
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


1 
 

 
 
 
 

Adaptive local parametric estimation of crop yields: Implication for 
crop insurance ratemaking 

 
 
 
 

Zhiwei Shen1*  Martin Odening1  Ostap Okhrin 2 

1 Department of Agricultural Economics, Humboldt Universität zu Berlin, Berlin, Germany 
2 Chair of Statistics and Econometrics esp. Transportation, Dresden University of Technology, 

Dresden, Germany 

*Corresponding author: zhiwei.shen@agrar.hu-berlin.de 

 

 

 

 

 

 

 

 

Paper prepared for presentation at the 156th EAAE Seminar  

‘Prospects for agricultural insurance in Europe’ 

Wageningen, Netherlands, October 3-4, 2016 

 

 

 

 

Copyright 2016 by [Zhiwei Shen, Martin Odening and Ostap Okhrin].  All rights reserved.  Readers may 
make verbatim copies of this document for non-commercial purposes by any means, provided that 
this copyright notice appears on all such copies. 



2 
 

Adaptive local parametric estimation of crop yields: Implications for crop 
insurance ratemaking 
Zhiwei Shen, Martin Odening, Ostap Okhrin 

Abstract 

A rigorous estimation model of crop yields which ensures accurate and actuarially sound insurance 
premiums is of utmost importance to maintain sustainable and viable risk management solutions for 
producers, insurers, and governments. A major challenge in estimating crop yield models arises from 
non-stationarity of the data generating process due to technological change and climate change. In 
this paper, we introduce a local adaptive parametric approach to deal with the non-stationarity of 
crop yields and to estimate the time-varying parameters of crop yield models. Results from an 
empirical application to major crops in the U.S. indicate that the proposed model precisely captures 
the evolution of crop yield risks: yield risks for corn and cotton are decreasing, but are increasing for 
winter wheat. In terms of forecasting performance, the adaptive local parametric model, in general, 
outperforms the linear spline model that is commonly used in the current rating methodology. A 
rating analysis suggests that the proposed model has the potential to obtain more accurate rates and 
that most current insurance premium rates are overestimated for corn and cotton, but are 
underestimated for winter wheat. 

Keywords: crop yields; adaptive estimation; local parametric approach; crop insurance 
pricing. 

JEL codes: C14; Q19 

 

1 Background 

Since worldwide crop insurance programs have become increasingly expensive, it is not surprising 
that considerable attention has been paid to recover accurate premium rates of crop insurance 
contracts (Ker and Goodwin, 2000; Norwood et al., 2004; Ozaki et al., 2008; Annan et al., 2014; Ker et 
al., 2016). The estimation of yield distributions is of paramount importance for designing and rating 
crop insurance. A major challenge in estimating crop yield models arises from non-stationarity of the 
data generating process, i.e., the evolution of crop yield distributions over time cannot be adequately 
described by a simple model with constant parameters. For instance, an important feature of 
agricultural crop yields is that they usually show an upward trend over time and that deviations from 
the trend (residuals) frequently exhibit heteroscedasticity (see Figure 1 (a)). Major causes of non-
stationarity are climate change and technological change. McCarl et al. (2008), for example, find that 
the mean and variance of key climate variables change over time. This, in turn, has a significant effect 
on average crop yields and yield variability. Tolhurst and Ker (2015) investigate the impact of 
technological developments on crop yields and conclude that technological change not only shifts 
the mean and variance of yields, but also affects other moments of the yield distribution. These 
changes make it difficult to determine the data generating process and to accurately model yield 
distributions using observed time series data. Hence, historical crop yield distributions need to be 
regularly updated. Otherwise, insurance losses and insurance premiums derived from these yield 
models will likely be biased.  

The literature on crop yield modelling offers various approaches to deal with non-stationarity. 
Typically, a two-stage estimation procedure is applied that in a first step removes a trend component 
and heteroscedasticity from the data. Afterwards, a parametric or non-parametric distribution is 
fitted to the detrended data. The dynamics of average yields are captured by either a deterministic 
or a stochastic trend. Deterministic time trend models are dominant in the literature and consist of a 
simple linear trend, polynomial trend (Just and Weninger, 1999), and spline functions (Harri et al. 
2011) (see Figure 1(a)). Trends using stochastic approaches have been estimated by the Kalman filter 
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(Kaylen and Koroma, 1991) or autoregressive integrated moving average (ARIMA) process (Goodwin 
and Ker, 1998). Harri et al. (2009) provide an empirical comparison of the deterministic and 
stochastic time trend models and find limited support for stochastic trends in crop yields. A time 
trend model only captures mean shifts of the crop yield distribution, but a growing body of empirical 
evidence has shown that higher-order moments also vary over time due to climatic change or 
technological change (Yu and Barcock, 2010; Edgerton et al., 2012). To account for the adjustment of 
heteroscedasticity in historical yields, Skees et al. (1997) assume proportional heteroscedasticity over 
time, i.e., that the standard deviations of the residuals increase proportionally with increases in 
yields. Harri et al. (2011) doubt the universal validity of the assumption and find that arbitrarily 
imposing a specific form of heteroscedasticity in insurance rate calculations limits actuarial 
soundness. To capture the non-stationarity of other higher moments, Zhu et al., (2011) propose a 
time-varying yield distribution model by allowing location, scale, skewness, and kurtosis parameters 
to evolve over time, while Tolhurst and Ker (2015) suggest using a mixture of Normals with 
embedded trend functions to account for potentially different rates of technological change in 
different components (e.g., mean, variance, and skewness) of the yield distribution. 

A further question related to the non-stationarity of the data generating process concerns the 
appropriate length of the sample period to be used for the calculation of crop insurance rates. In 
case of time-varying parameters, a shorter interval of historical data might be appropriate for 
estimation purposes. In the U.S., for example, the Risk Management Agency (RMA) uses less than 20 
years of loss observations to calculate crop insurance premiums, arguing that yield losses from more 
than 20 years ago may not be representative for current agricultural risk despite data normalization 
(Ker et al., 2016). On the other hand, researchers have casted doubt on the use of short samples of 
available data since it may not be sufficient to properly determine crop yield loss distributions from 
short historic data, such as 30 years of data (Coble et al., 2010; Smith and Goodwin, 2010). The lack 
of historical data may lead to incorrect estimations of time trend and yield distribution and 
introduces a new model risk into the insurer's decision problem (Courbage and Liedtke, 2003). 
Indeed, different sample period selections, such as 20 or 30 years, are very likely to lead to different 
mean forecasts and risk assessments for crop yields (see Figure 1 (b) and Figure A1 (b)). Thus, 
insurers face a trade-off when choosing the appropriate sample length: in general, shorter intervals 
will result in larger variations compared to longer intervals, while longer intervals lead to increases in 
the modelling bias. The difference in using different sample lengths seems more prevalent in 
detrending corn yields (Figure A1) than detrending wheat yields (Figure 1). Despite the importance of 
this issue, studies that investigate the impacts of sample length selection in crop insurance pricing 
are rare. Woodard (2014) compares weather distributions based on 30 year data and 115 year data 
and finds little efficiency gains in ratemaking from using the longer period. On the other hand, Ker et 
al. (2016) report significant differences in the rating performance depending on the length of sample 
period of crop yield data. 

A feature of the aforementioned approaches dealing with non-stationarity of crop yields is that they 
allow for some or all of model parameters to vary over time based on all of the observed historical 
data. An identification of these models requires either structural assumptions about the transition 
process over time or presumes that the parameters follow smooth functions of time. For instance, 
the linear spline models commonly used by the RMA require knowledge about the number and time 
of structural breaks. Meanwhile, answers to the question of optimal sample period length have 
remained inconclusive and the assumption of an arbitrary length of a rolling estimation window for 
all time points is rather restrictive. To address these limiting issues, we pursue an alternative flexible 
approach that is based on the local parametric assumption, i.e., an arbitrary nonstationary process 
can be well approximated by a simple time-homogeneous model within a given time interval (c.f. 
Spokoiny 2009). Such an approach makes sense, if the variability of yields is high compared with the 
variability of the underlying model parameters, so that the latter can be estimated from more recent 
data. A cornerstone of the adaptive local estimation procedure is the detection of change points at 
which the homogeneity assumption of the model parameters does no longer hold. The estimation 
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procedure embeds a multiple change point test that rests on a small modelling bias condition. The 
small modelling bias condition means that the distance between the true and the estimated model 
parameter is bounded by a small constant with a high probability (in Section 2 we provide a formal 
definition of the small modelling bias condition). Based on this condition, the adaptive local 
estimation procedure identifies the largest data set for which a homogeneous parametric model can 
be assumed. In a way, this approach addresses the bias-variance trade-off in statistics: the longer the 
estimation period, the lower the variance of the parameter estimate, but increasing the data set 
entails the risk that the data no longer follow the same parametric model. The small modelling bias 
condition provides a well-defined solution for dealing with this trade-off. The theoretical properties 
distinguish this method from other heuristic procedures that also target the bias-variance trade-off, 
such as rolling window estimation or exponential smoothing. Recently, this local parametric 
approach has been successfully applied in many research fields, such as localizing temperature risk 
(Härdle et al., 2016), yield curve term structure modelling (Chen and Niu, 2014), localized realized 
volatility forecasting ( Chen et al., 2010), and time-varying GARCH modelling (Cížek et al., 2009). 

The objective of this study is to present a flexible and parsimonious local model to capturing the non-
stationary nature of crop yields and to adaptively estimate crop yields and insurance rates. To be 
specific, we propose the adaptive local parametric approach to model county-level crop yield data in 
the U.S. We begin with a simple linear time trend model as the underlying local parametric model. 
The time-varying parameters of the local model are determined via adaptive data-driven statistical 
techniques. The idea is to find for each time point an optimal longest past time estimation interval 
for which the assumption of a (local) parametric model with constant parameters holds. The 
selection of the optimal longest interval is crucial to the procedure and is accomplished by a 
backward sequential testing procedure for each considered interval candidate. To examine the 
performance of the proposed model, we conduct an out-of-sample forecast as well as an insurance 
rating game that mimics the rating procedure applied by the RMA in the U.S. federal crop insurance 
program.  

The contribution of this article to the existing literature is threefold. First, to the best of our 
knowledge, this is the first time to introduce a local adaptive procedure to deal with the non-
stationarity of crop yields and to estimate the time-varying parameters of crop yield models. The 
results indicate that this approach has the potential to improve the quantification of crop yield risks 
and the estimation of crop insurance premiums. Second, the study contributes to the longstanding 
debate on the selection of the optimal sample period for crop yield data. Unlike previous ad hoc 
analyses, this paper offers a novel data-driven perspective to adaptively determine the appropriate 
sample length via a backward sequential testing procedure. Third, our empirical results contribute to 
the “increasing-risk-hypothesis” that has been raised in the climate change literature and has 
immediate implications for the pricing of crop insurance (Carriquiry and Osgood, 2012; Wang et al., 
2013). 

The rest of the paper is structured as follows. Section 2 describes the local adaptive crop yield model 
framework. We provide a brief overview of the appealing statistical properties of this approach and 
then describe the local parametric estimation procedure in detail, particularly the local change point 
test and the adaptive estimation. In Section 3, the model is applied to crop yield data such as winter 
wheat, corn, soybean, and cotton in the U.S. We present the empirical models for two representative 
counties for each crop, followed by a discussion of their estimation results. We also presents two 
assessments of forecast performances of different models in terms of crop yields and insurance 
rates, respectively. The final section provides a conclusion and discussion on the potential of local 
adaptive crop yield models and offers suggestions for further research. 



5 
 

             
(a) Winter Wheat in Ellis County, Kansas 

 
(b) Linear time trend estimation based on rolling window data samples 

Figure 1. Scatter plot and time horizon selection 

 

2 Adaptive Local Parametric Approach 

To capture the dynamics of crop yields, we consider a local perspective and develop an adaptive 
parametric crop yield model. The underlying idea is to find an optimal longest estimation window 
length (so-called interval of homogeneity) over which one fits a local parametric model (such as a 
simple linear trend) with constant parameters. For each time point, the interval of homogeneity is 
determined in a backward sequential testing procedure. At the beginning of the procedure, a small 
past-time interval of each point is taken to estimate the (locally) constant parameters. Then, the 
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interval is iteratively extended and tested for local homogeneity of estimated parameters. The 
procedure ends when local homogeneity is rejected, i.e., a significant difference is detected in the 
values of the estimated parameters between current and previous intervals. At the end of the 
procedure, the longest local estimation window is chosen and the local parametric model is 
estimated for each time point. The resulting window size allows us to determine the current rate of 
technological change and mitigate the potential bias caused by historical crop yield data from 
decades ago. 

While this approach has been applied to many complex models in the financial literature (e.g., Chen 
et al., 2010; Chen and Niu, 2014; Härdle et al., 2016), we incorporate the approach into the standard 
two-stage estimation framework for modelling crop yield risk. At the first stage, a simple linear time 
trend model is adopted as the underlying local parametric model, which is reasonable for short time 
intervals, such as 10 years. We assume that the crop yield 𝑦𝑦𝑡𝑡, at time 𝑡𝑡 ∈ (1, … ,𝑇𝑇) is as follows: 

 𝑦𝑦𝑡𝑡 = 𝛼𝛼𝑡𝑡 +  𝛽𝛽𝑡𝑡𝑡𝑡 + 𝜖𝜖𝑡𝑡 ,         (1) 

where 𝛼𝛼𝑡𝑡 ,𝛽𝛽𝑡𝑡 denote the time varying local linear trend coefficient at time 𝑡𝑡 and 𝜖𝜖𝑡𝑡 is a mean-zero 
random error term over a fixed interval 𝐼𝐼 = [𝑡𝑡 −𝑚𝑚, 𝑡𝑡] of (𝑚𝑚 + 1) (𝑚𝑚 ≤ 𝑡𝑡) observations. To mitigate 
the effect of outliers on trend estimation, a robust iterative reweighted least square Huber M-
estimator is employed (Finger, 2010; Annan et al, 2014). In the second step, the detrended yields 𝑦𝑦�𝑡𝑡 
are assumed to follow a normal distribution1 with mean 𝜇𝜇𝑡𝑡  and time-varying variance  𝜎𝜎𝑡𝑡2. The 
distribution parameters 𝜃𝜃𝑡𝑡 = (𝜇𝜇𝑡𝑡 ,𝜎𝜎𝑡𝑡)  are time dependent and can be estimated by a (quasi) 
maximum likelihood estimation over a fixed interval 𝐼𝐼 of detrended yields 𝑦𝑦�𝑡𝑡. For time point 𝑡𝑡0 the 
(quasi) maximum likelihood estimator 𝜃𝜃�(𝑡𝑡0) of (𝑚𝑚 + 1) detrended yields observations is defined as:  

 𝜃𝜃�(𝑡𝑡0) = argmax
𝜃𝜃∈Θ

𝐿𝐿(𝑦𝑦�; 𝐼𝐼 ,𝜃𝜃) , (2) 

where Θ = 𝑅𝑅+ × 𝑅𝑅+ denotes the parameter space and 𝐿𝐿(𝑦𝑦�; 𝐼𝐼𝑠𝑠 ,𝜃𝜃) is the local log-likelihood function. 
We refer to 𝜃𝜃�(𝑡𝑡0) as the local maximum likelihood estimator. Note that the only difference with the 
conventional two-stage estimation is the fact that the local parametric approach depends on 
optimally selected time intervals I. The following sections explain the statistical technique of selecting 
the optimal interval based on which local homogeneity of estimated parameters hold. Since time 
varying trend coefficients and distribution parameters are both determined by the same selected 
intervals, we refer to 𝜃𝜃𝑡𝑡 = (𝛼𝛼𝑡𝑡 ,𝛽𝛽𝑡𝑡 ,𝜇𝜇𝑡𝑡 ,𝜎𝜎𝑡𝑡) from now on. 

2.1 Small Modelling Bias Condition 
A longer data period reduces the variance of the parameter estimate, but increasing the data set 
entails the risk of introducing a bias. To assess the trade-off between variability and bias of the 
parameter estimate and to determine the homogenous interval 𝐼𝐼, one has to quantify the quality of 
approximating the true (unknown) process 𝑦𝑦𝑡𝑡 over an interval 𝐼𝐼 by a parametric model 𝑦𝑦𝑡𝑡(𝜃𝜃) with 
constant parameter 𝜃𝜃 . The quality of the approximation is measured by the Kullback-Leibler 
divergence. For every interval 𝐼𝐼 and every parameter 𝜃𝜃 ∈ Θ, this measure is defined by:  

 Δ𝐼𝐼(𝜃𝜃) = ∑ 𝒦𝒦{𝑓𝑓(𝑦𝑦𝑡𝑡(𝜃𝜃)),𝑡𝑡∈𝐼𝐼 𝑓𝑓(𝑦𝑦𝑡𝑡)} = E𝜃𝜃log 𝑓𝑓(𝑦𝑦𝑡𝑡(𝜃𝜃))
𝑓𝑓(𝑦𝑦𝑡𝑡) , (3) 

where 𝑓𝑓(⋅) denotes a density distribution. The value Δ𝐼𝐼(𝜃𝜃) measures the discrepancy between the 
underlying “true” process and the parametric model and thus enables us to control the modelling 
bias. To select the optimal choice interval, Čížek et al. (2009) introduce the small modelling bias 

                                                           
1 Though the assumption of normal distributions for modelling crop yields has been criticized, most studies 
focus on fitting a global model and this assumption has not been investigated in the context of local parametric 
models. Previous studies on local parametric models have implied that normality is more likely to exist in a 
local window rather than in long time series data (Andriyashin et al., 2006; Wang et al., 2013; Härdle et al., 
2016). Therefore, it is reasonable to assume that this assumption might be valid.  
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(SMB) condition, i.e., for some 𝜃𝜃 ∈ Θ, Δ𝐼𝐼(𝜃𝜃) is bounded by a small constant with a high probability. 
Formally, for some 𝜃𝜃 ∈ Θ and Δ > 0,  

 EθΔ𝐼𝐼(𝜃𝜃) ≤ Δ. (4) 

Thus, the “true” model can well approximate on the interval 𝐼𝐼 with parameter 𝜃𝜃 while keeping the 
modelling bias small according to Equation (4). The best parametric estimation on interval 𝐼𝐼 can be 
defined by minimizing EΔ𝐼𝐼(𝜃𝜃) over 𝜃𝜃 ∈ Θ.  

The risk arising in the estimation of locally constant modelling under SMB is bounded. Under the SMB 
condition, Polzehl and Spokoiny (2006) and Čížek et al. (2009) show that the estimation loss 
normalized by parametric risk bound 𝔑𝔑𝑟𝑟(𝜃𝜃) is stochastically bounded. In the case of a quasi-MLE 
estimation with loss functions (𝐿𝐿�𝐼𝐼,𝜃𝜃�𝐼𝐼 ,𝜃𝜃� = |𝐿𝐿�𝐼𝐼,𝜃𝜃�𝐼𝐼� − 𝐿𝐿(𝐼𝐼,𝜃𝜃)|), Čížek et al. (2009) show that if they 
let 𝜃𝜃�𝐼𝐼 be MLE estimators on an interval 𝐼𝐼 and if the SMB holds for some 𝐼𝐼 and 𝜃𝜃 ∈ Θ, then 

 Eθ �log �1 + �𝐿𝐿�𝐼𝐼,𝜃𝜃�𝐼𝐼�−𝐿𝐿(𝐼𝐼,𝜃𝜃)�
𝑟𝑟

 𝔑𝔑𝑟𝑟(𝜃𝜃) �� ≤ 1 + Δ, (5) 

where 𝔑𝔑𝑟𝑟(𝜃𝜃) is an upper bound satisfying the following condition given the true parameter 𝜃𝜃∗: 

 Eθ∗�𝐿𝐿�𝐼𝐼,𝜃𝜃�𝐼𝐼� − 𝐿𝐿(𝐼𝐼,𝜃𝜃∗)�𝑟𝑟 ≤ 𝔑𝔑𝑟𝑟(𝜃𝜃∗). (6) 

Equation (6) is called a “propagation condition”. The bound given in equation (5) indicates that the 
risk in an estimated local constant model (under SMB) differs from the risk in the true constant 
model by a constant proportional to 𝑒𝑒Δ. The risk bound in Equation (6) allows us to define the 
likelihood based confidence sets that can be used to determine critical values in the local 
homogeneity tests in sections 2.2 and 2.4. For more details, refer to Čížek et al. (2009) and Spokoiny 
(2009). 

2.2 Local Change Point Detection Test 
The local parametric approach crucially rests on the sequencing test of local time-homogeneity to 
search for an interval of homogeneity among the considered intervals 𝐼𝐼𝑘𝑘  (𝑘𝑘 = 0, 1, … ,𝐾𝐾) at a fixed 
time point 𝑡𝑡0. Here, we follow Härdle et al. (2015) and Čížek et al. (2009) and adopt the local change 
point detection test, in which the null hypothesis on parameter homogeneity for the intervals up to 
𝐼𝐼𝑘𝑘 is tested against the alternative hypothesis that a change point at unknown location 𝜏𝜏 within 
interval 𝐼𝐼𝑘𝑘 exists. Assuming that the homogeneity assumption of interval 𝐼𝐼𝑘𝑘−1 has not been rejected, 
the test statistic for testing possible change points in interval 𝐼𝐼𝑘𝑘 is defined via the corresponding 
fitted log-likelihood 𝐿𝐿(𝑦𝑦; 𝐼𝐼 , 𝜃𝜃) by: 

 𝑇𝑇𝑘𝑘 = sup
𝜏𝜏∈𝐽𝐽𝑘𝑘

{𝐿𝐿𝐴𝐴𝑘𝑘,𝜏𝜏(𝑦𝑦,𝐴𝐴𝑘𝑘,𝜏𝜏,𝜃𝜃�𝐴𝐴𝑘𝑘,𝜏𝜏) + 𝐿𝐿𝐵𝐵𝑘𝑘,𝜏𝜏�𝑦𝑦,𝐵𝐵𝑘𝑘,𝜏𝜏,𝜃𝜃�𝐵𝐵𝑘𝑘,𝜏𝜏� − 𝐿𝐿𝐼𝐼𝑘𝑘+1(𝑦𝑦, 𝐼𝐼𝑘𝑘+1,𝜃𝜃�𝐼𝐼𝑘𝑘+1)}, (7) 

where 𝐽𝐽𝑘𝑘 = 𝐼𝐼𝑘𝑘\𝐼𝐼𝑘𝑘−1, 𝐴𝐴𝑘𝑘,𝜏𝜏 = [𝑡𝑡0 − 𝑛𝑛𝑘𝑘+1, 𝜏𝜏] and 𝐵𝐵𝑘𝑘,𝜏𝜏 = (𝜏𝜏, 𝑡𝑡0] represents two parts of observations in 
interval 𝐼𝐼𝑘𝑘+1. Since the change-point location 𝜏𝜏 is generally unknown, the test statistic is defined to 
consider the supremum of the log-likelihood ratio statistics over 𝜏𝜏 ∈ 𝐽𝐽𝑘𝑘. Figure 2 visualizes the 
underlying construction of the test statistic. Suppose that at a fixed time point 𝑡𝑡0 the parameter 
homogeneity within 𝐼𝐼𝑘𝑘−1 has not been rejected. To test if the homogeneity of the interval should be 
extended to 𝐼𝐼𝑘𝑘, we examine all possible breakpoint 𝜏𝜏 within the data extension 𝐽𝐽𝑘𝑘 = 𝐼𝐼𝑘𝑘\𝐼𝐼𝑘𝑘−1 by 
calculating the supremum of two log-likelihood values over the intervals 𝐴𝐴𝑘𝑘,𝜏𝜏 and 𝐵𝐵𝑘𝑘,𝜏𝜏 for any 𝜏𝜏 ∈ 𝐽𝐽𝑘𝑘 
and then compare it to the log-likelihood value estimated over 𝐼𝐼𝑘𝑘+1. The decision rule of the test 
requires the comparison of 𝑇𝑇𝑘𝑘 with the corresponding critical values 𝜉𝜉𝑘𝑘. We reject the null hypothesis 
of parameter homogeneity if 𝑇𝑇𝑘𝑘 > 𝜉𝜉𝑘𝑘.  



8 
 

  
The red dotted and blue line interval represent 𝐴𝐴𝑘𝑘,𝜏𝜏 and 𝐵𝐵𝑘𝑘,𝜏𝜏, respectively.  

Figure 2. Graphical illustration of the construction of test statistics 𝑇𝑇𝑘𝑘.  

2.3 Adaptive Estimation 
In this section, we introduce adaptive estimation procedures. At a fixed time point 𝑡𝑡0, we use 
historical observed data 𝑌𝑌𝑡𝑡 , 𝑡𝑡 ≤ 𝑡𝑡0  to estimate the unknown parameters 𝜃𝜃(𝑡𝑡0)  and repeat the 
procedure for each newly included time point 𝑡𝑡0. The objective is to select the longest interval of 
homogeneity of 𝑌𝑌𝑡𝑡 over which the homogeneity assumption of the parametric model holds. Since the 
number of possible interval candidates can be large, we consider only a finite set of intervals, e.g., 
K+1 increasingly nested intervals 𝐼𝐼0 ⊂ 𝐼𝐼1 ⊂ ⋯ ⊂ 𝐼𝐼𝐾𝐾. For each interval, the corresponding quasi-ML 
estimators 𝜃𝜃�𝐼𝐼0(𝑡𝑡0),𝜃𝜃�𝐼𝐼1(𝑡𝑡0), … ,𝜃𝜃�𝐼𝐼𝐾𝐾(𝑡𝑡0) can be determined for a fixed time point 𝑡𝑡0. From now on, we 
ignore the index 𝑡𝑡0 and describe the procedure for an arbitrary fixed time point. Let 𝜃𝜃�𝐼𝐼𝑘𝑘  refer to the 
accepted adaptive estimator in the interval 𝐼𝐼𝑘𝑘, and let 𝜃𝜃� denote the optimal estimator based on the 
longest homogeneous interval 𝐼𝐼. 

The selection algorithm is built on a sequential testing procedure. It starts from the shortest interval 
𝐼𝐼0 over which the local homogeneity holds by assumption and the maximum likelihood estimator 
𝜃𝜃�𝐼𝐼0 is accepted, i.e., 𝜃𝜃�𝐼𝐼0=𝜃𝜃�𝐼𝐼0. Then, we iteratively extend to next longer intervals 𝐼𝐼𝑘𝑘 over which the 
local change point test is conducted using Equation (7) to test the hypothesis of local homogeneity 
provided that the null hypothesis has not been rejected over 𝐼𝐼𝑘𝑘−1 . The selected interval 𝐼𝐼 
corresponds to the longest accepted interval 𝐼𝐼𝑘𝑘� , such that:  

 𝑇𝑇𝑘𝑘 ≤ 𝜉𝜉𝑘𝑘 , 𝑘𝑘 ≤ 𝑘𝑘�    and 𝑇𝑇𝑘𝑘�+1 > 𝜉𝜉𝑘𝑘�+1, (8) 

where 𝜉𝜉𝑘𝑘 is the critical value at step 𝑘𝑘. The derivation of critical values is described in Section 2.4. 
Equation (8) indicates that a change point is detected over interval 𝐼𝐼𝑘𝑘�+1, i.e., parameter homogeneity 
of the interval 𝐼𝐼𝑘𝑘�+1 is rejected and extending the interval to 𝐼𝐼𝑘𝑘�+1 will introduce significant bias. As a 
last step, the longest accepted interval is 𝐼𝐼 = 𝐼𝐼𝑘𝑘� , resulting in the adaptive optimal estimator 𝜃𝜃� = 𝜃𝜃�𝐼𝐼𝑘𝑘�  
for the fixed time point 𝑡𝑡0. In summary, the procedure for a fixed time point 𝑡𝑡0 is provided as follows: 

1) Start with the smallest interval, 𝐼𝐼 = 𝐼𝐼0, 𝜃𝜃�𝐼𝐼0=𝜃𝜃�𝐼𝐼0. 
2) For 𝑘𝑘 = 1, we test the interval 𝐼𝐼1 for local homogeneity assumption. Select intervals 𝐼𝐼2, 𝐼𝐼1, 

and 𝐽𝐽1 = 𝐼𝐼1\𝐼𝐼0. If 𝑇𝑇1 ≤ 𝜉𝜉1, 𝜃𝜃�𝐼𝐼1  is accepted then 𝜃𝜃�𝐼𝐼1=𝜃𝜃�𝐼𝐼1. Otherwise, 𝜃𝜃�𝐼𝐼1=𝜃𝜃�𝐼𝐼0, we accept the 
parameter estimator from the smallest interval as the optimal estimator for 𝑡𝑡0. 

3) For 𝑘𝑘 ≥ 2, select intervals 𝐼𝐼𝑘𝑘+1, 𝐼𝐼𝑘𝑘, and 𝐽𝐽𝑘𝑘 = 𝐼𝐼𝑘𝑘\𝐼𝐼𝑘𝑘−1. 𝜃𝜃�𝐼𝐼𝑘𝑘  is accepted and 𝜃𝜃�𝐼𝐼𝑘𝑘=𝜃𝜃�𝐼𝐼𝑘𝑘  if 𝑇𝑇𝑘𝑘 ≤ 𝜉𝜉𝑘𝑘  
and 𝜃𝜃�𝐼𝐼𝑘𝑘−1 has not been rejected. Otherwise, 𝜃𝜃�𝐼𝐼𝑘𝑘=𝜃𝜃�𝐼𝐼𝑘𝑘−1, where 𝜃𝜃�𝐼𝐼𝑘𝑘  is accepted after 𝑘𝑘 steps. 

4) The final estimate is 𝐼𝐼 = 𝐼𝐼𝑘𝑘�  and 𝜃𝜃� = 𝜃𝜃�𝐼𝐼𝑘𝑘� . 

2.4 Calculation of Critical Values 
Since the true distribution of the test statistic is unknown, the critical values have to be determined 
by simulation using the general approach of testing theory: to provide a prescribed performance of 
the procedure under the null hypothesis (Čížek et al., 2009; Chen and Niu, 2014; Härdle et al., 2015). 



9 
 

To be specific, we simulate 1,000 global homogeneous processes, i.e., a linear time trend model with 
constant parameters 𝜃𝜃∗  in model (1). The simulated data ensure homogeneity for all of the 
considered intervals. Under the null hypothesis of parameter homogeneity, the correct choice in the 
pure parametric situation is the largest considered interval 𝐼𝐼𝐾𝐾, over which the estimation loss of the 
ML estimator fulfill the risk bound Equation (6). If the adaptive procedure stops earlier at 𝐼𝐼𝑘𝑘 with 𝑘𝑘 <
𝐾𝐾, instead of 𝜃𝜃�𝐼𝐼𝐾𝐾  we select the adaptive estimator 𝜃𝜃�𝐼𝐼𝑘𝑘 = 𝜃𝜃�𝐼𝐼𝑘𝑘, which can be interpreted as a “false 
alarm”. The loss associated with such a false alarm is defined by 𝐿𝐿𝐼𝐼𝐾𝐾 = 𝐿𝐿�𝐼𝐼𝐾𝐾 ,𝜃𝜃�𝐼𝐼𝐾𝐾� − 𝐿𝐿�𝐼𝐼𝐾𝐾 ,𝜃𝜃�𝐼𝐼𝑘𝑘� and 
the corresponding risk bound given by Equation (6) due to the adaptive estimation changes to: 

 Eθ∗�𝐿𝐿�𝐼𝐼𝐾𝐾 ,𝜃𝜃�𝐼𝐼𝐾𝐾� − 𝐿𝐿�𝐼𝐼𝐾𝐾 ,𝜃𝜃�𝐼𝐼𝑘𝑘��
𝑟𝑟 ≤ 𝜌𝜌𝔑𝔑𝑟𝑟(𝜃𝜃∗). (9) 

This implies that critical values ensures that the loss associated with a “false alarm” is at most a 𝜌𝜌-
fraction of the parametric risk bound by the “optimal” or “oracle” estimate 𝜃𝜃�𝐼𝐼𝐾𝐾  (Härdle et al., 2015). 
We select minimal critical values to ensure a small probability of such a false alarm. Similarly, at each 
step of the adaptive procedure, the estimate 𝜃𝜃�𝐼𝐼𝑘𝑘  after the 𝑘𝑘 steps should satisfy: 

 Eθ∗�𝐿𝐿�𝐼𝐼𝑘𝑘 ,𝜃𝜃�𝐼𝐼𝑘𝑘� − 𝐿𝐿�𝐼𝐼𝑘𝑘,𝜃𝜃�𝐼𝐼𝑘𝑘��
𝑟𝑟 ≤ 𝜌𝜌𝑘𝑘𝔑𝔑𝑟𝑟(𝜃𝜃∗),  𝑘𝑘 = 1, … ,𝐾𝐾, (10) 

where 𝜌𝜌𝑘𝑘 = 𝜌𝜌𝜌𝜌/𝐾𝐾  and 𝔑𝔑𝑟𝑟(𝜃𝜃∗) = max
𝑘𝑘
�𝐿𝐿�𝐼𝐼,𝜃𝜃�𝐼𝐼𝑘𝑘 � − 𝐿𝐿(𝐼𝐼,𝜃𝜃∗)�𝑟𝑟 . The parameter 𝜌𝜌  is the level of 

significance and influences the sensitivity of the procedure to homogeneity. Čížek et al. (2009) show 
that large values of 𝜌𝜌 lead to smaller critical values. 

Given that the sequential testing procedure is used in a local change point test, the critical values are 
computed through the following two steps:  

Step 1. Consider first 𝜉𝜉1 and let 𝜉𝜉2 = 𝜉𝜉3 = ⋯ = 𝜉𝜉𝐾𝐾 = ∞. This leads to the estimates 𝜃𝜃�𝐼𝐼𝑘𝑘(𝜉𝜉1) and the 
value 𝜉𝜉1 is selected as the minimal one for which  

 supEθ∗�𝐿𝐿�𝐼𝐼𝑘𝑘 ,𝜃𝜃�𝐼𝐼𝑘𝑘� − 𝐿𝐿�𝐼𝐼𝑘𝑘,𝜃𝜃�𝐼𝐼𝑘𝑘(𝜉𝜉1)��𝑟𝑟 ≤ 𝜌𝜌𝔑𝔑𝑟𝑟(𝜃𝜃∗)/𝐾𝐾,  𝑘𝑘 = 2, … ,𝐾𝐾, (11) 

Step 2. Suppose that 𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝑙𝑙−1 is fixed from previous steps, and set 𝜉𝜉𝑙𝑙 = ⋯ = 𝜉𝜉𝐾𝐾 = ∞. With 
estimate 𝜃𝜃�𝐼𝐼𝑘𝑘(𝜉𝜉1, … , 𝜉𝜉𝑙𝑙) for 𝑘𝑘 = 𝑙𝑙 + 1, … ,𝐾𝐾, we find 𝜉𝜉𝑙𝑙  as the minimal value which fulfills  

 supEθ∗�𝐿𝐿�𝐼𝐼𝑘𝑘 ,𝜃𝜃�𝐼𝐼𝑘𝑘� − 𝐿𝐿�𝐼𝐼𝑘𝑘,𝜃𝜃�𝐼𝐼𝑘𝑘(𝜉𝜉1, … , 𝜉𝜉𝑙𝑙)��
𝑟𝑟 ≤ 𝜌𝜌𝜌𝜌𝔑𝔑𝑟𝑟(𝜃𝜃∗)/𝐾𝐾,  𝑘𝑘 = 𝑙𝑙 + 1, … ,𝐾𝐾. (12) 

 

3 Application to Crop Yield Insurance 

3.1. Data and Model Specification 
Due to data availability and quality, we utilize annual U.S. county-level crop yield data from the 
National Agricultural Statistical Service (NASS) to investigate the performance of the local parametric 
crop yield model. The considered crops are winter wheat, corn, soybean, and cotton. We choose two 
states for each crop according to their important role in the national production of each crop (see 
Table 1). County-level crop yield data cover the period from 1955 to 2014 with the exception of 
winter wheat in Texas, where data from 1968 to 2014 are available. After excluding counties without 
continuous yield records, we have data from 106, 178, 187, and 34 counties for winter wheat, corn, 
soybean and cotton, respectively. The broad coverage of the data set allows us to explore the 
importance of non-stationarity for different crops and different graphical locations. Practical 
relevance arises from the fact these data form the basis of area yield insurance programs, such as the 
group risk plan implemented by the RMA2. Summary statistics of yield data are provided in Table 1. 

                                                           
2All data and codes will be made available by the authors upon request.  
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Table 1. Summary Statistics of Yield Data  

State Number of 
Counties Min. Mean Median Max. Std. Dev. Coef. of 

Variation 

Winter Wheat 
Kansas 61 5.0 32.7 32.8 80.0 10.3 0.31 
Texas 45 6.4 26.5 25.5 64.6 9.5 0.36 

Corn 
Illinois 79 19.0 114.5 114.0 236.0 39.2 0.34 
Iowa 99 18.3 115.0 114.7 206.6 38.9 0.34 

Soybean 
Illinois 89 9.5 36.5 36.0 69.3 9.7 0.27 
Iowa 98 7.3 37.3 36.9 64.0 9.6 0.26 

Cotton 
Georgia 20 127.0 589.1 564.0 1264.0 212.3 0.36 
Mississippi 14 237.0 726.9 711.0 1482.0 208.8 0.29 

The proposed adaptive local parametric approach depends on a set of parameters, namely, the 
considered interval candidates, the power index 𝑟𝑟, and the significance level value 𝜌𝜌. In the 
following, we justify the specification of these parameters. First, motivated by empirical applications 
in the literature we select (𝐾𝐾 + 1) = 8 nested intervals from 5 to 40 historical observations, 
i.e., {5,10,15,20,25,30,35,40}. Here, we assume that the shortest interval (5 years) is always 
homogeneous and test if the homogeneity assumption applies to longer intervals via the local change 
point test. The longest interval includes 40 observations. This choice allows us to use the remaining 
data to evaluate the out-of-sample performance of the proposed method. Second, the hyper-
parameters 𝑟𝑟  and 𝜌𝜌 are crucial to the calibration of risk bounds and critical values 𝜉𝜉𝑘𝑘. It has been 
shown that higher values of 𝑟𝑟 lead to the acceptance of longer intervals of homogeneity and thus a 
higher modelling bias. Increasing 𝜌𝜌 generally leads to an overall decrease of critical values 𝜉𝜉𝑘𝑘. We 
follow Chen and Niu (2014) and Härdle et al. (2013) and consider 𝑟𝑟 = 0.5  and 𝜌𝜌 = 0.5. The 
robustness and sensitivity of empirical results to different hype-parameters will be discussed in 
Section 3. Third, critical values also depend on the “true” parameters 𝜃𝜃∗used in the Monte Carlo 
simulation. Fortunately, the previous studies document that the results are, in general, robust with 
respect to the selection of hypothetical parameters 𝜃𝜃∗(Chen and Niu, 2014; Härdle et al., 2016). In 
our application, 𝜃𝜃∗ is specified as parameter estimates over the longest interval (i.e., 40 years 
starting from 1955). 

3.2 Empirical Results 
In this section we illustrate the implementation of the proposed local parametric crop yield model for 
eight representative combinations of crops and counties. The crucial step of the proposed procedure 
is to obtain critical values for the local change point test, for which we need to calculate the risk 
bound first. The simulated risk bounds 𝔑𝔑𝑟𝑟(𝜃𝜃∗) for each selected combination of crop and county are 
presented in Table A1 in the Appendix. We find risk bounds for different crop yields to be rather 
similar. This similarity might be due to the fact that the estimated 𝜃𝜃∗ based on a 40-year sample do 
not vary much across crops and regions, which is in line with the finding in Tolhurst and Ker (2015). 
As expected, larger values of risk power parameter 𝑟𝑟 lead to larger values for risk bounds. 

With simulated risk bounds at hand, critical values can be derived from Equation (11) and (12). These 
values for winter wheat and corn in two representative counties are displayed in Figure 3 for 
different significance levels 𝜌𝜌. As expected, critical values decrease with the length of data intervals, 
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because the variance of the parameter estimate for short intervals is larger than for longer intervals. 
The effect of parameter 𝑟𝑟 on the critical values is the same as it is on the risk bounds, i.e., an increase 
of 𝑟𝑟 leads to an increase in critical values, particularly for shorter intervals. For longer intervals, 
differences in critical values with respect to the choice of 𝑟𝑟 are moderate. Figure 3 further shows that 
decreasing 𝜌𝜌 generally results in an increase in critical values, especially for the longer intervals. 
Again, the increase is moderate. That is, critical values are relatively robust to the choice of hyper-
parameters 𝜌𝜌 and 𝑟𝑟. We conjecture that this also holds for the final parameter estimates of the crop 
yield model. This is consistent with the results reported in financial or meteorological applications 
(Chen et al., 2010; Härdle et al., 2016). Similar findings apply to all combinations of crops and 
counties (see Figure A4). 

  
                                         Length in Years     Length in Years 
                             Wheat in Ellis County, Kansas    Corn in Story County, Iowa  

Figure 3. Simulated critical values for different values of parameters 𝒓𝒓 and 𝝆𝝆 

We can now apply the adaptive estimation procedures to select the longest interval for which the 
parameter homogeneity assumption is not violated. The estimation results based on adaptively 
selected optimal intervals for two representative counties are shown in Figure 4. Since the 
considered maximum estimation interval is 40, we estimate the time-varying parameters 𝜽𝜽 via 
models (1) and (2) for 1994 based on 40 observations from 1955-1994. Then, the proposed local 
parametric approach will determine the optimal interval of homogeneity over which we can estimate 
the time-varying parameters for 1994 and then predict the crop yield for 1995. The estimation 
procedure is repeated for each time point from 1994 to 2014. The resulting optimal interval for 
wheat in Ellis in 1994, for example, is 20. The estimation of the trend model (1) should be based on 
observations from 1975 to 1994. This implies that a local change point (a structural break of the 
model parameters) has been detected between 1969 and 1974. In fact, this finding is in line with the 
visual inspection of observed wheat yields in Figure 1 (a). As the targeting year moves forward, 
optimal interval lengths for 1995, …, 2014 change, but mainly range from 20 to 30 years.  

Based on the selected intervals of homogeneity, the estimated local parameters 𝛽𝛽𝑡𝑡 and 𝜎𝜎𝑡𝑡 change 
considerably over time. The slope coefficient 𝛽𝛽𝑡𝑡 and standard deviation 𝜎𝜎𝑡𝑡 represent the time-varying 
annual change and dispersion of crop yields, respectively, resulting from technological change and 
climate change over time. Unlike in a global linear trend model, the effect of severe crop shortfalls 
has more influence on the estimated𝛽𝛽𝑡𝑡 and 𝜎𝜎𝑡𝑡in a local parametric model. This may reflect how 
quickly the advances in seed technology respond to changing climate conditions and could allow us 
to better capture current crop yield risks. For wheat in Ellis County, Kansas, the slope coefficients 𝛽𝛽𝑡𝑡 
for the period from 1994 to 2014 are mostly positive, but exhibit a decreasing pattern in recent 
years. It indicates that the rate of crop yield growth is decreasing. However, the magnitudes of the 
changes are rather moderate and range between 0.1 and 0.4 (bushels per acre). On the other hand, 
the standard deviation 𝜎𝜎𝑡𝑡 is constantly increasing over years, suggesting that wheat yield risk has 
become much higher in recent years compared to 20 years ago. For corn in Story County, Iowa, the 
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trend coefficients 𝛽𝛽𝑡𝑡 in recent years are also decreasing similar to that of wheat yields in Ellis County, 
Kansas, but the magnitudes of trend coefficients are considerably higher for corn. Interestingly, in 
contrast to the increasing dispersions of wheat yields, the estimated standard deviations 𝜎𝜎𝑡𝑡 for corn 
yields in the past ten years in the predicted dataset appear to be smaller than those of ten years 
before. This finding, which is also reported by Woodard et al. (2011), may reflect a higher resistance 
of corn against weather stress, especially drought (Yu and Babcock, 2009). In this situation, a global 
trend model estimated with historical corn data would overestimate standard deviations and corn 
yield risks. In turn, the corresponding crop insurance would be overpriced. The similar finding can be 
found for estimated standard deviations over time of cotton. For soybean, however, changes in the 
estimated trend coefficients and standard deviations over time appear to be moderate, suggesting 
that the assumption of homogeneous parameters likely holds over this time period. The results for 
soybean and cotton are presented in Figure A5 in the Appendix. 

Since optimal intervals rely on the calibration of critical values based on the assumed hype-
parameters, we investigate the robustness of the estimation results with respect to alternative hype-
parameters. Figure A6 presents the adaptive estimation results based on alternative hyper-
parameters for wheat in Ellis County, Kansas. The results in Figure 4 (a) and Figure A6, in general, 
confirm the robustness of the adaptive technique and low sensitivity to the choice of hype-
parameters. The results suggest that in the data-driven adaptive procedure, changes in the simulated 
critical values derived from different choices of hype-parameters are rather moderate compared to 
changes in the test statistics due to the break point or structural change in empirical observations. 
Thus, similar optimal intervals are determined by the local change point test. 
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(a) Wheat in Ellis County, Kansas  

       
(b) Corn in Story County, Iowa  

Figure 4. Adaptively estimated trend 𝜷𝜷𝒕𝒕 (left) and volatility 𝝈𝝈𝒕𝒕 (right) with optimal time intervals  
(𝒓𝒓 = 𝟎𝟎.𝟓𝟓 and 𝝆𝝆 = 𝟎𝟎.𝟓𝟓) 

 

3.3 Forecast Performance 
In this section, we analyse the forecasting performance of the proposed model and compare it to 
alternative models. To evaluate the forecasting accuracy, we calculate one-step point forecasts of 
crop yields for each time point in the out-of-sample period, i.e., from 1995 to 2014 (and from 2008 to 
2014 for wheat in Texas). The forecast accuracy is measured by the root mean squared error (RMSE). 
We compare the local parametric approach (LPA) with two benchmark models: The first model is a 
one-knot robust linear spline model (Spline) and the second is a linear trend model with a 40-year 
rolling window (RW40). The one-knot robust linear spline model reflects the trend-adjusting 
procedures in the current RMA’s rating methodology (Annan et al., 2014; Harri et al., 2011). It is 
estimated with all available historical data. The 40-year rolling window estimation can be considered 
as a special case of the local parametric approach when the homogeneity assumption of the 
parametric model holds for all historical crop yield data and the longest possible interval (40 years) is 
always selected. 
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Figure 6 depicts the observed and predicted crop yields as well as the RMSE for all models. At first 
glance, the predicted crop yields from the LPA follow the crop yield dynamics more closely than the 
predictions of the other two models. The LPA also shows the smallest RMSE among representative 
crop-counties combinations with the exception of corn in County Mercer and soybean. To better 
understand under what conditions the LPA outperforms the benchmark models, we take a closer 
look at the results for different crops. We can see that the yield data follow different patterns. Wheat 
and cotton yield data exhibit structural changes in either their time trend or yield dispersion (cf. 
Figures 1 and A3), implying that data from 20 or 30 years ago are not useful for predicting current 
yields and probably introduce parameter bias for current years. In other words, the short data 
intervals are appropriate in this case. The LPA is able to detect these structural breaks and selects 
reasonable intervals of parameter homogeneity and thus provides better forecasts. The superiority 
of the LPA is significant for cotton (156.57 versus 170.06 for the RW40 and 182.26 for the Spline) and 
moderate for wheat (9.96 versus 10.3 for the RW40 and 10.55 for the Spline). In contrast, soybean 
yields are characterized by single erratic shortfalls rather than by structural breaks (cf. Figure A2). 
Thus, if one considers these shortfalls as outliers, the assumption of homogeneous parameters likely 
holds over the entire time period. The local change point test recognizes these single yield shortfalls 
as an indicator of a parameter change and rejects the homogeneity assumption for the longer time 
intervals. This results in higher variance of the parameter estimates and higher forecast errors (4.91) 
compared to the Spline model (4.86) and the rolling window model (4.88). However, the difference in 
RMSE is moderate and the plots of predicted soybean yield are rather identical across all of the 
models. Actually, a Diebold Mariano (DM) test with LPA as a benchmark shows that most of the 
aforementioned differences in the out-of-sample forecasts are not significant except for the case of 
cotton (see Table 2), which is likely due to the rather short sample period. In contrast, a Mincer-
Zarnowitz (MZ) test3 finds significant differences for wheat in Ellis and cotton in all counties. 

Table 2 Forecast accuracy evaluation 

Model Wheat Corn Soybean Cotton 
Ellis Coryell Mercer Story Henry Cedar Dooly Coahoma 

 Diebold-Mariano test  
LPA Benchmark 
Spline -0.981 -0.071 0.214 -0.156 0.015 0.224 -0.945 -1.774* 
RW40 -0.626 -0.527 -0.013 -0.067 -0.264 0.186 -0.588 0.073 
 Mincer-Zarnowitz test  
LPA 1.541 13.528*** 2.761* 7.456*** 0.008 0.148 0.050 2.004 
Spline  3.020* 4.692* 1.499 3.756** 0.201 0.734 6.744*** 8.226*** 
RW40  3.281* 3.693 1.109 2.678* 0.228 0.678 3.508** 3.986** 
Notes: In a DM test, the negative sign implies that the benchmark’s loss is lower than that implied by 
other models. ⁎⁎⁎, ⁎⁎, and ⁎ represent the significance at the 1%, 5% and 10% level, respectively. 
A higher MZ test statistic indicates that the null hypothesis is more likely to be rejected, and hence 
the considered model is less favorable. 

                                                           
3 The MZ test is based on the idea that the error of an efficient forecast has to be unbiased and 
uncorrelated with the forecast itself according to the Mincer-Zarnowitz regression: 

𝑦𝑦𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏𝑦𝑦𝑡𝑡
𝑓𝑓 + 𝜖𝜖𝑡𝑡 

where 𝑦𝑦𝑡𝑡  and 𝑦𝑦𝑡𝑡
𝑓𝑓  are observed and forecast values. The null hypothesis of an efficient forecast is: 𝐻𝐻0: 𝑎𝑎 =

0, 𝑏𝑏 = 1. 
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            Wheat in Ellis County, Kansas        Wheat in Coryell County, Texas  

          
                         Corn in Mercer County, Illinois            Corn in Story County, Iowa  

         
                        Soybean in Henry County, Illinois          Soybean in Cedar County, Iowa  

         
                       Cotton in Dooly County, Georgia  Cotton in Coahoma County, Mississippi  

Figure 6. One-step ahead forecasts of crop yields under different models and RMSE in the 
parentheses  
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3.4 Out-of-Sample Rating Game 
The previous analyses shed light on the forecasting accuracy of the local parametric approach. 
However, mean forecast errors may not provide full insight into economic implications and the value 
of the LPA for practical applications in crop insurance pricing. Insurance premium rates mainly 
reflects the current risk of crop yield and rely on variance estimation. To explore the potential of our 
proposed method for improving the accuracy of estimated crop insurance rates, we conduct an out-
of-sample rating game which has been commonly used in the crop insurance literature (Harri et al., 
2011; Annan et al., 2014; Tolhurst and Ker, 2015). The rating game mimics features of the U.S. crop 
insurance program, that is private insurance companies can choose to participate in the insurance 
programs and sell insurance contracts to farmers with premium rates set by the RMA of  the 
government. Therefore, private insurance companies will likely re-estimate the premiums and 
compare their premiums with those set by the RMA. If their premiums are higher than the RMA’s 
premiums, they cede the policies as they believe the RMA’s premiums to be underpriced. Conversely, 
if their premiums are lower than the RMA’s premiums, they retain the policies as they believe the 
RMA’s premiums to be overpriced. Here, we compare the RMA premiums with the one derived from 
the LPA. Then, given actual realized crop yields, we calculate the loss ratios of retained policies and 
ceded policies for each county and period combination. We focus on an area yield insurance contract 
since county-level yield data are used in our study. An actuarially fair premium 𝜋𝜋 for an area yield 
insurance policy with a coverage level 𝑐𝑐 of (unconditional) expected yield 𝑦𝑦𝑒𝑒 is given by: 

 
𝜋𝜋(𝑐𝑐) = Pr(𝑦𝑦𝑡𝑡 ≤ 𝑐𝑐𝑦𝑦𝑒𝑒) {𝑐𝑐𝑦𝑦𝑒𝑒 − 𝔼𝔼[𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡 < 𝑐𝑐𝑦𝑦𝑒𝑒]} = � (𝑐𝑐𝑦𝑦𝑒𝑒 − 𝑦𝑦𝑡𝑡

𝑐𝑐𝑦𝑦𝑒𝑒

0
) 𝑓𝑓(𝑦𝑦𝑡𝑡|ℱ𝑡𝑡)𝑑𝑑𝑦𝑦𝑡𝑡   , (23) 

where 𝑦𝑦𝑡𝑡 is the random crop yield at time t. The expectation is based on the conditional yield density 
𝑓𝑓(𝑦𝑦𝑡𝑡|ℱ𝑡𝑡) with the available information set ℱ𝑡𝑡 at time t. Following usual practice, we select a 90% 
coverage level, i.e., 𝑐𝑐 = 0.9 (e.g., Annan et al., 2014). In the simulated rating game, the yield 
guarantee 𝑐𝑐𝑦𝑦𝑒𝑒 for an insurance policy is determined by the RMA. Thus, the difference between 
private insurance premiums and the RMA’s premiums depends solely on their estimations of the 
conditional yield density 𝑓𝑓(𝑦𝑦𝑡𝑡|ℱ𝑡𝑡). 

For the out-of-sample period from 1995 to 2014, we repeat the rating game to derive premiums and 
loss ratios for each period and county combination using data from 1955-1994, …, 1955-2013. Note 
that for the local parametric approach, only the selected longest data interval of homogeneity will be 
used for insurance rating. According to Annan et al. (2014), the RMA models crop yields with a one-
knot linear spline and then adjusts the residuals for heteroscedasticity. Based on the detrended crop 
yields, the empirical premium is estimated as the RMA’s premium (𝜋𝜋𝑔𝑔). In other words, this 
technique uses a burn analysis rating, whereas the LPA premium (𝜋𝜋𝑝𝑝) is based on simulated 
predicted crop yields given the time-varying parameter estimates. The cede-retain decisions for each 
insurance policy are then made according to the comparison between 𝜋𝜋𝑔𝑔 and 𝜋𝜋𝑝𝑝. Following usual 
convention, loss ratios are aggregated on a state basis using planted acreage for the final year 2014 
as weights. If loss ratios for retained polices are smaller than those for ceded polices, we conclude 
that the LPA is better at estimating the premium rate than the RMA method. Statistical significance 
of differences in loss ratios can be tested by a randomization test.4 

The results of the out-of-sample insurance rating game between the LPA model and the RMA 
method are presented in Table 3. The percentages of retained policies are quite high for all crop 
policies except for winter wheat, suggesting that most of the LPA premium rates are lower than the 
RMA rates. This observation is in line with our finding in the analysis in Section 3.2. that the one-
                                                           
4 With the percentage of retained contracts at hand, we randomly choose the same percentage of 
insurance contacts from the entire period-county contract pool and calculate the retained loss ratio. 
This step is repeated 5,000 times generating 5,000 loss ratios. P-values are calculated as the 
percentage of loss ratios that are smaller than the retained loss ratio. This procedure has been 
adopted by Harri et al. (2011), Tolhurst and Ker (2015) and Ker et al. (2016). 
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knot-spline model based on all historical data tends to overestimate current yield volatility. The fact 
that 𝜋𝜋𝑔𝑔 frequently exceeds 𝜋𝜋𝑝𝑝 results in a high number of retained policies, which, in turn, renders 
the randomization test less meaningful. In other words, the out-of-sample rating assessment may fail 
if the considered rating methodology leads to systematically lower or higher premiums than the RMA 
method. Nevertheless, we observe that in four of the eight state-crop combinations, insurance 
companies could gain a significant economic rent using the LPA rating method. Particularly, the 
results for winter wheat and cotton are in favor of the LPA methodology since it captures tail yield 
risks better than the RMA approach. Given its high ratio of policy payouts, potential economic rent of 
private insurance companies using the LPA could be much more considerable. For the other four 
state-crop combinations, the results show that either the RMA methodology leads to lower loss 
ratios or that the differences are not statistically significant.  

Though the high number of retained policies renders the results of the out-of-sample rating 
assessment useless, it does not imply that a private insurance company will not be able to make 
profit or that the premiums derived from the proposed LPA method are underpriced. If the RMA 
premiums exceed actual average losses, profits can be made by retaining all policies. To capture this 
aspect, we also display the realized loss ratios of all policies in the last two columns of Table 3. If the 
realized loss ratio is smaller (larger) than 1, insurance premiums are supposed to be overpriced 
(underpriced). For winter wheat and cotton, the loss ratios based on the LPA premiums are closer to 
the expected long run value of 1 than for the RMA’s premiums. Actually, the RMA’s premiums are 
underpriced for winter wheat and overpriced for cotton. Interestingly, the loss ratio using LPA’s 
premiums is also closer to one for corn, though the results for corn in Iowa in the out-of-sample 
rating assessment are not in favour of the LPA method.  

Table 3. Out-of-Sample Insurance Rating Game 

Crop-State Number 
of 

Counties 

Retained 
Policies 

(%) 

Loss 
Ratio of 

Retained 
Policies 

Loss 
Ratio of 
Ceded 
Polices 

p-value Payout 
Policies 

(%) 

Loss Ratio 
of all 

Policies 
(𝜋𝜋𝑔𝑔) 

Loss Ratio 
of all 

Policies 
(𝜋𝜋𝑝𝑝) 

Winter Wheat 

Kansas 61 55.4 1.212 2.173 0.000 37.9 1.668 1.469 

Texas 45 48.6 1.612 2.588 0.003 48.3 2.163 1.836 

Corn 

Illinois 79 96.9 0.568 0.981 0.131 23.5 0.577 1.435 

Iowa 99 92.4 0.301 0.101 0.985 14.8 0.289 0.845 

Soybean 

Illinois 89 92.6 0.642 0.778 0.283 19.6 0.649 1.413 

Iowa 98 89.5 0.822 0.738 0.630 20.1 0.815 1.507 

Cotton 

Georgia 20 79.5 0.356 1.040 0.000 29.3 0.449 0.782 

Mississippi 14 88.6 0.382 0.872 0.079 16.4 0.431 1.017 
*Note: A p-value close to 0.00 indicates that the proposed method outperforms the RMA method. On 
the other hand, if a p-value is close to 1.00, the RMA method is better than the proposed method.  
The loss ratio of all policies in the last column is calculated based on the LPA’s premiums. 
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4 Discussion and Conclusions 

This article was motivated by the challenge of considering non-stationarity in the estimation of crop 
yield models, which is a building block for the pricing of crop insurance. This non-stationary can be a 
result of technological change and/or climate change. To deal with non-stationarity, various 
approaches have been proposed to allow some or all model parameters to vary over time. An 
identification of these models in the current literature requires either structural assumptions about 
the transition process over time or presumes that the parameters follow smooth functions of time. In 
this paper, we develop an alternative data-driven approach that is based on the local parametric 
assumption. To be specific, the idea of the local parametric approach is to find an optimal interval of 
homogeneity over which one can fit a local parametric model with constant parameters. The 
selection of interval of homogeneity is determined in a backward sequential testing procedure with 
an embedded local change point test. The advantage of adaptively and promptly detecting structural 
change makes the proposed local parametric approach more flexible and less restrictive for 
modelling time-varying parameters compared to previous approaches. In addition, the proposed 
approach enabled us to contribute to the longstanding debate over sample period selection of crop 
yields from a sound statistical perspective. The backward selected sample period allows us to more 
accurately determine the current rate of technological change and the current risk of crop yields, and 
therefore to mitigate the potential bias caused by historical crop yield data from more than four 
decades ago. 

We apply the proposed local parametric approach to county-level winter wheat, corn, soybean, and 
cotton yields in a large number of counties in the U.S. Our empirical results demonstrate that the 
proposed local parametric approach selects reasonable intervals of parameter homogeneity, mainly 
ranging from 20 to 30 years before the current period. In contrast to earlier work on this issue, we 
relax the assumption of a fixed sample period over the entire dataset. In fact, a change of estimated 
local parameters, such as 𝛽𝛽𝑡𝑡 and 𝜎𝜎𝑡𝑡, over time allows us to capture, for example, the deceleration of 
crop yield growth, the decrease in corn and cotton yield variability, or the increase of wheat yield risk 
that has been found in the literature (e.g., Yu and Babcock, 2009). In terms of the forecasting 
accuracy of crop yields, the results show that the local parametric approach, in general, leads to the 
smaller forecast errors of crop yields across crops compared to traditional alternatives. This is 
particularly true when yield data exhibit structural changes or regime switches. A simulation exercise 
further documents that the local parametric approach has the potential to improve the pricing of 
insurance contracts. However, each method comes attached with cautions and limitations. A 
shortcoming of the proposed local parametric approach is that the inability of the local change point 
test to distinguish between unusual shortfalls and actual structural changes leads to the rejection of 
the longer interval of homogeneity and to more volatile parameter estimates. This problem could be 
mitigated by the exclusion or devaluation of outliers, which is also recommended in the average loss 
cost ratio approach in the RMA rating methodology (Coble et al., 2010). 

This study provides the first empirical application of an adaptive local parametric model to crop 
yields. However, a number of potential extensions may further improve the performance of this 
model and are suggested for future research. First, one may apply alternative homogeneity tests that 
can detect the structural change, but are less sensitive to occasional catastrophes. A simple 
likelihood ratio test is an example (Härdle et al., 2016). Second, the underlying crop yield model, 
which is a simple linear trend mode in our case, could be refined. More sophisticated crop yield 
models include a mixture Normals with embedded trend functions (Tolhurst and Ker, 2015) or a 
model that takes into account extreme weather events through exogenous weather variables. 
Finally, the incorporation of heavy-tailed distributions such as the Weilbull distribution (Woodard, 
2014) or Beta distribution (Zhu et al., 2011) might further improve the model results since a lot of 
empirical evidence suggest that area yields are not normally distributed. 
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Appendix 

              
(a) Corn in Story County, Iowa 

     
(b) Linear Time Trend Estimation based on Rolling Window Data Samples 

Figure A1. Scatter plot and time horizon selection for corn 
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(a) Soybean in Henry County, Illinois 

     
(b) Linear Time Trend Estimation based on Rolling Window Data Samples 

Figure A2. Scatter plot and time horizon selection for soybean 
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(a) Cotton in Dooly County, Georgia 

     
(b) Linear Time Trend Estimation based on Rolling Window Data Samples 

Figure A3. Scatter plot and time horizon selection for cotton 
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                                         Length in Years     Length in Years 
                          Wheat in Coryell County, Texas              Corn in Mercer County, Illinois 

  
                                         Length in Years     Length in Years 
                       Soybean in Henry County, Illinois              Soybean in Cedar County, Iowa  

  
                                         Length in Years     Length in Years 
                         Cotton in Dooly County, Georgia        Cotton in Coahoma County, Mississippi  

Figure A4. Simulated critical values for different values of parameters 𝒓𝒓 and 𝝆𝝆 
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(a) Soybean in Henry County, Illinois  

       
(b) Cotton in Dooly County, Georgia  

Figure A5. Adaptive estimated 𝜷𝜷𝒕𝒕 (left) and 𝝈𝝈𝒕𝒕 (right) with optimal intervals based on the scenario 
(𝒓𝒓 = 𝟎𝟎.𝟓𝟓 and 𝝆𝝆 = 𝟎𝟎.𝟓𝟓) for soybean (Henry, Illinois) and cotton (Dooly, Georgia) 
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(a) Wheat in Ellis County, Kansas (𝒓𝒓 = 𝟏𝟏 and 𝝆𝝆 = 𝟎𝟎.𝟓𝟓) 

       
(b) Wheat in Ellis County, Kansas (𝒓𝒓 = 𝟎𝟎.𝟓𝟓 and 𝝆𝝆 = 𝟎𝟎.𝟑𝟑) 

Figure A6. Adaptively estimated trend 𝜷𝜷𝒕𝒕 (left) and volatility 𝝈𝝈𝒕𝒕 (right) and time intervals with 
alternative hyper-parameters 
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Table A1. Simulated risk bound 𝕹𝕹𝒓𝒓(𝜽𝜽∗) 

Crop State County 𝑟𝑟 = 0.5 
(baseline) 

𝑟𝑟 = 1 

Wheat Kansas Ellis 1.201 1.787 
Texas Coryell 1.206 1.755 

Corn Illinois Mercer 1.289 1.881 
Iowa Story 1.328 2.156 

Soybean Illinois Henry 1.276 1.848 
Iowa Cedar 1.207 1.789 

Cotton Georgia Dooly 1.191 1.711 
Mississippi  Coahoma 1.237 1.880 
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