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1 Introduction

Mixed logit or random parameter logit is used in many empirical applications to cap-
ture more realistic substitution patterns than traditional conditional logit. The ran-
dom parameters are usually assumed to follow a normal distribution, and the resulting
model is fit through simulated maximum likelihood, as in Hole’s (2007) Stata command
mixlogit. Several recent studies, however, note potential gains from specifying a dis-
crete instead of normal mixing distribution, including the ability to approximate the
true parameter distribution more flexibly at lower computational costs.1

Pacifico (2012) implements the expectation-maximization (EM) algorithm for fitting
a discrete-mixture logit model, also known as a latent-class logit (LCL) model, in Stata.
As Bhat (1997) and Train (2008) emphasize, the EM algorithm is an attractive alterna-
tive to the usual (quasi-)Newton methods in the present context because it guarantees
numerical stability and convergence to a local maximum even when the number of latent
classes is large. In contrast, the usual optimization procedures often fail to achieve con-
vergence because inversion of the (approximate) Hessian becomes numerically difficult.

With this contribution, we aim at generalizing Pacifico’s (2012) code with a Stata
command that introduces a series of important functionalities and provides an improved
performance in terms of run time and stability.

1. For example, see Hess et al. (2011), Shen (2009), and Greene and Hensher (2003).

c© 2013 StataCorp LP st0312



626 Latent-class logit model

2 EM algorithm for LCL

This section recapitulates the EM algorithm for fitting an LCL model.2 Suppose that
each of N agents faces, for notational simplicity, J alternatives in each of T choice
scenarios.3 Let ynjt denote a binary variable that equals 1 if agent n chooses alternative
j in scenario t and equals 0 otherwise. Each alternative is described by alternative-
specific characteristics xnjt and each agent by agent-specific characteristics, including
a constant, zn.

LCL assumes that there are C distinct sets (or classes) of taste parameters, β =
(β1,β2, . . . ,βC). If agent n is in class c, the probability of observing his or her sequence
of choices is a product of conditional logit formulas:

Pn(βc) =

T∏

t=1

J∏

j=1

{
exp(βcxnjt)∑J
k=1 exp(βcxnkt)

}ynjt

(1)

Because the class membership status is unknown, the researcher needs to specify the
unconditional likelihood of agent n’s choices, which equals the weighted average of (1)
over classes. The weight for class c, πcn(θ), is the population share of that class and is
usually modeled as fractional multinomial logit,

πcn(θ) =
exp(θczn)

1 +
∑C−1

l=1 exp(θlzn)
(2)

where θ = (θ1,θ2, . . . ,θC−1) are class membership model parameters; note that θC has
been normalized to 0 for identification.

The sample log likelihood is then obtained by summing each agent’s log uncondi-
tional likelihood:

lnL(β,θ) =

N∑

n=1

ln

C∑

c=1

πcn(θ)Pn(βc) (3)

Bhat (1997) and Train (2008) note numerical difficulties associated with maximizing (3)
directly. They show that β and θ can be more conveniently estimated via a well-known
EM algorithm for likelihood maximization in the presence of incomplete data, treating
each agent’s class membership status as the missing information. Let superscript s
denote the estimates obtained at the sth iteration of this algorithm. Then at iteration
s+ 1, the estimates are updated as

βs+1 = argmaxβ
∑N

n=1

∑C
c=1 ηcn(β

s,θs) lnPn(βc)

θs+1 = argmaxθ
∑N

n=1

∑C
c=1 ηcn(β

s,θs) lnπcn(θ)

2. Further details are available in Bhat (1997) and Train (2008).
3. lclogit is also applicable when the number of scenarios varies across agents, and the number of

alternatives varies both across agents and over scenarios.
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where ηcn(β
s,θs) is the posterior probability that agent n is in class c evaluated at the

sth estimates:

ηcn(β
s,θs) =

πcn(θ
s)Pn(β

s
c)∑C

l=1 πln(θ
s)Pn(β

s
l )

(4)

The updating procedure can be implemented easily in Stata, exploiting clogit and
fmlogit routines as follows.4 βs+1 is computed by fitting a conditional logit model
(clogit) C times, each time using ηcn(β

s,θs) for a particular c to weight observations
on each n. θs+1 is obtained by fitting a fractional multinomial logit model (fmlogit)
that takes η1n(β

s,θs), η2n(β
s,θs), . . . , ηCn(β

s,θs) as dependent variables. When zn
only includes the constant term so that each class share is the same for all agents, that
is, when πcn(θ) = πc(θ), each class share can be directly updated by using the following
analytical solution without fitting the fractional multinomial logit model:

πc(θ
s+1) =

∑N
n=1 ηcn(β

s,θs)
∑C

l=1

∑N
n=1 ηln(β

s,θs)
(5)

With a suitable selection of starting values, the updating procedure can be repeated
until changes in the estimates and improvement in the log likelihood between iterations
are small enough.

An often-highlighted feature of LCL is its ability to accommodate unobserved inter-
personal taste variation without restricting the shape of the underlying taste distribu-
tion. Hess et al. (2011) have recently emphasized that LCL also provides a convenient
means to account for observed interpersonal heterogeneity in correlations among tastes
for different attributes. For example, let βq and βh denote taste coefficients on the qth
and hth attributes, respectively. Each coefficient may take one of C distinct values and
is a random parameter from the researcher’s perspective. Their covariance is given by

covn(βq, βh) =

C∑

c=1

πcn(θ)βc,qβc,h −
{

C∑

c=1

πcn(θ)βc,q

}{
C∑

c=1

πcn(θ)βc,h

}
(6)

where βc,q is the value of βq when agent n is in class c, and βc,h is defined similarly. As
long as zn in (2) includes a nonconstant variable, this covariance will vary across agents
with different observed characteristics through the variation in πcn(θ).

3 The lclogit command

lclogit is a Stata command that implements the EM iterative scheme outlined in the
previous section. This command generalizes Pacifico’s (2012) step-by-step procedure
and introduces an improved internal loop along with other important functionalities.
The overall effect is to make the estimation process more convenient, significantly faster,
and more stable numerically.

4. fmlogit is a user-written program. See footnote 5 for a further description.
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For example, the internal code of lclogit executes fewer algebraic operations per
iteration to update the estimates; uses the standard generate command to perform
tasks that were previously executed with slightly slower egen functions; and, when
possible, works with log probabilities instead of probabilities. All of these changes
substantially reduce the estimation run time, especially in the presence of a large number
of parameters and observations. If we take the 8-class model fit by Pacifico (2012) as an
example, lclogit produces the same results as the step-by-step procedure while taking
less than one-half of the run time.

The data setup for lclogit is identical to that required by clogit.

3.1 Syntax

The generic syntax for lclogit is

lclogit depvar
[
indepvars

] [
if
] [

in
]
, group(varname) id(varname)

nclasses(#)
[
membership(varlist) convergence(#) iterate(#) seed(#)

constraints(Class# numlist:
[
Class# numlist: . . .

]
) nolog

]

3.2 Options

group(varname) specifies a numeric identifier variable for the choice scenarios. group()
is required.

id(varname) specifies a numeric identifier variable for the choice makers or agents.
With cross-section data, users should specify the same variable for both the group()
and the id() options. id() is required.

nclasses(#) specifies the number of latent classes used in the estimation. A minimum
of two latent classes is required. nclasses() is required.

membership(varlist) specifies independent variables to enter the fractional multinomial
logit model of class membership, that is, the variables included in the vector zn of
(2). These variables must be constant within the same agent as identified by id().5

When this option is not specified, the class shares are updated algebraically following
(5).

convergence(#) specifies the tolerance for the log likelihood. When the proportional
increase in the log likelihood over the last five iterations is less than the specified
criterion, lclogit declares convergence. The default is convergence(0.00001).

5. Pacifico (2012) specified an ml program with the method lf to fit the class membership model.
lclogit uses another user-written program from Buis (2008), fmlogit, which performs the same
estimation with the significantly faster and more accurate d2 method. lclogit is downloaded with
a modified version of the prediction command of fmlogit and fmlogit pr because we had to modify
this command to obtain double-precision class shares.
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iterate(#) specifies the maximum number of iterations. If convergence is not achieved
after the selected number of iterations, lclogit stops the recursion and notes this
fact before displaying the estimation results. The default is iterate(150).

seed(#) sets the seed for pseudouniform random numbers. The default is the creturn
value c(seed).

The starting values for taste parameters are obtained by splitting the sample into
nclasses() different subsamples and fitting a clogit model for each of them. Dur-
ing this process, a pseudouniform random number is generated for each agent to
assign the agent into a particular subsample.6 As for the starting values for the
class shares, lclogit uses equal shares, that is, 1/nclasses().

constraints(Class# numlist:
[
Class# numlist: . . .

]
) specifies the constraints that

are imposed on the taste parameters of the designated classes, that is, βc in (1). For
instance, suppose that x1 and x2 are alternative-specific characteristics included in
indepvars for lclogit and that the user wishes to restrict the coefficient on x1 to 0
for Class1 and Class4 and the coefficient on x2 to 2 for Class4. Then the relevant
series of commands would look like this:

constraint 1 x1 = 0
constraint 2 x2 = 2
lclogit depvar indepvars, group(varname) id(varname) ///

nclasses(8) constraints(Class1 1: Class4 1 2)

nolog suppresses the display of the iteration log.

4 Postestimation command: lclogitpr

lclogitpr predicts the probabilities of choosing each alternative in a choice situation
(choice probabilities hereafter), the class shares or prior probabilities of class member-
ship, and the posterior probabilities of class membership. The predicted probabilities
are stored in a variable named stubname#, where # refers to the relevant class number;
the only exception is the unconditional choice probability, which is stored in a variable
named stubname.

4.1 Syntax

The syntax for lclogitpr is

lclogitpr stubname
[
if
] [

in
] [

, class(numlist) pr0 pr up cp
]

6. More specifically, the unit interval is divided into nclasses() equal parts, and if the agent’s pseudo-
random draw is in the cth part, the agent is allocated to the subsample whose clogit results serve
as the initial estimates of class c’s taste parameters. Note that lclogit is identical to asmprobit in
that the current seed, as at the beginning of the command’s execution, is restored once all necessary
pseudorandom draws have been made.
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4.2 Options

class(numlist) specifies the classes for which the probabilities are going to be predicted.
The default setting assumes all classes.

pr0 predicts the unconditional choice probability, which equals the average of class-
specific choice probabilities weighted by the corresponding class shares. That is,∑C

c=1 πcn(θ)[exp(βcxnjt)/{
∑J

k=1 exp(βcxnkt)}] in the context of section 2.

pr predicts the unconditional choice probability and the choice probabilities conditional

on being in particular classes; exp(βcxnjt)/{
∑J

k=1 exp(βcxnkt)} in (1) corresponds
to the choice probability conditional on being in class c. This is the default option.

up predicts the class shares or prior probabilities that the agent is in particular classes.
They correspond to the class shares predicted by using the class membership model
parameter estimates; see (2) in section 2.

cp predicts the posterior probabilities that the agent is in particular classes, taking into
account his or her sequence of choices. They are computed by evaluating (4) at the
final estimates for each c = 1, 2, . . . , C.

5 Postestimation command: lclogitcov

lclogitcov predicts the implied variances and covariances of taste parameters by eval-
uating (6) at the active lclogit estimates. They could be a useful tool for studying
the underlying taste patterns; see Hess et al. (2011) for a related application.

The generic syntax for lclogitcov is

lclogitcov varlist
[
if
] [

in
] [

, nokeep varname(stubname) covname(stubname)

matrix(name)
]

The default is to store the predicted variances in a set of hard-coded variables named
var 1, var 2, . . . , where var q is the predicted variance of the coefficient on the qth
variable listed in varlist, and to store the predicted covariances in cov 12, cov 13, . . . ,
cov 23, . . . , where cov qh is the predicted covariance between the coefficients on the
qth variable and the hth variable in varlist.

The averages of these variances and covariances over agents—as identified by the
required option id() of lclogit—in the prediction sample are reported as a covariance
matrix at the end of lclogitcov’s execution.

5.1 Options

nokeep drops the predicted variances and covariances from the dataset at the end of
the command’s execution. The average covariance matrix is still displayed.
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varname(stubname) requests that the predicted variances be stored as stubname1, stub-
name2, . . . .

covname(stubname) requests that the predicted covariances be stored as stubname12,
stubname13, . . . .

matrix(name) stores the reported average covariance matrix in a Stata matrix called
name.

6 Postestimation command: lclogitml

lclogitml is a wrapper for gllamm (Rabe-Hesketh, Skrondal, and Pickles 2002), which
uses the d0 method to fit generalized linear latent-class and mixed models, includ-
ing LCL, via the Newton–Raphson (NR) algorithm for likelihood maximization.7 This
postestimation command passes active lclogit specification and estimates to gllamm,
and its primary use mainly depends on how the iterate() option is specified; see below
for details.

The default setting relabels and transforms the ereturn results of gllamm in ac-
cordance with those of lclogit before reporting and posting them. Users can exploit
lclogitpr and lclogitcov, as well as Stata’s usual postestimation commands requiring
the asymptotic covariance matrix such as nlcom. When switch is specified, the origi-
nal ereturn results of gllamm are reported and posted; users gain access to gllamm’s
postestimation commands but lose access to lclogitpr and lclogitcov.

lclogitml can also be used as its own postestimation command, for example, to
pass the currently active lclogitml results to gllamm for further NR iterations.

The generic syntax for lclogitml is

lclogitml
[
if
] [

in
] [

, iterate(#) level(#) nopost switch

compatible gllamm options
]

6.1 Options

iterate(#) specifies the maximum number of NR iterations for gllamm’s likelihood-
maximization process. The default is iterate(0), in which case the likelihood
function and its derivatives are evaluated at the current lclogit estimates; this
allows for obtaining standard errors associated with the current estimates without
bootstrapping.

7. gllamm can be downloaded by typing ssc install gllamm into the Command window.
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With a nonzero argument, this option can implement a hybrid estimation strategy
similar to Bhat’s (1997). He executes a relatively small number of EM iterations
to obtain intermediate estimates and uses them as starting values for direct likeli-
hood maximization via a quasi-Newton algorithm until convergence because the EM

algorithm tends to slow down near a local maximum.

Specifying a nonzero argument for this option can also be a useful tool for check-
ing whether lclogit has declared convergence prematurely (for instance, because
convergence() has not been set stringently enough for an application at hand).

level(#) sets the confidence level. The default is level(95).

nopost restores the currently active ereturn results at the end of the command’s exe-
cution.

switch displays and posts the original gllamm estimation results without relabeling and
transforming them in accordance with the lclogit output.

compatible gllamm options refer to gllamm’s estimation options, which are compatible
with the LCL model specification. See gllamm’s own help menu for more information.

7 Application

We illustrate the use of lclogit and its companion postestimation commands by ex-
panding upon the example Pacifico (2012) uses to demonstrate his step-by-step pro-
cedure for estimating LCL in Stata. This example analyzes the stated preference data
on a household’s choice of electricity supplier accompanying Hole’s (2007) mixlogit

command, which in turn are a subset of data used in Huber and Train (2001). There
are 100 customers who face up to 12 different choice occasions, each of them consisting
of a single choice among 4 suppliers with the following characteristics:

• The price of the contract (in cents per kWh) whenever the supplier offers a contract
with a fixed rate (price)

• The length of contract that the supplier offered, expressed in years (contract)

• Whether the supplier is a local company (local)

• Whether the supplier is a well-known company (wknown)

• Whether the supplier offers a time-of-day rate instead of a fixed rate (tod)

• Whether the supplier offers a seasonal rate instead of a fixed rate (seasonal)

The dummy variable y collects the stated choice in each choice occasion, while the
numeric variables pid and gid identify customers and choice occasions, respectively. To
illustrate the use of the membership() option, we generate a pseudorandom regressor
x1, which mimics a demographic variable. The data are organized as follows:



D. Pacifico and H. Yoo 633

. use http://fmwww.bc.edu/repec/bocode/t/traindata.dta

. set seed 1234567890

. by pid, sort: egen _x1=sum(round(rnormal(0.5),1))

. list in 1/12, sepby(gid)

y price contract local wknown tod seasonal gid pid _x1

1. 0 7 5 0 1 0 0 1 1 26
2. 0 9 1 1 0 0 0 1 1 26
3. 0 0 0 0 0 0 1 1 1 26
4. 1 0 5 0 1 1 0 1 1 26

5. 0 7 0 0 1 0 0 2 1 26
6. 0 9 5 0 1 0 0 2 1 26
7. 1 0 1 1 0 1 0 2 1 26
8. 0 0 5 0 0 0 1 2 1 26

9. 0 9 5 0 0 0 0 3 1 26
10. 0 7 1 0 1 0 0 3 1 26
11. 0 0 0 0 1 1 0 3 1 26
12. 1 0 0 1 0 0 1 3 1 26

In empirical applications, it is common to choose the optimal number of latent classes
by examining information criteria such as the Bayesian information criterion (BIC) and
consistent Akaike information criterion (CAIC). The next lines show how to estimate
nine LCL specifications repeatedly and obtain the related information criteria:8

. forvalues c = 2/10 {
2. quietly lclogit y price contract local wknown tod seasonal,

> group(gid) id(pid) nclasses(`c´) membership(_x1) seed(1234567890)
3. matrix b = e(b)
4. matrix ic = nullmat(ic) \ `e(nclasses)´, `e(ll)´, `=colsof(b)´,

> `e(caic)´, `e(bic)´
5. }

(output omitted )

. matrix colnames ic = "Classes" "LLF" "Nparam" "CAIC" "BIC"

. matlist ic, name(columns)

Classes LLF Nparam CAIC BIC

2 -1211.232 14 2500.935 2486.935
3 -1117.521 22 2358.356 2336.356
4 -1084.559 30 2337.273 2307.273
5 -1039.771 38 2292.538 2254.538
6 -1027.633 46 2313.103 2267.103
7 -999.9628 54 2302.605 2248.605
8 -987.7199 62 2322.96 2260.96
9 -985.1933 70 2362.748 2292.748
10 -966.3487 78 2369.901 2291.901

8. lclogit saves three information criteria in its ereturn list: Akaike’s information criterion, BIC,
and CAIC. Akaike’s information criterion equals −2 lnL+2m, where lnL is the maximized sample
log likelihood and m is the total number of fitted model parameters. BIC and CAIC penalize
models with extra parameters more heavily by using penalty functions that increase in the number
of choice makers N : BIC = −2 lnL+m lnN and CAIC = −2 lnL+m(1 + lnN).
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CAIC and BIC are minimized with 5 and 7 classes, respectively. In the remainder of
this section, our analysis focuses on the 5-class specification to economize on space.

lclogit reports the estimation results as follows:

. lclogit y price contract local wknown tod seasonal, group(gid) id(pid)
> nclasses(5) membership(_x1) seed(1234567890)

Iteration 0: log likelihood = -1313.967
Iteration 1: log likelihood = -1195.5476

(output omitted )

Iteration 22: log likelihood = -1039.7709

Latent class model with 5 latent classes

Choice model parameters and average class shares

Variable Class1 Class2 Class3 Class4 Class5

price -0.902 -0.325 -0.763 -1.526 -0.520
contract -0.470 0.011 -0.533 -0.405 -0.016

local 0.424 3.120 0.527 0.743 3.921
wknown 0.437 2.258 0.325 1.031 3.063

tod -8.422 -2.162 -5.379 -15.677 -6.957
seasonal -6.354 -2.475 -7.763 -14.783 -6.941

Class Share 0.113 0.282 0.162 0.243 0.200

Class membership model parameters : Class5 = Reference class

Variable Class1 Class2 Class3 Class4 Class5

_x1 0.045 0.040 0.047 0.048 0.000
_cons -1.562 -0.544 -1.260 -0.878 0.000

Note: Model estimated via EM algorithm

Note that the reported class shares are the average shares over agents because the
class shares vary across agents when the membership() option is included in the syntax.
If needed, agent-specific class shares can be easily computed by using the postestimation
command lclogitpr with the up option.

To obtain a quantitative measure of how well the model does in differentiating several
classes of preferences, we use lclogitpr to compute the average (over respondents) of
the highest posterior probability of class membership:9

. by `e(id)´, sort: generate first = _n==1

. lclogitpr cp, cp

. egen double cpmax = rowmax(cp1-cp5)

. summarize cpmax if first, sep(0)

Variable Obs Mean Std. Dev. Min Max

cpmax 100 .9596674 .0860159 .5899004 1

9. A dummy variable that equals 1 for the first observation on each respondent is generated because
not every agent faces the same number of choice situations in this specific experiment.
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As can be seen, the mean highest posterior probability is about 0.96, meaning that
the model does very well in distinguishing among different underlying taste patterns for
the observed choice behavior.

We next examine the model’s ability to make in-sample predictions of the actual
choice outcomes. For this purpose, we first classify a respondent as a member of class
c if class c gives him or her highest posterior membership probability. Then for each
subsample of such respondents, we predict the unconditional probability of actual choice
and the probability of actual choice conditional on being in class c:

. lclogitpr pr, pr

. generate byte class = .
(4780 missing values generated)

. forvalues c = 1/`e(nclasses)´ {
2. quietly replace class = `c´ if cpmax==cp`c´
3. }

. forvalues c = 1/`e(nclasses)´ {
2. quietly summarize pr if class == `c´ & y==1
3. local n=r(N)
4. local a=r(mean)
5. quietly summarize pr`c´ if class == `c´ & y==1
6. local b=r(mean)
7. matrix pr = nullmat(pr) \ `n´, `c´, `a´, `b´
8. }

. matrix colnames pr = "Obs" "Class" "Uncond_Pr" "Cond_PR"

. matlist pr, name(columns)

Obs Class Uncond_Pr Cond_PR

129 1 .3364491 .5387555
336 2 .3344088 .4585939
191 3 .3407353 .5261553
300 4 .4562778 .7557497
239 5 .4321717 .6582177

In general, the average unconditional choice probability is much higher than 0.25,
which is what a naive model would predict given that there are 4 alternatives per choice
occasion. The average conditional probability is even better and higher than 0.5 in all
but one class. Once again, we see that the model describes the observed choice behavior
very well.

When taste parameters are modeled as draws from a normal distribution, the esti-
mated preference heterogeneity is described by their mean and covariances. The same
summary statistics can be easily computed for LCL by combining class shares and taste
parameters; see Hess et al. (2011) for a detailed discussion. lclogit saves these statis-
tics as part of its ereturn list:
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. matrix list e(PB)

e(PB)[1,6]
Average of: Average of: Average of: Average of: Average of:

price contract local wknown tod
Coefficients -.79129238 -.23755636 1.9794603 1.6029319 -7.6272765

Average of:
seasonal

Coefficients -7.6494889

. matrix list e(CB)

symmetric e(CB)[6,6]
price contract local wknown tod seasonal

price .20833629
contract .07611239 .05436665

local .48852574 .32683725 2.1078043
wknown .27611961 .22587673 1.4558029 1.045789

tod 2.2090348 .65296465 4.0426714 1.9610973 25.12504
seasonal 1.9728148 .65573999 3.8801716 2.0070985 21.845013 20.189302

Because we fit a model with the membership() option, the class shares [hence, the
covariances; see (6)] now vary across respondents, and the matrix e(CB) above is an
average covariance matrix. In this case, the postestimation command lclogitcov can
be very useful for studying variation in taste correlation patterns within and across
different demographic groups. To illustrate this point, we compute the covariances of
the coefficients on price and contract and then summarize the results for two groups
defined by whether x1 is greater than or less than 20:

. quietly lclogitcov price contract

. summarize var_1 cov_12 var_2 if _x1 >20 & first

Variable Obs Mean Std. Dev. Min Max

var_1 62 .2151655 .0061303 .2065048 .2301424
cov_12 62 .0765989 .000348 .0760533 .0773176
var_2 62 .0545157 .0000987 .0543549 .0547015

. summarize var_1 cov_12 var_2 if _x1 <=20 & first

Variable Obs Mean Std. Dev. Min Max

var_1 38 .1971939 .0053252 .1841498 .2050795
cov_12 38 .0753185 .0004483 .0741831 .075949
var_2 38 .0541235 .0001431 .0537589 .0543226

Standard errors associated with any results provided by lclogit can be obtained
via bootstrap. However, the bootstrapped standard errors of class-specific results are
much less reliable than those of averaged results because the class labeling may vary
arbitrarily across bootstrapped samples; see Train (2008) for a detailed discussion.

Users interested in class-specific inferences may consider passing the lclogit results
to user-written ml programs such as gllamm (Rabe-Hesketh, Skrondal, and Pickles 2002)
to take advantage of the EM algorithm and obtain conventional standard errors at the
same time. lclogitml simplifies this process.
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. lclogitml, iter(5)
-gllamm- is initializing. This process may take a few minutes.

Iteration 0: log likelihood = -1039.7709 (not concave)
Iteration 1: log likelihood = -1039.7709
Iteration 2: log likelihood = -1039.7706
Iteration 3: log likelihood = -1039.7706

Latent class model with 5 latent classes

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

choice1
price -.9023068 .2012346 -4.48 0.000 -1.296719 -.5078943

contract -.4698861 .089774 -5.23 0.000 -.64584 -.2939322
local .4241342 .3579407 1.18 0.236 -.2774167 1.125685

wknown .4370318 .2864782 1.53 0.127 -.1244552 .9985188
tod -8.422232 1.584778 -5.31 0.000 -11.52834 -5.316125

seasonal -6.354626 1.569516 -4.05 0.000 -9.430821 -3.27843

choice2
price -.3249095 .1090047 -2.98 0.003 -.5385547 -.1112642

contract .0108523 .0384404 0.28 0.778 -.0644894 .0861941
local 3.122255 .2842558 10.98 0.000 2.565124 3.679387

wknown 2.258772 .2553446 8.85 0.000 1.758306 2.759238
tod -2.157726 .8906931 -2.42 0.015 -3.903453 -.4119999

seasonal -2.470511 .8942779 -2.76 0.006 -4.223263 -.7177583

choice3
price -.7629762 .1415072 -5.39 0.000 -1.040325 -.4856272

contract -.5331056 .0739354 -7.21 0.000 -.6780162 -.388195
local .526889 .2633905 2.00 0.045 .0106531 1.043125

wknown .3249201 .2391513 1.36 0.174 -.1438078 .7936479
tod -5.379464 1.100915 -4.89 0.000 -7.537217 -3.22171

seasonal -7.763171 1.191777 -6.51 0.000 -10.09901 -5.427331

choice4
price -1.526036 .1613542 -9.46 0.000 -1.842284 -1.209787

contract -.4051809 .0754784 -5.37 0.000 -.5531158 -.2572459
local .7413859 .3599632 2.06 0.039 .0358711 1.446901

wknown 1.029899 .3032522 3.40 0.001 .4355353 1.624262
tod -15.68543 1.523334 -10.30 0.000 -18.67111 -12.69975

seasonal -14.78921 1.463165 -10.11 0.000 -17.65696 -11.92146

choice5
price -.5194972 .1357407 -3.83 0.000 -.7855442 -.2534503

contract -.0141426 .0915433 -0.15 0.877 -.1935642 .165279
local 3.907502 .70797 5.52 0.000 2.519906 5.295098

wknown 3.055901 .4653006 6.57 0.000 2.143928 3.967873
tod -6.939564 1.428878 -4.86 0.000 -9.740112 -4.139015

seasonal -6.92799 1.363322 -5.08 0.000 -9.600052 -4.255928

share1
_x1 .0443861 .0510411 0.87 0.385 -.0556525 .1444247

_cons -1.562361 1.197298 -1.30 0.192 -3.909022 .7843005

share2
_x1 .0400449 .0427769 0.94 0.349 -.0437962 .1238861

_cons -.5443567 .9566361 -0.57 0.569 -2.419329 1.330616



638 Latent-class logit model

share3
_x1 .0470822 .0458336 1.03 0.304 -.0427501 .1369145

_cons -1.260251 1.061043 -1.19 0.235 -3.339857 .8193545

share4
_x1 .0479228 .042103 1.14 0.255 -.0345976 .1304431

_cons -.8794649 .9718417 -0.90 0.365 -2.78424 1.02531

The fitted choice model or taste parameters βc and class membership model pa-
rameters θc are grouped under equations choicec and sharec, respectively. lclogitml
relabels and transforms the original gllamm estimation results in accordance with the
lclogit’s ereturn list (see section 6), facilitating interpretation of the new output
table.10 The active lclogitml coefficient estimates can also be displayed in the stan-
dard lclogit output format by entering lclogit into the Command window without
any additional statement.

Note that the log likelihood increases slightly after three iterations, though the
parameter estimates remain almost the same. This may happen because lclogit uses
only the relative change in the log likelihood as convergence criterion. gllamm works
with the standard ml command with a d0 evaluator, which declares convergence in
a more stringent manner, specifically, when the relative changes in both the scaled
gradient and either the log likelihood or the parameter vector are smaller than a given
tolerance level.11

When lclogit is used in a final production run, you should specify more stringent
convergence() than the default and experiment with alternative starting values by
changing seed(). Train (2008) contains references highlighting the importance of these
issues for applications exploiting EM algorithms.
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10. The original output table gllamm report is lengthier and somewhat less intuitive in comparison. For
instance, it splits the six estimates displayed under equation choice1 over six different equations,
labeled z 1 1, z 2 1, z 3 1, z 4 1, z 5 1, and z 6 1.

11. The benefit of using lclogit beforehand cannot be overstated. Because gllamm uses the d0 evalua-
tor and the LCL log likelihood is not amenable to direct maximization, each iteration tends to last
for a long time, and finding initial values that lead to convergence often involves a laborious search.
lclogit exploits the EM algorithm, which in theory guarantees convergence to a local maximum,
and takes the estimates to a local maximum or its close neighborhood in a relatively fast way in
practice.
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