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Abstract. In this article, we consider two recently proposed semiparametric es-
timators for distribution-free binary response models under a conditional median
restriction. We show that these estimators can be implemented in Stata by us-
ing the nl command through simple modifications to the nonlinear least-squares
probit criterion function. We then introduce dfbr, a new Stata command that
implements these estimators, and provide several examples of its usage. Although
it is straightforward to carry out the estimation with nl, the dfbr implementation
uses Mata for improved performance and robustness.

Keywords: st0310, dfbr, binary response, heteroskedasticity, nonlinear least
squares, semiparametric estimation, sieve estimation

1 Introduction

In this article, we consider the Stata implementations of two recently proposed semi-
parametric estimators for distribution-free binary response models of the form

yi = 1 (x′iβ + εi > 0) (1)

where yi ∈ (0, 1) is an observed response variable, xi is a vector of k observed covariates,
εi is an unobserved disturbance term, and β is an unknown vector of parameters of
interest. Our goal is to estimate β given a random sample of observations (yi, xi)

n
i=1.

Following Manski (1975, 1985) and Horowitz (1992), we impose only a relatively
weak conditional median independence condition:

med(εi |xi) = 0

More formally, we assume that the distribution of εi conditional on xi almost surely has
median 0. Such a restriction ensures point identification of β while allowing for general
forms of heteroskedasticity (for example, random coefficients). Thus the estimators we
propose are semiparametric.

Alternatively, parametric methods specify the distribution of εi up to a finite vector
of parameters and typically assume this distribution is independent of xi. Under such an
assumption, one can estimate β using maximum likelihood. However, if the distribution
of εi is misspecified or heteroskedastic, then the maximum likelihood estimator is gener-
ally inconsistent (Yatchew and Griliches 1985). Semiparametric or “distribution-free”

c© 2013 StataCorp LP st0310



J. R. Blevins and S. Khan 589

methods avoid these issues by estimating β without making a particular parametric
assumption about the distribution of εi.

The focus of this article is on the Stata implementation of the sieve nonlinear least-
squares (SNLLS) estimator of Khan (2013) and the local nonlinear least-squares (LNLLS)
estimator of Blevins and Khan (2013). These estimators have the advantage of consis-
tently estimating the parameters of the potentially heteroskedastic binary choice model
above while remaining computationally tractable enough that end users can easily carry
out estimation with built-in Stata commands. We focus here on the implementation
of these methods and refer the interested reader to the articles cited above for further
results and technical details.

This article proceeds as follows. Section 2 briefly reviews Stata’s nonlinear least-
squares (NLLS) estimation framework and, as a motivating example, first reviews the
NLLS probit estimator for a parametric version of the model above with εi ∼ N(0, 1).
Sections 3 and 4 describe, respectively, the LNLLS estimator of Blevins and Khan (2013)
and the SNLLS estimator of Khan (2013). We show that both of these estimators can
be easily implemented using Stata’s nl command through simple modifications to the
standard NLLS probit regression function. Finally, section 5 describes dfbr, a new Stata
command that implements these estimators by using high-performance Mata code with
analytic derivatives, and then provides several examples of its usage.

2 Nonlinear least-squares estimation in Stata

Stata’s nl command provides an interface for fitting an arbitrary nonlinear parametric
regression function f(x, θ) = E(y|x) by using least squares. There are three ways to
provide the regression function to nl: by interactively using a substitutable expression,
a substitutable expression program, or a function evaluator program. We focus here
on the first approach—using substitutable expressions—because it is straightforward
to implement for most simple models, including the ones we discuss in the following
sections. See [R] nl for further details regarding Stata’s NLLS capabilities.

As an example, consider the standard probit regression model

E(yi|xi) = Φ(x′iβ) (2)

where β is a vector of parameters of interest and Φ is the cumulative distribution
function (c.d.f.) of the standard normal distribution. This is precisely the model in (1)

when εi ∼ N(0, 1). Given a sample of size n, (yi, xi)
n
i=1, the NLLS estimator β̂ of β is

defined as a vector that satisfies Qn(β̂) = minβ∈B Qn(β), where the criterion function
is

Qn(β) =
1

n

n∑

i=1

{yi − Φ(x′iβ)}2
(3)

and where B is the parameter space.

Recall that the standard parametric probit model requires a scale normalization:
the scale of β and the variance of εi, denoted σ2, cannot be separately identified. To see



590 Distribution-free binary response

this, note that for any scalar α > 0, the model with coefficients αβ and variance α2σ2

is observationally equivalent because Φ{x′(αβ)/(ασ)} = Φ(x′β/σ) . We have imposed
the scale normalization in (2) and (3) by setting σ = 1 and using the standard normal
c.d.f., so we can identify and estimate all three slope coefficients. This is the usual scale
normalization for the probit model, but an alternative would be to normalize one of the
coefficients, say, β2 = 1, and then estimate σ.

To make the example more concrete, we will suppose that we have a binary depen-
dent variable y and two independent variables x1 and x2, and that the corresponding
variables in our Stata dataset are named y, x1, and x2. We wish to estimate the inter-
cept β0 and the two slope coefficients β1 and β2, which we shall denote by b0, b1, and
b2 in Stata. To fit the model by using the nl command, we can express the regression
function in (2) as a substitutable expression:

nl (y = normal({b0} + {b1}*x1 + {b2}*x2))

The expression in parentheses following y = is the regression function, and the param-
eters to estimate appear in braces. Here the function normal() evaluates the c.d.f.
of the standard normal distribution (see [D] functions). Issuing the above command
estimates β0, β1, and β2 by minimizing the sum of squared residuals for this model:

n∑

i=1

{yi − Φ(β0 + β1x1i + β2x2i)}2

In the following sections, we describe two new estimators whose objective functions
are also of the NLLS form and, therefore, can be implemented in Stata by using the
nl command in a similar way. Note, however, that these estimators are for the more
general model described in the introduction, which does not require a specific parametric
assumption on the error term and which allows for general forms of heteroskedasticity.
This differs from the parametric probit model in the example above, where the error
term is homoskedastic and normally distributed.

3 The LNLLS estimator

The LNLLS estimator developed by Blevins and Khan (2013) is defined as a vector β̂

that satisfies Qn(β̂) = minβ∈Θ×1Qn(β), where

Qn(β) =
1

n

n∑

i=1

{
yi − F

(
x′iβ

hn

)}2

Here F is a nonlinear regression function, such as a c.d.f., that we will specify below,
and hn is a sequence of positive numbers such that hn → 0 as n → ∞, similar to a
bandwidth sequence used in nonparametric kernel estimation. We adopt the standard
semiparametric scale normalization (Horowitz 1992), normalizing the kth element of β

to 1 so that β̂ = (θ̂′, 1)′. We denote this normalization by using Θ× 1 as the parameter
space.
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When we choose F to be Φ, the standard normal c.d.f., then aside from scaling the
index x′iβ by the bandwidth and normalizing the coefficient on xk, we use an objective
function identical to that of the NLLS probit estimator in (3). Thus to implement the
estimator in Stata, we simply need to normalize one component of β and divide the
index by hn.

Using the two-regressor example from before, we will suppose there are n = 1000
observations. Then we can fit the model by using the bandwidth hn = n−1/3 = 0.1 as
follows,

nl (y = normal(({b0} + {b1}*x1 + x2) / 0.1))

where we have used the normal c.d.f. as the regression function. We normalized the
coefficient on x2 by simply omitting this parameter from the substitutable expression,
effectively setting it to 1 and leaving the coefficient on x1 and the intercept as the only
parameters.

Blevins and Khan (2013) show that while the estimator above is consistent, the rate
of convergence is only n1/3 because the bias converges at the rate hn, in contrast to the
rate h2

n for estimators such as the smoothed maximum score estimator.1 They propose
two methods for reducing the order of the bias and consequently improving the rate of
convergence to n2/5.

The first method is to use a different regression function,

F (u) = (1/2 − αF − βF ) + 2αF Φ(u) + 2βF Φ(
√

2u) (4)

where Φ(·) is the standard normal c.d.f., αF = −1/2
(
1 −

√
2 +

√
3
)
βF , and βF 6=

0. This function was chosen so that a particular term in the asymptotic bias of the
estimator equals 0, something that cannot be achieved when F (·) is a c.d.f. In this case,
the bandwidth sequence should be proportional to n−1/5 to achieve the fastest rate of
convergence.

As with the NLLS probit objective function, this function can be expressed entirely
using Stata’s built-in normal() function, for example,

local h = _N^(-1/5)
local index "({b0} + {b1}*x1 + x2) / `h´"
local beta = 1.0
local alpha = -0.5 * (1 - sqrt(2) + sqrt(3))*`beta´
local const = 0.5 - `alpha´ - `beta´
nl (y = `const´ + 2*`alpha´*normal(`index´) + 2*`beta´*normal(sqrt(2)*`index´))

The second proposed bias-reduction method is to define a jackknife version of the
estimator,

θ̂jk = w1θ̂1 + w2θ̂2

where θ1 and θ2 are two LNLLS estimators using the normal c.d.f. and bandwidths
h1n = κ1n

−1/5 and h2n = κ2n
−1/5, respectively, and where w1 and w2 are weights.

1. Note that although the estimator is defined by an NLLS criterion, the assumptions are quite
different, so the estimator does not have the same limiting distribution as the standard NLLS
estimator.
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The weights and bandwidth constants must satisfy the constraints w1 + w2 = 1 and
w1κ1 + w2κ2 = 0. The optimal choice of these values is discussed in Blevins and Khan
(2013). Note that obtaining the two estimates is no more difficult than obtaining the
NLLS probit estimate from before and that constructing the final weighted sum can be
accomplished with basic Stata macro programming.

Although here we have emphasized that both estimators can be implemented in
Stata manually if needed, the dfbr command we introduce below automates the pro-
cess of obtaining both estimators described above. For the NLLS estimator using the
regression function in (4), dfbr will automatically estimate the feasible optimal band-
width sequence, so the user does not have to actually choose the bandwidth. For the
jackknife NLLS estimator, the jackknife weights and constants are selected according to
the rule of thumb provided by Blevins and Khan (2013). Thus in both cases, the user
simply needs to provide the dependent and independent variables.

A final but important reason for providing a dedicated command for these estimators
is that although the point estimates reported by nl for these estimators are correct, the
reported standard errors are not. The point estimates are correct because our estimators
are indeed defined by NLLS criteria. On the other hand, the standard errors reported
by nl are based on the limiting distribution of the NLLS estimator, which is derived
under the conditional mean independence assumption E(εi | xi) = 0. The assumptions
underlying our estimators are different, and our estimators perform smoothing and
scaling, so the asymptotic properties are different.

The asymptotic variance–covariance matrices for the estimators described involve
unknown density functions that would need to be estimated nonparametrically, so dfbr

instead reports bootstrap estimates of the standard errors. Although we implement
this internally in Mata,2 this could also be achieved using Stata’s bootstrap prefix in
conjunction with nl as in the following example:

bootstrap, rep(1001): nl (y = normal(({b0} + {b1}*x1 + x2) / 0.1))

4 The SNLLS estimator

Although the objective function for the SNLLS estimator introduced by Khan (2013)
is slightly more complex, it is still ultimately a variation on the NLLS probit objective
function in (3), and so it is straightforward to obtain estimates by using nl. Specifically,
the estimator is defined by minimization of the criterion function

Qn(θ, ℓ) =
1

n

n∑

i=1

(yi − Φ [x′iβ × exp {ℓ(xi)}])2

where ℓ is a scaling function—an infinite-dimensional unknown—and β = (θ′, 1)′ is a
finite-dimensional vector of parameters.

2. Specifically, we use the mm bs bootstrap function from the moremata package (Jann 2005).
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To use NLLS, we introduce a finite-dimensional approximation of ℓ by using a linear-
in-parameters sieve estimator. Let b0j(xi) denote a sequence of known basis functions
for j = 1, . . . , κn for some integer κn, and let bκn(xi) = {b01(xi), . . . , b0κn

(xi)}′. The
function g(xi) ≡ exp{ℓ(xi)} in the above objective function can be approximated by
gn(xi) = exp{bκn(xi)

′γn}, where γn is a vector of parameters of length κn. Let αn ≡
(θ, gn) ∈ An, where An is the sieve space. The estimator can be defined as a vector
α̂n ∈ An, which minimizes the objective function

Qn(α) =
1

n

n∑

i=1

[yi − Φ {x′iβ × gn(xi)}]2

where, as before, β = (θ′, 1)′.

Under the conditions of Khan (2013), if the number of basis functions κn approaches
infinity, but slower than n, then this estimator is consistent and asymptotically nor-
mal. As is the case with many related semiparametric estimators, the rate of conver-
gence depends on the smoothness of certain unknown functions. In this case, when
Φ [x′iβ × exp{ℓ(xi)}] has p continuous derivatives and some additional regularity condi-
tions are satisfied, the rate of convergence is np/(2p+1). For example, when p = 2, this
rate simplifies to n2/5.

The SNLLS estimator has the advantage that choice probabilities and regression
coefficients are estimated simultaneously. That is, once α̂n = (θ̂, ĝn) is obtained, choice

probabilities P̂i can be estimated by substituting these estimates into the regression
function as follows:

P̂i = Φ
{
x′iβ̂ × ĝn(xi)

}

To illustrate the Stata implementation of this estimator, we consider a simple model
with two regressors, x1 and x2. We approximate the scaling function by using powers of
the independent variables and interaction terms up to second order as basis functions:

gn(xi) = exp(γ0 + γ1x1 + γ2x2 + γ3x1x2 + γ4x
2
1 + γ5x

2
2)

To fit the model by using nl, we construct the corresponding substitutable expression:

nl (y = normal(({b0} + {b1}*x1 + x2) * exp({g0} + {g1}*x1 ///
+ {g2}*x2 + {g3}*x1*x2 + {g4}*x1*x1 + {g5}*x2*x2)))

Again we have normalized the coefficient on x2 by omitting the corresponding parameter.

5 The dfbr command

The new dfbr command implements each of the estimators described above: the SNLLS

estimator of Khan (2013) and both variants of the LNLLS estimator of Blevins and Khan
(2013). Rather than constructing substitutable expressions for the modified NLLS pro-
bit objective functions and calling Stata’s built-in nl command, we instead implement
the estimators by using the lower-level Mata language. This allows us to use Mata’s
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optimize framework and to provide analytic derivatives during optimization for im-
proved performance and accuracy.

The SNLLS estimator is the default method, but this choice may be made explicit by
using the sieve option. The user may supply a set of basis variables, such as polynomial
terms of the independent variables, by using the basis() option. If no basis elements
are provided, then the given independent variables and a constant are used.

The LNLLS estimator may be selected using the local option. By default, the
regression function in (4) is used, and dfbr will automatically calculate the feasible
optimal bandwidth. Alternatively, the user may override this choice by supplying a
custom bandwidth in the bandwidth() option.

To select the jackknife LNLLS estimator with the normal c.d.f. as the regression
function, the user must provide both the local and the normal options. The jackknife
weights and bandwidth constants are chosen automatically and need not be provided;
however, custom bandwidth constants κ1 and κ2 can be provided using the k1() and
k2() options, with the corresponding weights being calculated to satisfy the constraints.

For all three estimators, bootstrap-estimated standard errors are reported by default.
Both the number of replications and the random-number generator seed can be specified.
In all cases, the coefficient on the last independent variable is normalized to 1.

The formal syntax is given below along with a detailed description of each of the
options and return values. Some examples are then provided to illustrate the usage.

5.1 Syntax

SNLLS estimation (default)

dfbr depvar indepvars
[
if
] [

in
] [

, sieve basis(basis vars) noconstant

brep(#) seed(#) level(#) nmiter(#) nmdelta(#)
]

LNLLS estimation

dfbr depvar indepvars
[
if
] [

in
]
, local

[
normal bandwidth(#) k1(#) k2(#)

noconstant brep(#) seed(#) level(#) nmiter(#) nmdelta(#)
]

5.2 Options

The dfbr command accepts several options, which are listed below. First, the options
specific to either SNLLS or LNLLS are listed, followed by the options common to both
estimators.
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SNLLS

sieve specifies to use the SNLLS estimator (the default).

basis(basis vars) provides a list of variables to use in the linear-in-parameters sieve
approximation of the scaling function. An intercept term is automatically included
in the scale equation and need not be specified along with the other variables. If
this option is omitted, then a constant and the provided independent variables are
used.

LNLLS

local specifies to use the LNLLS estimator, using the alternative nonlinear regression
function by default. local is required.

normal uses the jackknife LNLLS estimator with the standard normal c.d.f. as the non-
linear regression function. The rule-of-thumb jackknife weights and rate constants
described in Blevins and Khan (2013) are used.

bandwidth(#) specifies the bandwidth. If this option is omitted, the feasible optimal
bandwidth will be used, following a procedure analogous to that of Horowitz (1992).
This option has no effect if normal is specified.

k1(#) overrides the first bandwidth constant for the jackknife estimator and must be
specified along with k2(#).

k2(#) overrides the second bandwidth constant for the jackknife estimator and must
be specified along with k1(#).

Common options

noconstant suppresses the constant term (intercept) in the linear index.

brep(#) specifies the number of bootstrap replications used to estimate standard errors.
If standard errors are not needed, specify brep(0) to skip the bootstrap step entirely
and report only the estimated coefficients. Corresponding to Stata’s bootstrap, the
default value is brep(50), but this may be too low for many applications.

seed(#) sets the seed of the random-number generator used for bootstrap replications.
This is useful for generating reproducible results.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.7 Specifying the width
of confidence intervals.

nmiter(#) sets the number of initial Nelder–Mead iterations. See [M-5] optimize( )
for additional details.

nmdelta(#) sets the step sizes for constructing the initial Nelder–Mead simplex. See
[M-5] optimize( ) for additional details.
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5.3 Stored results

The dfbr command stores the results below in e() upon completion. After sieve estima-
tion, only the index coefficients are stored in e(b) with estimated variance–covariance
matrix e(V), but if the estimated sieve parameters are required, the vector of all pa-
rameters is stored in e(alpha) with corresponding variance–covariance e(V alpha).

Scalars
e(N) number of observations e(k2) jackknife bandwidth constant
e(K) number of coefficients (local normal only)
e(brep) number of bootstrap e(w1) jackknife weight (local normal

replications only)
e(level) confidence level e(w2) jackknife weight (local normal
e(h) bandwidth (local only) only)
e(k1) jackknife bandwidth constant

(local normal only)

Macros
e(method) sieve or local e(vce) bootstrap
e(cmdname) dfbr e(basis) sieve basis (sieve only)
e(depvar) name of dependent variable e(properties) b V

Matrices
e(b) coefficient vector e(V alpha) variance–covariance matrix for
e(V) variance–covariance matrix bα (sieve only)

of the estimators e(BS alpha) bootstrap replicates for bα

e(BS) bootstrap replicates for bβ (sieve only)
e(start) optimization starting values
e(alpha) estimated parameters bα

(sieve only)

Functions
e(sample) marks estimation sample

5.4 Examples

We first generate a dataset containing a binary response variable that is generated from
two independent variables and a heteroskedastic error term. We use the same dataset
throughout the remaining examples. The dataset is generated using a fixed seed so that
the results can be easily reproduced.

Heteroskedastic binary response data

We generate a random sample of 2,000 observations with normally distributed re-
gressors x1 ∼ N(0, 1) and x2 ∼ N(1, 1) and a uniformly distributed error term, normal-
ized to have mean 0 and variance 1. We scale the errors by using the scaling function
exp(x1 × |x2|) to introduce (multiplicative) heteroskedasticity. We normalize the coef-
ficient on x2 to 1 in the data-generating process to make the true values and estimates
comparable without scaling.
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. set seed 2012111707

. set obs 2000
obs was 0, now 2000

. generate x1 = invnorm(uniform())

. generate x2 = 1 + invnorm(uniform())

. generate u = (sqrt(12)*uniform() - sqrt(12)/2) * exp(x1*abs(x2))

. generate y = (-0.1 + 0.3 * x1 + x2 - u) > 0

Basic SNLLS estimation

The simplest usage is to invoke dfbr with only the dependent and independent
variables and no additional options:

. dfbr y x1 x2

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Sieve Nonlinear Least Squares (SNLLS) Number of obs = 2000

Observed
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons -.1048974 .0683328 -1.54 0.125 -.2388271 .0290324
x1 .2888343 .0410659 7.03 0.000 .2083466 .3693219

Coefficient on x2 normalized to 1.
Sieve basis: _cons x1 x2

SNLLS estimation with custom basis

To fit the model by using the sieve estimator with second-order polynomial terms,
we can first generate the additional basis variables and then invoke dfbr with the sieve
option:

. generate x1x2 = x1 * x2

. generate x1_2 = x1^2

. generate x2_2 = x2^2

. dfbr y x1 x2, sieve basis(x1 x2 x1x2 x1_2 x2_2)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Sieve Nonlinear Least Squares (SNLLS) Number of obs = 2000

Observed
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons -.1113518 .1437641 -0.77 0.439 -.3931243 .1704206
x1 .3063337 .0875112 3.50 0.000 .1348149 .4778525

Coefficient on x2 normalized to 1.
Sieve basis: _cons x1 x2 x1x2 x1_2 x2_2
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In Stata 11 and later, one can use factor-variable notation to automatically generate
the basis terms without actually generating and storing any additional variables:

. dfbr y x1 x2, sieve basis((c.x1 c.x2)##(c.x1 c.x2))

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Sieve Nonlinear Least Squares (SNLLS) Number of obs = 2000

Observed
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons -.1113518 .1467072 -0.76 0.448 -.3988926 .176189
x1 .3063337 .0905896 3.38 0.001 .1287813 .4838861

Coefficient on x2 normalized to 1.
Sieve basis: _cons x1 x2 c.x1#c.x1 c.x1#c.x2 c.x2#c.x2

Here the expression (c.x1 c.x2)##(c.x1 c.x2) is equivalent to the manually gener-
ated basis x1 x2 x1x2 x1 2 x2 2 from before. See [U] 11.4.3 Factor variables for
additional details on factor variables.

Basic LNLLS estimation with custom bootstrap replications

To fit the model by using the LNLLS estimator with the default bandwidth and report
standard errors estimated using 200 bootstrap replications, type

. dfbr y x1 x2, local brep(200)

Bootstrap replications (200)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

Local Nonlinear Least Squares (LNLLS) Number of obs = 2000
Bandwidth = 2.09358e-01

Observed
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons .0601835 .1732894 0.35 0.728 -.2794576 .3998245
x1 .4113817 .0912445 4.51 0.000 .2325459 .5902176

Coefficient on x2 normalized to 1.
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LNLLS estimation with custom bandwidth

A custom bandwidth can be chosen with the bandwidth() option:

. dfbr y x1 x2, local bandwidth(0.1)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Local Nonlinear Least Squares (LNLLS) Number of obs = 2000
Bandwidth = 1.00000e-01

Observed
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons .0321924 .1989456 0.16 0.871 -.3577338 .4221186
x1 .3852976 .1454903 2.65 0.008 .1001417 .6704534

Coefficient on x2 normalized to 1.

Basic jackknife LNLLS estimation

To use the jackknife LNLLS estimator, which uses the normal c.d.f. as the regression
function, invoke dfbr with the local and normal options:

. dfbr y x1 x2, local normal

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Local Nonlinear Least Squares (LNLLS) Number of obs = 2000

Observed
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons .3631714 .3749945 0.97 0.333 -.3718043 1.098147
x1 .6163898 .21703 2.84 0.005 .1910188 1.041761

Coefficient on x2 normalized to 1.

5.5 Monte Carlo evidence

This section provides some additional evidence on the finite-sample properties of the
estimators beyond that provided by Khan (2013) and Blevins and Khan (2013). The
results are based on replications of the model

yi = 1 (β0 + β1xi1 + β2xi2 + εi > 0)

where we normalize β2 = 1 and choose β0 = −1 and β1 = 2. The covariates have
distributions xi1 ∼ N(0, 1) and xi2 ∼ N(1, 1). We consider two specifications where the
distribution of εi is independent of xi1 and xi2 and two specifications where there is
multiplicative heteroskedasticity. For the independent specifications, we draw εi from
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the uniform and standard normal distributions, respectively. For the heteroskedastic
designs, we multiply each draw by the factor exp(xi1 × |xi2|) so that the variance of the
error term depends on both xi1 and xi2.

For each specification, we report results for 1,001 replications of sample size n = 200.
Specifically, we report the mean bias and mean squared error (MSE) for both β0 and β1.
Additionally, we report the coverage of the bootstrap confidence intervals for both pa-
rameters. We use 100 bootstrap replications (that is, brep(100)) to obtain a confidence
interval for each estimate, and this is repeated for each of the 1,001 replications for each
sample size.3 The confidence intervals have 95% nominal coverage, so the fraction of
replications where the confidence interval covers the true parameter values should be
approximately 0.95. Other than increasing the number of bootstrap replications, we use
the default options for each estimator. The results are reported in table 1.

Table 1. Monte Carlo results

β0 β1

Estimator Bias MSE Coverage Bias MSE Coverage

Homoskedastic normal

LNLLS (F ) −0.0108 0.0002 0.9720 −0.0920 0.0090 0.9750
LNLLS (Φ) 0.0015 0.0001 0.9770 −0.1190 0.0150 0.9740
SNLLS 0.0010 0.0000 0.9720 −0.0310 0.0011 0.9590

Homoskedastic uniform

LNLLS (F ) −0.0008 0.0001 0.9680 −0.1951 0.0392 0.9800
LNLLS (Φ) 0.0084 0.0003 0.9740 −0.2184 0.0493 0.9720
SNLLS 0.0025 0.0000 0.9670 −0.0466 0.0023 0.9600

Heteroskedastic normal

LNLLS (F ) 0.0238 0.0007 0.9670 −0.0372 0.0023 0.9740
LNLLS (Φ) 0.0309 0.0011 0.9700 −0.0386 0.0031 0.9700
SNLLS 0.0635 0.0041 0.9470 0.1211 0.0149 0.9411

Heteroskedastic uniform

LNLLS (F ) 0.0327 0.0012 0.9710 −0.1092 0.0140 0.9690
LNLLS (Φ) 0.0384 0.0018 0.9600 −0.1121 0.0160 0.9620
SNLLS 0.0878 0.0077 0.9391 0.1578 0.0252 0.9341

3. The results were qualitatively very similar for brep(250) and brep(500).
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5.6 Implementation details

We conclude with a few notes on specific implementation details. For each estimator,
dfbr uses six starting values and returns the best estimate. Two starting values are the
constant vectors of all 0s and all 1s. The remaining four are based on other, easier-to-
calculate estimators: ordinary least squares, least absolute deviations, probit, and logit.
These values are stored in e(start).

The bootstrap standard errors and confidence intervals reported by dfbr are calcu-
lated in the same way as those produced by Stata’s bootstrap command. That is, they
are based on the variance matrix of the bootstrap replicates. In particular, the reported
standard errors are square roots of the diagonal elements of the variance matrix, and the
confidence intervals are based on a normal approximation (that is, using the standard
errors and critical values of the standard normal distribution). The bootstrap replicates
are stored in the e(BS) matrix to allow further processing, if desired.

For example, to convert the columns of the e(BS) matrix to variables in the current
dataset named coeff1, coeff2, and so on, use the svmat command after executing
dfbr:

. dfbr y x1 x2, local brep(500)

. matrix BS = e(BS)

. svmat BS, names(coeff)

. summarize coeff*

. correlate coeff*, covariance

For the LNLLS estimator, we first obtain an estimate β̂(1) by using the default band-
width, h(1) = n−1/5. This estimate is then used to estimate the optimal bandwidth
h(2), using a procedure analogous to that of Horowitz (1992). This procedure was also
written in Mata for ease of implementation and for performance reasons. Finally, using
the bandwidth h(2), we obtain the reported estimates β̂(2). This process can be skipped,
and a custom bandwidth can be used instead by specifying the bandwidth() option.

By default, for each starting value, the program begins with at most 10k Nelder–
Mead iterations, followed by a complete run of Broyden–Fletcher–Goldfarb–Shanno
with analytic gradient and Hessian calculations. This procedure is more robust to
poor starting values that might be in nonconcave regions of the objective function,
while switching to a more accurate gradient-based method before reporting the final
estimates. The maximum number of initial Nelder–Mead iterations can be adjusted
using the nmiter() option, where using nmiter(0) skips this initial step completely.
The initial Nelder–Mead simplex step sizes are set to a vector of 1s by default, but
can be set to a vector equal to some constant delta by using the nmdelta(delta)

option. The maximum number of Broyden–Fletcher–Goldfarb–Shanno iterations can
be controlled by using set maxiter.
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