome (no control, ImNS) does not depend on the type of game played. If the long-distance 

transmission coefficient has a smaller value than in the baseline case, none of the managers 

control the disease in any of the noncooperative game solutions and the strategy pair (ImNS, Exit) 

is the central planner’s solution (Table A3-b of the appendix). These results identify an upper 

bound for the long-distance diffusion coefficient where the externality does not trigger any 

control in the neighboring vineyard, and a lower bound where the externality is large enough to 

warrant removal of the lower-valued vineyard by a central planner. Changes in the value of 𝛾𝛾 can 

be achieved by modifying the biophysical environment that affects the extent to which the 

vineyards are ecologically connected, such as physical barriers or other pest management 

practices that reduce the flow of insect vectors. 

Third, we explore the effect of the relative vineyard size. Recall that in the baseline case, GH 

is larger than GL, the NE strategy pair is (no control, no control), and the noncooperative payoffs 

are 32% lower than the cooperative or social planner payoffs, generated by the strategy pair 

(ImNS, ImNS). If the relative size of the vineyards is reversed (GL larger than GH) or if both 

vineyards are large, we obtain the same strategy pair solutions. The noncooperative, 

                                                           
11 The ratio of new infections caused by long-distance diffusion between vineyards to total new 

infection events is 90% for t=12 months, and decreases to 69%, 34%, and 21% for t=100, 300, 
and 600 months, respectively (results are expected values from 1,000 simulations conducted for 
GH, under the baseline case and a strategy of no control in both vineyards).     
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simultaneous game’s total payoffs are 31 and 41% lower than the cooperative payoffs, if GL is 

larger or both are large, respectively (Table A4- b and c). However, if both vineyards are smaller, 

strategy (ImNS, ImNS) is the strategy pair solution in all frameworks and the externality is 

minimized (Table A4- c). The results from these three vineyard size scenario analysis are driven 

by disease population dynamics: a larger vineyard has a larger population of Susceptible 

grapevines, which speeds disease diffusion and renders disease control less effective (and less 

cost-effective) than a strategy of no control.  

Fourth, we explore the implications of the disease beginning in the high-valued vineyard, as 

opposed to the most likely case where the disease starts in the low-valued vineyard. Initializing 

the disease in GH instead of GL leads to the Nash equilibrium (ImNS, ImNS) no matter whether the 

game is simultaneous or sequential, noncooperative or cooperative (Table A5 of the appendix). 

In the baseline case, an uncontrolled lower-valued vineyard provides a reserve for the disease, 

affects the incentives for control in GH, and leads to the Nash equilibrium (no control, no 

control). 

5.5. Heterogeneity, strategic behavior, and total payoff 

We now turn to addressing whether and how manager heterogeneity affects strategic disease 

control decisions and total payoffs. Although our focus is on strategic (noncooperative) behavior, 

we also solve the Nash bargaining game to gain insight on the differences between cooperative 

and noncooperarive outcomes under increased heterogeneity. To that end, we solve the problem 

for five additional price pairs under all noncooperative and cooperative settings: starting with the 

baseline price pair (Table 4, case 5), we consider four mean-preserving price gap contractions 

(Table 4, cases 1 to 4) and two mean-preserving price gap expansions (Table 4, cases 6 and 
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7).12,13 Results in Table 4 show that the price gap has a substantial influence on the managers’ 

strategic behavior and their payoffs. These results can be discussed in terms of three distinct 

management situations. First, in cases 1 through 4, both managers choose Strategy ImNS 

regardless of whether the game is simultaneous or sequential, cooperative or noncooperative. In 

these cases, prices received for grapes in both vineyards are high enough for the managers to 

afford Strategy ImNS and the price gap is small enough for the incentives of both players to be 

aligned. 

[Insert Table 4 here] 

In contrast, in cases 5 through 7, the price gap is large enough for the managers to have 

different privately optimal disease control strategies. In cases 5 and 6, the strategy pair (no 

control, no control) constitutes a unique Nash equilibrium in a simultaneous game. In the 

baseline case 5, GL opts for no control when he moves first, while GH opts for ImNS when he 

moves first. Then, because of strategic complementarity in disease control, the second mover 

chooses the same strategy as the first mover. The unique subgame perfect Nash equilibrium is 

therefore (no control, no control) if GL moves first and (ImNS, ImNS) if GH moves first. In case 6, 

however, due to the low price received by GL, (no control, no control) is the Nash equilibrium of 

the simultaneous game and the subgame perfect Nash equilibrium in the sequential game, no 

matter which manager moves first (Table 4, case 6). The greater heterogeneity in prices in case 6 

also causes the cooperative solution to be different compared to case 5. Here, the Nash 

bargaining solution consists of GH paying GL ($34,000/acre) to exit production (Strategy 16Col 

or Exit), in which case there is no externality and GH controls the disease in his vineyard through 

                                                           
12 Note that the price gap is equal to zero in case 1 and it increases as we move to case 7.  
 
13 When conducting price expansions, we also increase the quality penalty (linearly with the 
price) up to an upper bound of 70%. 
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strategy ImNS.  After this transfer, both managers are better off compared to the noncooperative 

solution ($97,000 vs. $72,000 for GH and $28,000 vs. $3,000 for GL; Table 4, case 6). The Nash 

bargaining solution improves the aggregate payoffs by 67% when compared with the 

noncooperative solution (percent difference between $126,000 and $75,000 in Table 4, case 6). 

In case 7, the price received by GL is low enough for Strategy 16Col or Exit (exiting production) 

to be privately optimal, in which case GH implements spatial control ImNS regardless of whether 

the game is simultaneous or sequential, cooperative or noncooperative.  

Along the various degrees of manager heterogeneity represented in the six noncooperative 

setting cases (cases 1 through 6, simultaneous and sequential settings), total payoff is 

monotonically decreasing in the level of heterogeneity (i.e., the magnitude of price gap) between 

cases 1 and 6. Cases 6 and 7, on the other hand, represent a range where the relationship between 

price gap (more generally, heterogeneity) and total payoff (more generally, social welfare) 

becomes U-shaped (Figure 2, panel a). The shape of the curve is unchanged in a cooperative 

game but the effect of increased heterogeneity is less pronounced. First, Nash bargaining reduces 

the magnitude of the decline in total payoffs for cases 5 and 6. Second, it shifts the inflexion 

point of the U-shaped curve to the left, that is, the curvature takes place at a lower level of 

heterogeneity (in case 5 instead of case 6) (Figure 2, panel b). Figure 2 shows that there is a 

critical range of heterogeneity in resource value that substantially reduces welfare and that it is 

exactly in this range that cooperative control is welfare-improving in comparison to 

noncooperative control.     

[Insert Figure 2 here] 

 

6. Conclusions 
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In this paper, we examined how metapopulation models and cellular automata can be 

combined to develop a novel distance- and density-dependent specification of externalities that 

acknowledges the importance of inter- and intra-parcel spatial dynamics in the generation and 

control of externalities. Our specification is general in that it can be collapsed to represent 

metapopulation models only, cellular automata models only, or a combination of the two, with 

short-distance diffusion only, long-distance diffusion only, or with both, depending on the 

characteristics of the process generating the externalities.  

We used this specification to solve spatial noncooperative and cooperative games that 

endogenize spatial risk beyond the immediate neighborhood and capture the inter- and intra-

parcel private incentives to control. We found that within-parcel spatial decisions can generate 

the externality and may lead to inefficient outcomes in the decentralized management of public 

bads. We also showed that noncooperative strategic spatial decisions within the parcel can lead 

to efficient outcomes even in the absence of Coasian bargaining (Coase 1960). Finally, we have 

characterized the relationship among resource value heterogeneity, strategic behavior, and total 

payoffs. Our analysis, with heterogeneity, allows of  different, first-move-dependent, 

noncooperative equilibria ranging from no control to spatial control to entire vineyard removal. 

Our work contributes to the growing literature that examines the spatial-dynamic nature of 

externalities by increasing the spatial dimension of the problem and the number of players 

making strategic decisions. We show that increased computational power that has allowed 

researchers to consider larger grids and a greater number of players, can also be used to 

understand the spatial-dynamics within a parcel that determine the generation of externalities and 

private incentives to control. Our results suggest that ignoring the complex biophysical details of 
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the within-parcel spatial dynamics can lead to misleading measures of welfare impacts of 

externalities. 

Our model makes valuable contributions to the literature can be extended to examine other 

types of spatial-dynamic externalities. Yet, it has several limitations that should be addressed in 

future research. For instance, the model does not offer clear insights into the cooperative 

management of externalities in which disagreement payoffs (i.e., noncooperative payoffs) are not 

fixed, agreement renegotiation is needed and there are more than two players. In such situations, 

differential games with N players might be appropriate but solution methods for such games 

require restrictive assumptions about the state equations and game solutions are not guaranteed 

(Bressan 2011). In parallel to the on-going research on whether stable solutions exist, future 

research might use evolutionary or learning dynamics to explore whether solutions to spatial-

dynamic externalities in N-player bargaining games are achievable (Smead et al. 2014). Such 

effort might identify reasons why desirable solutions might not be attainable and the mechanisms 

that might be implemented to increase the likelihood of reaching these solutions.  
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Fig. 1 Short-distance diffusion is governed by 𝛼𝛼 for within-column dispersal and 𝛽𝛽 for across-
column dispersal; Long-distance diffusion between H (right) and L (left) is governed by 𝛾𝛾𝐻𝐻,𝐿𝐿 
(from H to L) and 𝛾𝛾𝐿𝐿,𝐻𝐻 (from L to H). Shaded cell represents Infective vine. 
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Fig. 2 Total payoffs for each of the seven price differential cases, in a noncooperative, 
sequential game where GL moves first (panel a), and in a cooperative, Nash bargaining game 
(panel b). Each data point is an expected value obtained from 1,000 simulations.  
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Table 1 a 
Disease diffusion parameters 
Parameter Description Value Unit 
α Within-column  H to Eu  transition rate 4.2 month -1 
β Across-column  H to Eu  transition rate 0.014 month -1 
γ Distance-dependence, power-law 

parameter 
3 unitless 

τmax Period from planting until fruit bearing 36 months 
 
Sources: Values of parameters α and β are obtained from model calibration in Atallah et 
al. (2014) using data in Charles et al. (2009) with validation using data in Cabaleiro and 
Segura (2006) and Cabaleiro et al. (2008). The value of parameter value γ is obtained 
from Cabaleiro and Segura (1997). Parameter value for τmax is from White (2008).    
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Table 1 b 
Economic parameters faced by managers of vineyards GH and GL 
 
 Vineyard GH  Vineyard GH 
Vineyard layout 
Grid dimensions (rows*columns) 

 
68*23=1,564  

 

49*16=784 

Grid row (vine) spacing (ft.)  4   5 
Grid column spacing (ft.)   7   11 
Revenue parameters 
Per-vine revenue 

 

Random   
 

Random  

Grapes price ($/ton) 
 

5,058 
 

 

 
726 

 
Price penalty (%) 

 

70  
 

0 

Yield (tons/acre) 
 

4.5  

 
10 

Yield (tons/acre/month)  0.375   0.834 
Planting density (vines/acre) 

 
1,564  

 
784 

Yield (tons/vine/year) 
Yield (tons/vine/month)  

0.0029 
0.0002 

 

 

0.0128 
0.0011 

Yield reduction (%)a 
 

Depends on 
 

 
 

Depends on 
 

  
30  

 
30 

  
50  

 
50 

  
75  

 
75 

Cost parameters  
Roguing and replanting ($/vine) 

 
14.6  

 
14.6 

Roguing ($/vine) 
 

8  
 

8 

Testing ($/vine) 
 

2.6  
 

2.6 

Operating costs ($/vine) 
 

3.6  
 

2.8 

      
Discount factor (month -1) b          ρ 0.9959  ρ 0.9959 

a Note that managers are unable to observe yield reduction for each grapevine; instead they 
observe average yield. 
b The discount factor is equivalent to an annual discount rate of 5%. 
Sources: Values for vineyard H’s parameters are from Cooper, Klonsky, and De Moura (2012) 
and values for vineyard L’s parameters are from Verdegaal, Klonsky, and De Moura (2012). 
Grape prices are from the California Department of Food and Agriculture (2014). Removal and 
replanting costs are from Klonsky and Livingston (2009). 
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Table 2 
Disease control strategies: definitions and acronyms 
 
Strategies  Acronym 
Nonspatial strategies  

1 Removing and replacing all vines that are Infective. I 
2 Removing and replacing all vines that are Infective-moderate. Im 
3 Removing and replacing all vines that are Infective-high. Ih 
4 Removing and replacing vines that are Infective-moderate and Young. ImY 
5 Removing and replacing vines that are Infective-moderate and Mature. ImM 
6 Removing and replacing vines that are Infective-moderate and Old. ImO 
7 Removing and replacing vines that are Infective-high and Mature. IhM 
8 Removing and replacing vines that are Infective-high and Old. IhO 

Spatial strategies 
9
  

Removing and replacing Infective-moderate vines in addition to testing their two 
within-column neighbors then removing and replacing those that test positive. 

ImNS 

10  Removing and replacing Infective-moderate vines in addition to testing their two 
across-column neighbors and two-within column neighbors then removing and 
replacing those that test positive. 

ImNSEW 

11  Removing and replacing Infective-moderate vines in addition to testing their four 
within-column neighbors and two across-column neighbors then removing and 
replacing those that test positive. 

ImNS2EW 

12  Removing and replacing Infective-moderate vines in addition to testing their four 
within-column and four within-row neighbors then removing and replacing those that 
test positive. 

ImNS2EW2 

13 Removing and replacing Young, Infective-moderate vines in addition to testing their 
two within-column neighbors then removing and replacing those that test positive. 

ImY-NS 

14 Removing and replacing Mature, Infective-moderate vines in addition to testing their 
two within-column neighbors then removing and replacing those that test positive. 

ImM-NS 

15 Removing and replacing Old, Infective-moderate vines in addition to testing their two 
within-column neighbors then removing and replacing those that test positive. 

ImO-NS 

16 Removing and replacing Young, Infective-moderate vines in addition to testing their 
two across-column neighbors and two-within column neighbors then removing and 
replacing those that test positive. 

ImY-NSEW 

17 Removing and replacing Mature, Infective-moderate vines in addition to testing their 
two across-column neighbors and two-within column neighbors then removing and 
testing those that test positive. 

ImM-NSEW 

18 Removing and replacing Old, Infective-moderate vines in addition to testing their two 
across-column neighbors and two-within column neighbors then removing and 
replacing those that test positive. 

ImO-NSEW 

‘Fire-break’ strategies   
19 Removing all the vines in the bordering column in GL.  1Col 
20 Removing all the vines in two bordering columns in GL.  2Col 
… … … 
34 Removing all the vines in all 16 columns GL.  16Col or Exit 
35 Removing all the vines in the bordering column in GH.  1Col 
36 Removing all the vines in two bordering columns in GH.  2Col 
… … … 
57 Removing all the vines in all 23 columns GH.  23Col or Exit 

 
Note: Strategies are assumed to be implemented at t=24, which corresponds to the moment when initially 
infected vines in GL develop visual symptoms. Note that strategies 25 and 42 correspond to total vineyard 
removal for the smaller and larger vineyards, respectively. 
Source: Nonspatial and spatial strategies are from Atallah et al. (2014).  



40 

 

 

 

 

 

 

 

 

 

 

Table 3 
Expected payoffs under the social planner, noncooperative, and cooperative solutions 

 Expected Payoffs a ($1,000/acre over 50 years) 
Strategies  
(GH, GL) 

Payoff 
to GH 

Payoff 
to GL 

Total 
payoff Surplus b 

Cooperative 
Payoff to GH 

Cooperative 
Payoff to GL 

Social planner solution     
(ImNS, ImNS)  91 (3)c 31 (5) 122 N/A N/A N/A 
 
Cooperative solution       

(ImNS, ImNS) 91 (3) 31 (5) 122 40*** 80 42 
 
Simultaneous game or sequential game, GL moves first   

 

(no control, no control) 60 (3) 22 (1) 82 N/A N/A N/A 
 
Sequential game, GH moves first   

(ImNS, ImNS) 91 (3) 31 (5) 122 N/A N/A N/A 
 

N/A is not applicable. 
a Expectations are obtained from 1,000 simulations; payoffs are computed for the baseline prices pH=$5,058/ton and 

pL=$726/ton.   
b Cooperative Surplus= Total payoff (Cooperative)-Total payoff ( Noncooperative) 
c Standard deviations in parentheses. 
*** Statistically significant at the 1% level. 
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Table 4 
Solution strategy pairs and expected payoffs; disease starts in GL.  
 
 Prices  a Setting Solution strategy pairs Expected payoffs 

Case 
 

 

  
  

 ($/ton)   ($1,000/acre)  
1 1912, 1912 Simultaneous  ImNS, ImNS 17, 150 167 

Sequential-GL moves first ImNS, ImNS 17, 150 167 

Sequential-GH  moves first ImNS, ImNS 17, 150 167 

      
2 2198, 1626 Simultaneous  ImNS, ImNS 35, 121 156 

Sequential-GL moves first ImNS, ImNS 35, 121 156 

Sequential-GH  moves first ImNS, ImNS 35, 121 156 

      
3 2485, 1339 Simultaneous  ImNS, ImNS 54, 92 146 

Sequential-GL moves first ImNS, ImNS 54, 92 146 

Sequential-GH  moves first ImNS, ImNS 54, 92 146 

      
4 2771, 1053 Simultaneous  ImNS, ImNS 72, 62 134 

Sequential-GL moves first ImNS, ImNS 72, 62 134 

Sequential-GH  moves first ImNS, ImNS 72, 62 134 

      
5 3058, 766 

(baseline) 
Social planner b ImNS, ImNS 91, 31 121 

Simultaneous  no control, no control 60, 22 82 

Sequential-GL moves first no control, no control 60, 22 82 

Sequential-GH  moves first ImNS, ImNS 91, 31 121 

Nash bargaining  b ImNS, ImNS 80, 42 121 
      
6 3344, 480 Social planner b ImNS, Exit 131, -5 126 

Simultaneous  no control, no control 72, 3 75 

Sequential-GL moves first no control, no control 72, 3 75 

Sequential-GH  moves first no control, no control 72, 3 75 

Nash bargaining  b ImNS,  Exit 97, 28 126 
      
7 3631, 194 Simultaneous  ImNS,  Exit 151, -5 146 

Sequential-GL moves first ImNS,  Exit 151, -5 146 

Sequential-GH  moves first ImNS,  Exit 151, -5 146 
a  Recall that prices in cases 1 through 6, and prices in cases 6 and 7 are obtained through a mean-preserving 

contraction and a mean-preserving expansion of prices in the baseline case (case 5), respectively.   
b We only report the social planner  and Nash bargaining solutions when they are different from the 

noncooperative solutions. 
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Appendix 
 

Table A1 
Normal form game payoff matrix for the baseline case (payoffs in $1,000) 

  
GL 

  
no control a ImY ImNS 

GH 
no control 60 b 22 81 -11 98 -5 
ImY 41 1 81 -11 93 -5 
ImNS -20 1 25 -11 91 31 

 

a Underbars indicate a player’s payoff of dominant strategy, given the strategy of the other player. 
b Payoffs of the welfare-maximizing solution pair are in bold. 
 

 

Table A2 
Effect of a smaller short-distance diffusion parameter (α=2.1): normal 
form game payoff matrix (payoffs in $1,000) 

  
GL 

  
no control ImNS 

GH no control 60 23 98 27 
ImNS -14 23 93 32 

 

a Underbars indicate a player’s payoff of dominant strategy, given the strategy of the other player. 
b Payoffs of the welfare-maximizing solution pair are in bold. 
 

 

Table A3 
Effect of (a) larger (γ=3.5) and (b) smaller (γ=1.5) long-distance diffusion 
parameter: normal form game payoff matrix (payoffs in $1,000). 
(a) γ=3.5 GL 

  
no control ImNS  Exit 

 
no control 78 a 23 103 29 b 93 -5 

GH ImNS 12 23 95 31 110 -5 

 
Exit -11 23 -11 31 -11 -5 

(b) γ=1.5 GL 
  no control ImNS Exit 
 no control -13 19 34 -77 52 -5 
GH ImNS -316 21 13 14 94 -5 
 Exit -11 23 -11 30 -11 -5 

 

a Underbars indicate a player’s payoff of dominant strategy, given the strategy of the other player. Two underbars indicate the 
payoffs of the Nash equilibrium strategy pair. 
b Payoffs of the welfare-maximizing solution pair are in bold. 
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Table A4 
Effect of vineyard relative size: normal form game payoff matrix; 
(a) GL is larger than GH; (b) vineyards are both big; (c) vineyards 
are both small (payoffs in $1,000) 
(a) GL larger  GL 

  
no control ImNS 

GH no control -59 a 298 -59 285 

 
ImNS -84 384 -65 414 b 

      
(b) Both large GL 
  no control ImNS 
GH no control 71 -37 104 -44 
 ImNS 10 -37 103 -44 
      
(c) Both small GL 
  no control ImNS 
GH no control 243 22 345 24 
 ImNS 208 23 368 32  
 

a Underbars indicate a player’s payoff of dominant strategy, given the strategy of the 
other player. Two underbars indicate the payoffs of the Nash equilibrium strategy pair. 
b Payoffs of the welfare-maximizing solution pair are in bold. 
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 Table A5 
Expected payoffs under the social planner, noncooperative, and cooperative solutions,  
case where disease starts in GH  

Setting Solution strategy pairs  Expected Payoffs a  

 
𝐺𝐺𝐻𝐻, 𝐺𝐺𝐿𝐿 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐻𝐻;𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝐿𝐿 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉𝑇𝑇 

    
    Simultaneous  ImNS, ImNS 5, 76 81 
Sequential-GL moves first ImNS, ImNS 5, 76 81 
Sequential-GH  moves first ImNS, ImNS 5, 76 81 
    
a Expectations are obtained from 1,000 simulations over 50 years; payoffs are in $1,000/acre and are 

computed for the baseline prices pH=$5,058/ton and pL=$726/ton.   
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