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Speaking Stata: Trimming to taste
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Abstract. Trimmed means are means calculated after setting aside zero or more
values in each tail of a sample distribution. Here we focus on trimming equal num-
bers in each tail. Such trimmed means define a family or function with mean and
median as extreme members and are attractive as simple and easily understood
summaries of the general level (location, central tendency) of a variable. This
article provides a tutorial review of trimmed means, emphasizing the scope for
trimming to varying degrees in describing and exploring data. Detailed remarks
are included on the idea’s history, plotting of results, and confidence interval pro-
cedures. Examples are given using astronomical and medical data. The new Stata
commands trimmean and trimplot are also included.

Keywords: st0313, trimmean, trimplot, trimming, means, medians, midmeans,
Winsorizing, robust, resistant, graphics

1 Introduction

Trimmed means are means calculated after setting aside some values in one or both tails
of a sample distribution. In the simplest and most common case, the same percent or
number is set aside in each tail, omitting equal numbers of lowest and highest values.

The idea of trimming has been reinvented repeatedly since the 18th century.
Trimmed means have been prominent as one of the simpler methods within the field of
robust statistics for over 50 years, since their reintroduction by J. W. Tukey (1960), W.
J. Dixon (1960), and others. The idea of trimming binds means and medians together in
a wider family: the mean, strictly speaking, is the mean with no values trimmed, while
the median is the mean with all values trimmed except the one or two values that define
the median. Intermediate degrees of trimming offer varying compromises between the
urge to use all the information in the data and any need to discount extreme values
that may appear unreliable.

Trimming before averaging is easy to understand and to explain to general scientific
audiences. Trimmed means are likely to be useful as a cautious check on means or as an
alternative summary when using means seems dubious or even dangerous. Why then
are they not more widely used? Lack of detailed explanations and implementations
may be one answer, and this article addresses that lack for Stata users. Two earlier
user-written programs will be discussed later, but in general, Stata has lagged behind
other statistical software in this field: “a trimmed mean” was added to BMDP in 1977
(Hill and Dixon 1982, 378).

c© 2013 StataCorp LP st0313
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Trimmed means may be based on trimming differently in each tail, including the case
of trimming in one tail only. Staudte and Sheather (1990), for example, first introduce
trimmed means in terms of trimming only in the right tail when estimating the scale of
an exponential distribution. Here we focus on trimming symmetrically.

The new commands trimmean and trimplot are included in this article. Discussion
will follow a detailed explanation of the basic statistics, together with historical remarks.

Some comments follow first on the literature. The reviews by Dixon and Yuen (1974)
and Rosenberger and Gasko (1983) remain clear and helpful on both specific details and
wider context. Both have often been overlooked in later surveys for no obvious good
reason. Kafadar (2003) gives an excellent concise review of Tukey’s work on robustness.
Stigler (2010) gives a light and brisk historical perspective on robust statistics in general.

Introductory or intermediate texts featuring trimmed means include Breiman (1973,
244), Mosteller and Tukey (1977, 34–36), Dixon and Massey (1983, 380–382), Siegel
(1988, 66–68), Helsel and Hirsch (1992, 7), Venables and Ripley (2002, 122), van Belle
et al. (2004, 276–277), Rice (2007, 397), Sprent and Smeeton (2007, 461–465), Reimann
et al. (2008, 43), and Feigelson and Babu (2012, 110).

2 Definitions

2.1 Simplest case

The order statistics of a sample of n values of a variable y are defined by

y(1) ≤ y(2) ≤ · · · ≤ y(n−1) ≤ y(n)

so that y(1) is the smallest value and y(n) is the largest.

The method for trimmed means at its simplest is to set aside some fraction of the
lowest-order statistics and the same fraction of the highest-order statistics and then to
calculate the mean of what remains, thus providing some protection against possible
stretched tails or outliers in a sample. For example, suppose n = 100, and we set aside
5% in each tail, namely, y(1), . . . , y(5) and y(96), . . . , y(100). We can then take the mean
of y(6), . . . , y(95).

For such a definition, see Tukey and McLaughlin (1963, 336), Bickel (1965, 848),
Huber (1981, 57–58), Lehmann (1983, 360), Rosenberger and Gasko (1983, 307–308),
Hampel et al. (1986, 178), Staudte and Sheather (1990, 104), Barnett and Lewis (1994,
79), Miller (1986, 29), David and Nagaraja (2003, 213), Jurec̆ková and Picek (2006, 67),
Pearson (2011, 228, 267), or Wilcox (2003, 62–63; 2009, 26; 2012a, 55; 2012b, 25).

The 0% trimmed mean is thus just the usual mean.

By courtesy, or as a limiting case, the 50% trimmed mean is taken to be the median.
The small detail here is that trimming exactly half the values in each tail will leave no
values at all; hence, the courtesy exercised in leaving the one or two values required
to determine the median. (Averaging the two central values whenever n is even to
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calculate the median is explained to mathematical audiences as a convention and to
nonmathematical audiences as a rule.)

One other trimmed mean has often been given a special name. The 25% trimmed
mean has been called the “midmean”, that is, the mean of the middle half of the data
(Tukey [1970a; 1970b, 168], adopting earlier scientific usage, on which see Tukey [1986,
871]); the “interquartile mean” (for example, Tilanus and Rey [1964]; Erickson and
Nosanchuk [1977, 40; 1992, 44]); and the “quartile-discard average” (Daniell 1920).

A more general rule is that the lowest value included in the calculation of the p%
trimmed mean is y(g+1), where g = ⌊n p/100⌋, and the highest value included is thus
y(n−g).

The very useful floor notation, ⌊ ⌋, here specifies rounding down to the nearest in-
teger. Incidentally, almost all the literature on trimmed means uses [ ] with the same
meaning. Despite a lengthy pedigree, that notation needs to be explained repeatedly:
many readers might disregard it as merely a standard use of brackets. See Cox (2003)
for more discussion and further references on floors and ceilings.

2.2 Weighting

Some authors use a more elaborate definition of trimmed means in which some values
may be given fractional weights. See Andrews et al. (1972, 7, 31), Stigler (1977, 1060),
Kleiner and Graedel (1980, 706), Huber (1981, 57–58), Rosenberger and Gasko (1983,
311), Barnett and Lewis (1994, 79), Huber and Ronchetti (2009, 57–58), or Wilcox
(2012a, 55).

The precise rule is usually that ⌊n p/100⌋ values are removed in each tail, and the
smallest and largest remaining values are assigned weight 1 + ⌊n p/100⌋ − n p/100. So,
for example, given n = 74 and percent 5/100, their product is 3.7. Rounding down
gives 3 and so we work with y(4), . . . , y(71). However, y(4) and y(71) are assigned weight
4 − 3.7 = 0.3, and y(5), . . . , y(70) assigned weight 1. Then a weighted mean is taken.

The idea underlying this alternative definition appears twofold: p% should mean
precisely that, and the result of trimming should vary as smoothly as possible with p.
Rosenberger and Gasko (1983, 310–311) explain this especially clearly with two helpful
diagrams.

The difference is partly a matter of taste. But always using weights that are 1 or
0 is appealingly simple and appears entirely adequate for descriptive and exploratory
uses. Moreover, any fine structure that results from the inclusion and exclusion of
particular values as trimming proportion varies is likely to be trivial or part of what we
are watching for. Either way, there is little loss.
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2.3 Number instead of percent trimmed

In some situations, it is more natural to specify trimming in terms of the number of
values trimmed rather than the percent. For example, trimming or truncating proce-
dures have been used in combining the scores of a panel of judges in various sports to
discourage or discount bias for or against competitors. Here the rules might require, for
example, trimming the highest and lowest values.

Focusing on the number trimmed allows a slightly different definition of trimmed
means. We can describe the order statistics y(1) ≤ y(2) ≤ · · · ≤ y(n−1) ≤ y(n) using the
idea of depth (for example, Tukey [1977]). Depth is defined as 1 for y(1) and y(n), 2 for
y(2) and y(n−1), and so forth: it is the smaller number reached by counting inward from
either extreme y(1) or extreme y(n) toward any specified value. So the depth of y(i) is
the smaller of i and n− i+ 1.

A trimmed mean may be defined for any particular depth as the mean of all values
with that depth or greater. Thus the trimmed mean for depth 1 is the mean of all
values. The trimmed mean for depth 2 is the mean of all values except those of depth 1,
that is, all values except for the extremes. The trimmed mean for depth 3 is the mean
of all values except those of depths 1 and 2, and so forth.

The highest depth observed for a distribution occurs once if n is odd and twice if
n is even; either way it labels values whose mean is the median. Thus, again, trimmed
means range from the mean to the median.

2.4 Symmetry or asymmetry?

Whatever the precise definition, trimming the same number of order statistics in each
tail is arguably based on a symmetry assumption—if not that the distribution of interest
is approximately symmetric, then that the chances of contamination are approximately
equal in either tail. Certainly, estimation of location (level, central tendency) is easy
to think about whenever the underlying distribution is symmetric (and easier still if
it is unimodal). Then estimators of location can typically be thought of as aimed at
precisely the same target, the middle or center of the distribution.

The opposite argument is that the estimand is whatever the estimator points to. As
Tukey (1962, 60) urged, “We must give even more attention to starting with an estima-
tor and discovering what is a reasonable estimand, to discovering what is it reasonable
to think of the estimator as estimating”. A similar point of view has been elaborated
formally in considerable detail by Bickel and Lehmann (1975) and informally with con-
siderable lucidity by Mosteller and Tukey (1977, 32–34). There is also an elementary
version. Using, say, sample median or geometric mean to estimate the corresponding
population parameter makes sense regardless of whether the underlying distribution is
symmetric, and the same goodwill can be extended to sample trimmed means, which
are regarded as estimators of their population counterparts.
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All that said, symmetric trimmed means are unlikely to be ideal for strongly asym-
metric distributions. So-called J-shaped distributions such as the exponential or Pareto
are examples. As remarked in the Introduction, there has been work on asymmetric
trimmed means, but that is not discussed further in this article.

2.5 Confidence intervals

Trimmed means can be given confidence intervals. The approach here follows Tukey and
McLaughlin (1963). Note also Dixon and Tukey (1968) as the sequel to that article. For
a one-sentence summary, see Huber (1972, 1053–1054). For lucid textbook accounts,
see Staudte and Sheather (1990, 98), Miller (1986, 30–31), Huber and Ronchetti (2009,
147–148), or Wilcox (2003, 126–132; 2009, 98–99, 127–128, 150–151; 2010, 153–154;
2012a, 57–61, 111–114; 2012b, 153–159).

Suppose we have n values and trim g in each tail and we seek level% confidence
intervals (for example, level = 95). We need first a Winsorized standard deviation.
Winsorizing is replacing values in each tail by the next inward value; that is, y(1), . . . , y(g)

are each replaced by y(g+1), and y(n−g+1), . . . , y(n) are each replaced by y(n−g) before
calculation, so long as g ≥ 1. Let sdW denote the standard deviation of the Winsorized
values. Then intervals are mean ± (t multiplier × sdW ) / {√n (1 − 2g/n)}, where
the t multiplier in Stata terms is invttail(n - 2*g - 1, (100 - level)/200). If the
latter expression looks too much like a strange incantation, consider an example such
as n = 100, g = 5, and level = 95:

. display invttail(100 - 2*5 - 1, (100 - 95)/200)
1.9869787

Note that the trimmean command uses summarize to calculate the standard devia-
tion; thus, as documented in [R] summarize, the divisor before rooting is n − 1. The
fraction of values used in the trimmed mean 1 − 2g/n is calculated from the number
actually used, not from any percent trimming specified.

This approach does not in the limit as trimming approaches 50% give reasonable
confidence intervals for the median, because the number of degrees of freedom in this
method approaches 0. trimmean declines to cite confidence intervals for the median;
otherwise, obtaining intervals for large trimming fractions is left to the judgment of the
user.

As another approach to confidence intervals, bootstrapping is quite attractive. Efron
and Tibshirani (1993) and Davison and Hinkley (1997) discuss bootstrapping trimmed
means. Although all results are returned in a matrix, trimmean also saves each trimmed
mean separately as a convenience. However, bootstrapping necessarily implies that wild
values could be selected repeatedly in a bootstrap sample, so some individual trimmed
means could be much less resistant than the mean based on the sample as a whole. The
converse is also true.
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2.6 Metric trimming

A different definition of trimmed means, often called metric trimming, yields means
of values satisfying some constraint on the absolute deviation from the median |y −
median(y)| =: d. The name “metric” echoes Bickel (1965), Kim (1992), and Venables
and Ripley (2002, 122). None of those cited the earlier work of Short (1763), similar in
spirit, except that he worked with |y − mean(y)|.

Two simple merits of this definition deserve mention. Like the usual definition, it
defines a family spanning the median and mean as extremes and including intermediate
compromises. Specifying allowed deviations on the scale of the variable may make much
sense to working scientists accustomed to thinking about their measurements.

Thus d = 0 identifies data points equal to the median. (A small detail here is
that quite possibly, d = 0 identifies no data points at all: that will necessarily happen
whenever n is even and the median is calculated as the mean of two different values.)

At the other extreme, such a trimmed mean equals the mean so long as d exceeds the
largest possible absolute deviation, the larger of median(y)− y(1) and y(n) −median(y).

Lest readers confuse this with other procedures, this is not an iterative calculation.
The overall median is calculated just once; there is no cycling such that the median is
redefined to be the median of those values ≤ d.

Metric trimming can be combined with trimming based on order statistics (for ex-
ample, Hampel [1997, 150] and Olive [2001]), but only the simplest flavor is supported
by trimmean. See also Huber (1964) for a brief mention and Hampel (1985) for broader
discussion.

3 Historical remarks

The idea of a trimmed mean is quite old. For some related history, see Stigler (1973,
1976), Harter (1974a,b), Hampel et al. (1986, 34–36), and Barnett and Lewis (1994,
27–31). The episodes identified here seem best thought of as independent inventions
and not as evidence of a continuous thread of thought intermittently made visible.

Throughout several centuries, trimmed means have been one of several practices
in science and, typically, only an occasional practice. Pooling all measurements and
calculating a single mean has at best been one approach and only slowly came to be
regarded as one standard. Choosing the best measurement from several as a matter of
judgment was, and remains, an alternative often used both in science and in everyday
life. Some scientists and a few statisticians have focused on “rejection of outliers”,
that is, identification either by judgment or by some formal rule of outlying values not
to be trusted. This might be included under trimming in a broad sense. However,
it seems best to distinguish clearly: Trimmed means are based on choosing a rule for
trimming, whether a percent or number to be trimmed or a maximum allowed deviation.
Rejection of outliers is based on looking at the data, deciding which, if any, values need
to be rejected, and then averaging what remains.
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Five case studies follow from the literature, with absolutely no claim to completeness.
Biographical vignettes on the main individuals follow the References.

3.1 James Short and the 1761 transit of Venus

James Short (1763) used a form of what is now called metric trimming in 1763 for
estimating the sun’s parallax based on observations of the transit of Venus across the
face of the sun, namely, taking the mean of values closer than some chosen distance
from the mean of all. The parallax here is the angle subtended by the earth’s radius,
as if viewed and measured from the surface of the sun. The units are seconds of a
degree. Note that repeating Short’s (1763) calculations points up small errors in his
arithmetic. For much more on measuring the transit of Venus in 1761 (and 1769) as a
major research program in astronomy, see Woolf (1959) or Wulf (2012). Woolf (1959,
147) comments: “One of the factors that had rendered Short’s results so homogeneous
had been the rather judicious series of alterations which he had made in the original
data concerning longitude and time of contact at various stations”. Short’s (1763) line,
however, was that he was fixing the mistakes of others.

Stigler (1977) included Short’s (1763) data in an evaluation of robust estimation
methods with real data.

Short (1763) provides 53 measurements on page 310 of his article. These are datasets
(1) to (3) in Stigler (1977, 1074). Short (1763) first averages all 53 and gets 8.61; then
all 45 within 1 of that mean and gets 8.55; then all 37 within 0.5 of that mean and gets
8.57. Then he takes the mean of all 3 means and gets 8.58. In effect, his final mean is
weighted according to deviations from the initial overall mean.

Similarly, Short (1763) provides 63 measurements on page 316 of his article. These
are datasets (4) to (6) in Stigler (1977, 1074). Short (1763) first averages all 63 and
gets 8.63; then all 49 within 1 of that mean and gets 8.50; then all 37 within 0.5 and
gets 8.535. The mean of all 3 means is 8.55.

Short’s (1763) data on page 325 of his article are datasets (7) and (8) in Stigler
(1977, 1074). The mean of 21 values in the first set, for the Cape of Good Hope, is
8.56. All 29 values are within 0.2 of that. The mean of 21 values in the second set, for
Rodrigues, is 8.57; the same mean is obtained for all 13 within 0.2.

3.2 A French custom

An anonymous writer (identified by Stigler [1976] as Joseph Diaz Gergonne, 1771–
1859) included an example of trimmed means in a discussion of how to calculate means
(Anonymous 1821, 189): “For example, there are certain provinces of France where, to
determine the mean yield of a property of land, there is a custom to observe this yield
during twenty consecutive years, to remove the strongest and the weakest yield and then
to take one eighteenth of the sum of the others” (translation in Huber [1972, 1043]).
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3.3 Mendeleev on metrology

Mendeleev (1895) (reference in Harter [1974b, 241]) reported his method “to evaluate the
harmony of a series of observations that must give identical numbers, namely, I divide
all the numbers into three, if possible equal, groups (if the number of observations is not
divisible by three, the greatest number is left in the middle group): those of greatest
magnitude, those of medium magnitude, and those of smallest magnitude; the mean of
the middle group is considered the most probable . . . and if the mean of the remaining
groups is close to it . . . the observations are considered harmonious”. Thus Mendeleev
used a 1/3, roughly 33%, trimmed mean.

3.4 Daniell’s theoretical treatment

Daniell (1920) gave an elegant and pathbreaking general treatment of statistics that
are linear combinations of the order statistics, including various estimators of location
and scale. It was apparently inspired by a reading of Poincaré’s Calcul des probabilités

(1912). Daniell derived optimal weighting functions and gave the first mathematical
treatment of the trimmed mean. However, his article had essentially no impact before
its rediscovery by Stigler (1973). Its placement in a journal rarely read by statisticians
cannot have helped.

3.5 Tukey and modern robust statistics

Tukey (1960) surveyed the problem of location estimation when data are likely to come
from distributions heavier tailed than the normal (Gaussian) in an outstanding article
that was one of the founding documents of modern robust statistics. He combined
a literature review with a report on his own work on the subject since the mid-1940s,
some published partly as technical memoranda. In particular, Tukey (1960) showed that
truncated means (his term in this article) calculated after dropping the same percent
of the lowest and highest values offered considerable protection in the face of such
distributions. Dixon (1960) also deserves credit for work in this territory.

The term “trimmed mean” was introduced shortly afterward by Tukey (1962).
Names in earlier use include “truncated mean” (Tukey [1960], as above) and “discard
average” (Daniell 1920). Dixon (1960) discussed using means of a censored sample.
Talking of truncation or censoring raises the need to distinguish carefully between trun-
cation or censoring of the data before they arrive and such truncation or censoring used
deliberately in data analysis—reason enough for using the term “trimming” instead.

After 1960, trimmed means became an established method within the field of robust
statistics, a field repeatedly surveyed and unified by monographs and textbooks and
now covering many other statistical problems, including robust regression.
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4 How much to trim in practice?

A simple and natural question not raised so far is how much to trim in practice. There is
a simple and natural answer: that depends on your dataset, your ideas about generating
processes, and your attitude to risk. But let us back up and consider more generally
how we might evaluate trimmed means and make choices.

One of the advantages of trimmed means is that their behavior is easy to think
about. Trimming p% in each tail of a distribution offers protection against (up to) the
same fraction of dubious values in each tail. A more formal treatment would be phrased
in terms of the idea of “breakdown point” (Donoho and Huber 1983). Whether these
dubious values are called outliers, or something else, is partly a matter of taste and
judgment. There is also some taste and judgment in trading off the protection afforded
against dubious values against the loss of information incurred by ignoring values that
may be genuine.

As with any other method, trimmed means may be studied theoretically, including by
simulation from distributions deemed credible as generating processes, or empirically,
by studying how trimmed means behave with real data. The broad advantages and
disadvantages of each method are clear.

The monograph by Andrews et al. (1972) remains the most impressive compendium
of simulation results for trimmed means (and other robust estimators of location). It
is striking to learn from Hampel (1997) that only a small part of the project was ever
written up. One important omission was what happens with skewed or asymmetric
distributions. But the mass of previous simulation results, both in that volume and
elsewhere, is increasingly redundant. It is now easier to simulate afresh using whatever
underlying distributions and sample sizes appear pertinent to any particular project
than to comb through the literature searching for relevant results.

Similarly, studies with other datasets still raise the question of judging which other
results are pertinent to the current project. Such studies (for example, Stigler [1977]
and Hill and Dixon [1982]) are often more positive than reports of simulation studies,
implying in particular that mild trimming (loosely, of the order of 5–10%) may be all
that is required in many cases.

In either case, there are severe selection problems. How do you reasonably sample
from the space of possible distributions, whether theoretical or empirical? What part
of that space is relevant to your project? These are difficult questions.

One tactic that seems underplayed is to use trimming percents across a wide range
and see what happens. An obvious aid here is to plot trimmed mean versus number
or percent trimmed or allowed deviation. Examples of such plots can be found in
Rosenberger and Gasko (1983, 315) and Davison and Hinkley (1997, 122).
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Then the possibilities include, but are not limited to, some leading cases:

1. Results are stable, whatever the trimming proportion. We can relax and just use
means in any way. This case is like a health check or machine service that found
no problems.

2. Results are stable provided that you trim at least a certain proportion.

3. Results vary systematically with trimming proportion, from mean to median. Note
that this is expected with most asymmetric or skewed distributions, regardless of
whether outliers or heavy tails are present. (It is often forgotten that there are
skewed distributions for which mean and median are identical or very close. For
example, this is true of some binomial distributions and usually a good approxima-
tion for Poisson distributions.) In turn, there will be choices, including living with
the fact; realizing that multiple descriptors—say, mean and median and perhaps
others as well—may be advisable in reporting data; and considering an appropri-
ate transformation or link function (in the jargon of generalized linear models, see
[R] glm).

4. Something else that needs consideration. Trimmed means may here indicate a
problem, but they do not promise to provide a solution.

trimmean is designed to make it easy to produce several trimmed means at once by
specifying differing trimming percents, numbers, or allowed deviations from the median.
The accompanying program trimplot provides graphical display of results. In fact, you
might prefer to look at a graph from trimplot first. (For the syntax of both commands,
see sections 7 and 8.)

5 Applications to real data

5.1 Short (1763) revisited

For a first example, we will revisit Short’s (1763) measurements of parallax. His data
are provided with the media for this issue in short.dta. The variables are parallax,
measured in decimal seconds of a degree, and page, meaning page in the original article.
(As already mentioned in section 3.1, there were two datasets on page 325.)

For a first look at data, I often turn to quantile plots as capable of showing both
broad features and any unusual details and specifically to the program qplot. See Cox
(1999, 2005) for general discussion and many references and the files associated with
Cox (2012a) for code download. (A search for qplot in an up-to-date Stata may reveal
a later version, depending on when you read this.)
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. use short

. qplot parallax, by(page)
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Figure 1. Quantile plots for subsets of parallax measurements in Short (1763)

Given four subsets, there is a choice between showing them separately (juxtaposed)
with the by() option of qplot and showing them together (superposed) with its over()
option. Both can be useful. We see immediately from figure 1 that the two smaller
subsets are distinctly less variable than the two larger ones. No wild outliers are apparent
in each case.

trimplot shows all possible trimmed means. Specifying percent as an option is
useful for comparing subsets of differing sizes. Instead of using the by() option, we
can use the over option to show results in a single panel. As with qplot, both choices
are allowed. There is enough space to put the legend inside the plot region in the top
right-hand corner. See figure 2.
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. trimplot parallax, over(page) percent legend(position(1) ring(0) cols(1))
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Figure 2. All possible trimmed means for subsets of parallax measurements in Short
(1763)

The results show a simple contrast. Trimmed means are stable for the two smaller
subsets but drift fairly systematically with trimming proportion for the two larger sub-
sets. The graph quantifies agreement (all results shown are between 8.50′′ and 8.63′′ to
2 decimal places) and also disagreement (there appears to be some systematic difference
between the two pairs). Were this a live issue, the results could now be taken back to
the astronomical community for reflection and further analysis.

Graphs such as figure 2 show percent trimmed on the x axis. This encourages think-
ing in terms of what happens as we trim more and more. The opposite interpretation is
also possible: what happens as we use more and more of the values in the data? That
interpretation would be made easier by reversing the axis, which is just a standard
twoway option call, xsc(reverse).

To see the numbers, we can fire up trimmean. If desired, trimmean will show all
possible trimmed means through its number() option, but a display of values for percents
0(5)50 appears to be adequate detail for many problems. The tabulation is suppressed
here to save space.

. by page, sort: trimmean parallax, percent(0(5)50) format(%3.2f)

(output omitted )

A final flourish with Short’s (1763) data is to get closer to what Short (1763) actually
did and trim metrically by using an idea of maximum allowed deviation. As mentioned
already, Short (1763) worked with deviation from the overall mean, whereas we find the
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idea of working with deviation from the overall median much more appealing. Crucially,
means can be pulled way off by any dubious values, and focusing only on values close
to the mean may not be enough protection.

Here again a question arises about axis direction. To be consistent with the previous
plot, in which trimming amount increases left to right, we reverse this plot’s x axis scale.
Partly to underline what is possible and partly to use the available space more fully, we
use separate scales for each subset. See figure 3.

. trimplot para, by(page, xrescale) metric xsc(reverse)
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Figure 3. All possible metrically trimmed means for subsets of parallax measurements
in Short (1763)

5.2 Chapman data

For a second example, we turn to a dataset on 200 men from Dixon and Massey (1983,
17–20) called the Chapman heart study data. (Details about Chapman were not
recorded there.) This appears to be of fairly high quality. We pick four variables
with quite different characters and units of measurement. For a basic view, a multiple
quantile plot is obtained with multqplot (Cox 2012b). See figure 4.
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. use chapman

. multqplot diastolic cholesterol height weight
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Figure 4. Quantile plots for diastolic blood pressure, cholesterol, height, and weight for
200 men in the Chapman heart study data

By default in this graph, 5 quantiles are labeled on the y axis: minimum, lower
quartile, median, upper quartile, and maximum, or the 0, 25, 50, 75, and 100% points
in a distribution. These are precisely the quantiles explicit in the most common kind of
box plots. The difference from box plots is that quantile plots show all distinct values.
They will necessarily, but unproblematically, blur into each other to some extent in many
large datasets. Conversely, it is almost a definition that outliers will remain distinct.

Three broad features stand out from the multiple display, not all of which would
be strongly evident from corresponding box plots or histograms. First, all variables are
approximately symmetric to mildly right skewed. Second, there are no marked outliers.
Third, diastolic blood pressure and height stand out as granular in detail with several
ties at rounded values. The motive of the measures of avoiding spurious precision may
easily be guessed, but the granularity is still strong. Diastolic blood pressure is often
reported as 70, 80, or 90 mm Hg. Height is measured to the nearest inch. (Note: 1 inch
= 25.4 mm.)
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Given the diversity of values and units of measurements, separate trimplots are
advisable. We loop over the four variables and then use graph combine. The result is
shown in figure 5.

. foreach v in diastolic cholesterol height weight {
2. trimplot `v´, percent name(`v´)

> xlabel(0(5)50) xline(0 25 50, lcolor(gs10) lwidth(medium))
3. }

. graph combine diastolic cholesterol height weight
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Figure 5. All possible trimmed means for diastolic blood pressure, cholesterol, height,
and weight for 200 men in the Chapman heart study data

Grid lines have been added at 0, 25, and 50% trimming to flag the positions of
the mean, midmean, and median. In detail, some linear segments of the traces for
diastolic and height are evidently side effects or artifacts of the granularity of each
distribution. Relatively smooth, approximately flat, or monotonic patterns are ex-
pectable when a distribution is symmetric or skewed and when there are many differing
values.

For description or exploration, the main idea is that a plot of trimmed means could
help underline that different summaries are close enough that one will be adequate, or
that different summaries need to be quoted together, or indeed that the variable should
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be transformed. The midmean appears unjustly neglected as a simple descriptor. It
has the merit that quartiles are widely familiar to users of statistics, so the idea can
easily be explained. Having a memorable and evocative name also helps, even if it is
pure superstition to suppose that a name is anything but a label.

For inference, how do confidence interval procedures work? As an experiment, I cal-
culated 95% confidence intervals for the midmean using the Tukey–McLaughlin method
and three standard bootstrap procedures. The script is too long to reproduce here
but is available with the media for this issue as trimming ci.do. I used 10,000 repli-
cations for bootstrapping. The random number seed is explicit in the do-file. Figure 6
shows good broad agreement, or for the skeptical or cynical, a reminder that different
procedures usually give at least slightly different results.
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Figure 6. 95% confidence intervals for midmeans of diastolic blood pressure, cholesterol,
height, and weight for the Chapman data, obtained by the Tukey–McLaughlin method
and three bootstrap procedures

6 A note on other Stata implementations

The user-written program iqr by Hamilton (1991) calculates the 10% trimmed mean
(only) as a sideline to other aims. His definition is the mean of values greater than the
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10% percentile and less than the 90% percentile as calculated by [R] summarize, so
results may often differ at least slightly from those calculated by trimmean.

The user-written program robmean by Ender (2009) calculates trimmed means ac-
cording to the fraction trimmed (this is equivalent to the default of trimmean with the
percent() option), together with some other quantities.

7 The trimmean command

7.1 Syntax

trimmean varname
[
if
] [

in
]
,

{percent(numlist) | number(numlist) | metric(numlist)}
[
ceiling weighted ci

level(#) format(format) generate(newvar)
]

by ... : may also be used with trimmean; see help on by.

7.2 Description

trimmean calculates symmetric trimmed means as descriptive or inferential statistics
for varname.

7.3 Options

percent(numlist) specifies percents of trimming for one or more trimmed means. Per-
cents must be integers between 0 and 50 but otherwise can be specified as a numlist.
Precisely one of percent(), number(), or metric() is required.

number(numlist) specifies numbers of values to be trimmed for one or more trimmed
means. Numbers must be zero or positive integers less than half the number of
observations available but otherwise can be specified as a numlist. Precisely one of
percent(), number(), or metric() is required.

metric(numlist) specifies trimming such that means are of values within a specified
absolute deviation of the median of a variable, say, y. Suppose metric(0 100 200)

is specified. Then the means are means of values satisfying |y−med(y)| ≤ 0, 100, 200.
Deviations must be zero or positive values but otherwise can be specified as a numlist.
Precisely one of percent(), number(), or metric() is required.

ceiling specifies the use of ceil() rather than floor() in the calculation of ranks
to be included. It is allowed with number() or metric() but ignored as irrelevant.
This variation is occasionally suggested in the literature (for example, Huber in
Andrews et al. [1972, 254]).
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weighted implements a weighted variant explained in detail in the Definitions section
in the help. It is allowed with number() or metric but ignored as irrelevant. This
option may not be combined with ci.

ci specifies production of confidence intervals. This option may not be combined with
weighted or metric(). For detailed discussion, see the Definitions section in the
help.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.7 Specifying the width
of confidence intervals.

format(format) specifies a numeric format for displaying trimmed means (and confi-
dence limits when requested). The default is the display format of varname.

generate(newvar) specifies that an indicator (a.k.a. dummy) variable be generated
with value 1 if an observation was included in the last trimmed mean calculated and
0 otherwise. The trimmed mean with the highest trimming percent or number or
allowed deviation is always produced last, regardless of user input.

7.4 Stored results

trimmean stores the following in r():

Scalars
r(tmean#) each trimmed mean for percent or number # (for example, r(tmean5) for 5%)

(with the metric() option, labeling is 1 upward, not with deviations
specified)

Matrices
r(results) Stata matrix with columns as percents or numbers, number averaged,

and trimmed means (and confidence limits when requested)

8 The trimplot command

8.1 Syntax

trimplot varname
[
if
] [

in
] [

, {over(overvar) | by(byvar
[
, by subopts

]
)}

percent metric mad scatter options
]

trimplot varlist
[
if
] [

in
] [

, percent metric mad scatter options
]

8.2 Description

trimplot produces plots of trimmed means versus depth or percent trimmed or devi-
ation for one or more numeric variables. Such plots may help specifically in choosing
or assessing measures of level and generally in assessing the symmetry or skewness of
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distributions. They can be used to compare distributions or to assess whether transfor-
mations are necessary or effective.

trimplot may be used to show trimmed means for one variable, in which case
different groups may be distinguished by the over() or the by() option, or for several
variables.

8.3 Options

over(overvar) specifies that calculations be carried out separately for each group de-
fined by overvar but plotted in the same panel. over() is allowed only with a single
variable to be plotted. over() and by() may not be combined.

by(byvar
[
, by subopts

]
) specifies that calculations be carried out separately for each

group defined by byvar and plotted in separate panels. Suboptions may be specified
to tune the graphical display; see help on by option. by() is allowed only with a
single variable to be plotted. over() and by() may not be combined.

percent specifies that depth be scaled and plotted as percent trimmed, which will range
from 0 to nearly 50 (a median cannot be based on no observed values, so 50 cannot
be attained).

metric specifies that trimmed means be defined and plotted in terms of allowed absolute
deviation from the median.

mad specifies metric trimming as above, but values will be plotted versus absolute devi-
ation from the median / median absolute deviation from the median. The median
(absolute) deviation (from the median) can be traced to Gauss (1816).

scatter options are options of twoway scatter.

9 Conclusions

All careful users of statistics worry about how to handle awkward data. One well-
documented kind of awkwardness consists of outliers and tails heavier than normal
(Gaussian), a source of worry if techniques being used work best whenever some dis-
tribution is normal. Even if the modeling assumption is only that some conditional
distribution be normal, marked nonnormality can still be awkward in various senses,
not least in terms of how best to summarize and report such distributions.

Skepticism about the normal or Gaussian is often presented as a recent phenomenon,
but it has deeper roots. Poincaré (1896, 149; 1912, 170–171) quoted a remark by Lipp-
mann (Gabriel Lippmann 1845–1921, Nobel Prize for Physics 1908). This remark has
often been misquoted or loosely translated, so here is a close translation from Mazliak
(2012, 187): “[This distribution] cannot be obtained by rigorous deductions; many a
proof one had wanted to give it is rough, among others the one based on the state-
ment that the probability of the gaps is proportional to the gaps. Everyone believes it,
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however, as M. Lippmann told me one day, because the experimenters imagine it is a
mathematical theorem, and the mathematicians that it is an experimental fact”.

The field of robust statistics offers various solutions in this area. Trimmed means are
one of the oldest and simplest methods for summarizing sample evidence on location as
robustly as you wish. Why then are they not more frequently used? Speculation is easy.
Perhaps they fall uncomfortably between teaching material and the research literature:
they are too much of a complication or distraction to be included in many courses or
texts and too simple or too well known to receive sustained focus in monographs on
robust statistics. The larger problem for the latter is, naturally, how to model robustly
the relationships between outcomes and predictors. The ever-elusive goal of a robust
regression that is easy to understand, always reliable, and suitably fast seems likely to
drive research for the indefinite future.

Whatever the precise diagnosis, I have focused here on providing constructive an-
swers by way of a tutorial review and usable programs for trimmed means. The most
distinctive emphases are including confidence interval procedures and emphasizing the
scope for plotting results. Confidence intervals are often not mentioned in introductory
accounts. The importance of plotting both raw data and results for trimmed means is
also often understated. A more specific suggestion is that the midmean, the mean of
the middle half of the data, seems unfairly neglected.
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12 Vignettes

Percy John Daniell (1889–1946) was born to British parents in Valparaiso, Chile. He
was the last publicly declared Senior Wrangler in Mathematics (top student in his year)
at Cambridge in 1909. After brief periods in Liverpool and Göttingen, he taught and
researched from 1912 to 1923 at the Rice Institute at Houston, Texas, before returning to
Britain as Professor of Mathematics at Sheffield. Daniell’s contributions, which span a
wide range from pure mathematics to applied mathematics and statistics, were surveyed
briefly by Stewart (1947) and Stigler (1973) and in much more detail by Aldrich (2007).

Wilfrid Joseph Dixon (1915–2008) was born in Portland, Oregon. He received de-
grees in mathematics and statistics from Oregon State College, the University of Wis-
consin, and Princeton. He was on the faculty at the University of Oklahoma, the
University of Oregon, and University of California, Los Angeles, where he was a leader
in biostatistics and biomathematics. Dixon’s statistical interests were wide ranging, in-
cluding robust estimation in the presence of outliers, and he collaborated with medical
scientists on many projects. With Frank Jones Massey, Jr. (1919–1995), he wrote a
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major statistics text for nonmathematicians, which was unusual in including material
on trimming and Winsorizing in its third and fourth editions (1969, 1983). Beginning
in 1961, he led the development of the package that has morphed over its history from
BIMED to BIMD to BMD to BMDP. See Flournoy (1993, 2010) and Jennrich (2007) for
more details.

Donald Hatch McLaughlin (1941–) earned degrees in mathematics and psychology
from Princeton, the University of Pennsylvania, and Carnegie Mellon and taught psy-
chology at Berkeley for six years. Since 1973, he has worked for the American Institutes
for Research in Palo Alto, California, and independently as a senior researcher and
consultant on many applied projects in education and several other areas.

Dmitrii Ivanovich Mendeleev (1834–1907) was born near Tobolsk in Siberia. He
studied and researched in chemistry in St. Petersburg and Heidelberg, quickly rising to
professorial rank and establishing St. Petersburg as a major center in chemical research.
Mendeleev is best known for his work developing a periodic table of the elements,
distinguished not only for providing a classification but also for allowing the prediction
of other elements and correcting errors in the measurement of atomic weights. He
was, however, much more than an outstanding chemist: “The same individual who
composed the periodic system also helped design the highly protectionist Russian tariff
of 1891, battled local Spiritualists, created a smokeless gunpowder, attempted Arctic
exploration, consulted on oil development in Baku, investigated iron and coal deposits,
published art criticism, flew in balloons, introduced the metric system, and much more”
(Gordin 2004, xviii). Numerous different transliterations of his name exist.

James Short (1710–1768) was born in Edinburgh and first educated to become a
minister, but with inspiration and support from Colin MacLaurin, he became more in-
terested in mathematics and optics and specifically the construction of telescopes. He
used metallic specula and succeeded in giving them true parabolic and elliptic shapes.
Short adopted telescope-making as his profession, practicing with great success in Edin-
burgh and then London. He was elected Fellow of the Royal Society and published many
of his observations, including his calculation of solar parallax from the 1761 transit of
Venus. See also Turner (1969). Note that Short was Scottish, not English as stated by
Stigler (1973, 873).

John Wilder Tukey (1915–2000) was born in New Bedford, Massachusetts. He stud-
ied chemistry at Brown and mathematics at Princeton and afterward worked at both
Princeton and Bell Labs. He was also involved in a great many government projects,
consultancies, and committees. He made outstanding contributions to several areas of
statistics, including time series, multiple comparisons, robust statistics, and exploratory
data analysis. Tukey was extraordinarily energetic and inventive, not least in his use
of terminology: he has been credited with inventing the terms “bit”, “analysis of vari-
ance”, “box plot”, “data analysis”, “hat matrix”, “jackknife”, “stem-and-leaf plot”,
“trimming”, and “Winsorizing”, among many others. He was awarded the U.S. Na-
tional Medal of Science in 1973. Tukey’s direct and indirect influence marks him as one
of the greatest statisticians of all time.
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Charles P. Winsor (1895–1951) was educated at Harvard as an engineer and then
worked for the New England Telephone and Telegraph Company, but his interests shifted
to biological research and biostatistics. After further study at Johns Hopkins and Har-
vard, he held posts at Iowa State College and Johns Hopkins; in between, in the Second
World War, he did government work at Princeton. The term “Winsorize” has been
attributed to J. W. Tukey but was first used in publications by Dixon (1960).

About the author

Nicholas Cox is a statistically minded geographer at Durham University. He contributes talks,
postings, FAQs, and programs to the Stata user community. He has also coauthored 15 com-
mands in official Stata. He was an author of several inserts in the Stata Technical Bulletin and
is an editor of the Stata Journal.




