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Abstract. In this article, we describe a new individual patient data meta-analysis
postestimation command, ipdforest. The command produces a forest plot fol-
lowing a one-stage meta-analysis with xtmixed or xtmelogit. (These commands
have been renamed in Stata 13 to mixed and meqrlogit, respectively; ipdforest
is currently not compatible with the new names.) The overall effect is obtained
from the preceding mixed-effects regression and the study effects from linear or lo-
gistic regressions on each study, which are executed within ipdforest. Individual
patient data meta-analysis models with Stata are discussed.

Keywords: st0309, ipdforest, meta-analysis, forest plot, individual patient data,
IPD, one-stage

1 Introduction

Meta-analysis, the methodology that allows results from independent studies to be com-
bined, is usually a two-stage process. First, the relevant summary effect statistics are
extracted from published articles on the included studies. These are then combined
into an overall effect estimate using a suitable meta-analysis model (Harris et al. 2008;
Kontopantelis and Reeves 2010). However, problems often arise when an article does
not report all the statistical information required as input for the meta-analysis (for
example, it fails to provide a variance estimate for the outcome measure); reports a
statistic other than the effect size (such as a t-value or p-value) that needs to be trans-
formed with a loss of precision; or provides a sample too clinically heterogeneous for the
study to be included in the meta-analysis (Kontopantelis and Reeves 2009).

When individual patient data (IPD) from each study are available, meta-analysts
can avoid these problems when estimating study effects; outcomes can be easily stan-
dardized, while clinical heterogeneity can be addressed, at least partially, with subgroup
analyses and patient-level covariate control. Furthermore, when IPD data are available,
meta-analysts can use a mixed-effects regression model to combine information across
studies in a single stage. This is recognized as the best approach for performing an IPD

meta-analysis, with the two-stage method being at best equivalent in certain scenarios
(Mathew and Nordström 2010).

c© 2013 StataCorp LP st0309
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Despite these advantages of the one-stage approach, one obvious advantage of two-
stage meta-analysis is the ability to convey information graphically through a forest
plot. Because study effects have been calculated or extracted in the first stage of the
process, they and their respective confidence intervals can be used to demonstrate the
relative strength of the intervention in each study and across all the studies. Forest
plots are informative, easy to follow, and particularly useful for readers with little or no
experience in meta-analysis methods. It is not surprising, then, that they have become
a key feature of meta-analysis and are always presented when two-stage meta-analyses
are performed.

However, under a one-stage meta-analysis model, only the overall effect is calculated,
not individual study effects; thus creating a forest plot is not straightforward. A search
by the authors failed to identify one-stage meta-analysis forest-plot modules in any
general or meta-analysis specialist statistical package. We attempt to address this gap
in Stata with the ipdforest command.

This article is divided into two sections. In the first section, we describe IPD meta-
analysis models and their implementation in Stata with available mixed-effects models.
In the second section, we describe the ipdforest command in detail and provide an
example.

2 Individual patient data meta-analysis

A description of IPD meta-analysis methods for continuous and binary outcomes has
been provided by Higgins et al. (2003) and Turner et al. (2000), respectively. Although
we will only explore a representative selection of linear random-effects models in Stata
(using the xtmixed command), application to the logistic case using xtmelogit should
be straightforward. Let us assume IPD from a group of studies. For each trial, we have
the exposure variable, which is continuous or binary (for example, control or intervention
group membership), and baseline and follow-up data for the continuous outcome and
covariates. We will also assume that both the outcome measure and any covariates have
been measured in the same way across studies and that, therefore, standardization is
not required. In the models that follow, in general, we denote a fixed effect by γ and a
random effect by β.

Possibly the simplest approach is to assume that there is a common intercept across
studies and that baseline is a fixed effect but to allow the treatment effect to vary at
random across studies. Thus we have

Ýij = γ0 + β1jgroupij + γ2Yij + ǫij

β1j = γ1 + u1j

(1a)

and

ǫij ∼ N(0, σ2
j )

u1j ∼ N(0, τ1
2)

(1b)



576 ipdforest

where i is the patient; j is the study; Ýij is the outcome for patient i in study j; γ0

is the fixed common intercept; β1j is the random treatment effect for study j; γ1 is
the mean treatment effect; groupij is the exposure for patient i in study j; γ2 is the
fixed baseline effect; Yij is the baseline score for patient i in study j; u1j is the random
treatment effect for study j (shifting the regression line up or down by study); τ1

2 is
the between-study variance; ǫij is the error term for patient i in study j; and σ2

j is the
within-study variance for study j.

However, the common intercept and fixed baseline assumptions are difficult to justify,
and such a model should be approached with caution—if at all. A more accepted model
allows for different fixed intercepts and fixed baseline effects for each study:

Ýij = γ0j + β1jgroupij + γ2jYij + ǫij

β1j = γ1 + u1j

(2)

where γ0j is the fixed intercept for study j and γ2j is the fixed baseline effect for study j.

Another possibility, although contentious (Whitehead 2002), is to assume that study
intercepts are random, as in a multicenter study; for example,

Ýij = β0j + β1jgroupij + γ2jYij + ǫij

β0j = γ0 + u0j

β1j = γ1 + u1j

(3a)

In this case, it is probably wiser to assume a nonzero correlation ρ between the random
effects:

ǫij ∼ N(0, σ2
j )

u0j ∼ N(0, τ2
0 )

u1j ∼ N(0, τ2
1 )

cov(u0j , u1j) = ρτ0τ1

(3b)

The baseline could also have been modeled as a random effect, and we could have
allowed for nonzero correlations between the three random effects, thus complicating
(3) further:

Ýij = β0j + β1jgroupij + β2jYij + ǫij

β0j = γ0 + u0j

β1j = γ1 + u1j

β2j = γ2 + u2j

(4a)
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with effects

ǫij ∼ N(0, σ2
j )

u0j ∼ N(0, τ2
0 )

u1j ∼ N(0, τ2
1 )

u2j ∼ N(0, τ2
2 )

cov(u0j , u1j) = ρ1τ0τ1

cov(u0j , u2j) = ρ2τ0τ2

cov(u1j , u2j) = ρ3τ1τ2

(4b)

In some cases, the focus might be on interactions. For example, if we assume a
continuous and standardized variable X, we can expand (2) to include fixed effects, in
this instance, for both X and its interaction with the treatment:

Ýij = γ0j + β1jgroupij + γ2jYij + γ3Xij + γ4groupijXij + ǫij

β1j = γ1 + u1j

(5)

If we consider Yfin and Ybas as representing the outcome and baseline, respectively,
the exposure variable group, and the study identifier studyid for four studies, we can
implement the models described above by using xtmixed.

Model (1): Fixed common intercept; random treatment effect; fixed effect for base-
line.

. xtmixed Yfin i.group Ybas || studyid:group, nocons

The nocons option suppresses estimation of the intercept as a random effect.

Model (2): Fixed study-specific intercepts; random treatment effect; fixed study-
specific effects for baseline (where Ybas‘i’=Ybas if studyid=‘i’ and equals 0 other-
wise).

. xtmixed Yfin i.group i.studyid Ybas1 Ybas2 Ybas3 Ybas4 || studyid:group,
> nocons

Model (3): Random study intercept; random treatment effect; fixed study-specific
effects for baseline.

. xtmixed Yfin i.group Ybas1 Ybas2 Ybas3 Ybas4 || studyid:group, cov(uns)

Model (4): Random study intercept; random treatment effect; random effect for
baseline.

. xtmixed Yfin i.group Ybas || studyid:group Ybas, cov(uns)
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In general, a covariate (or an interaction term) can be modeled as a fixed or random
effect, but in the latter case, the complexity of the model increases and nonconvergence
issues are more likely to be encountered. If we also consider patient covariate age and
its interaction with the treatment effect, then (5) will be

. xtmixed Yfin i.group i.studyid Ybas1 Ybas2 Ybas3 Ybas4 age i.group#c.age
> || studyid: group, nocons

Or alternatively, age can be modeled as a random effect:

. xtmixed Yfin i.group i.studyid Ybas1 Ybas2 Ybas3 Ybas4 age i.group#c.age
> || studyid: group age, nocons

3 The ipdforest command

3.1 Syntax

ipdforest varname
[
, re(varlist) fe(varlist) fets(namelist) ia(varname) auto

label(varlist) or gsavedir(string) gsavename(string) eps gph

export(string)
]

where varname is the exposure variable, continuous or binary (for example, intervention
or control).

3.2 Options

re(varlist) specifies covariates to be included as random factors. For each covariate
specified, a different regression coefficient is estimated for each study.

fe(varlist) specifies covariates to be included as fixed factors. For each covariate spec-
ified, the respective coefficient in the study-specific regressions is fixed to the value
returned by the multilevel regression.

fets(namelist) specifies covariates to be included as study-specific fixed factors (that is,
by using the estimated study fixed effects from the main regression in all individual
study regressions). Only baseline scores and study identifiers can be included. For
each covariate specified, the respective coefficient in the study-specific regressions
is fixed to the value returned by the multilevel regression for the specific study.
For study-specific intercepts, the study identifier (not in factor-variable format, for
example, studyid) or the stub of the dummy variables (for example, studyid when
dummy study identifiers are studyid 1 studyid 3, etc.) would be included. For
study-specific baseline scores, only the stub of the dummy variables is accepted (for
example, dept0s when dummy study baseline scores are dept0s 1 dept0s 3, etc.).
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ia(varname) specifies covariates for which the interaction with the exposure variable
will be calculated and displayed. The covariate should also be specified as a fixed,
random, or study-specific fixed effect. If binary, the command will provide two sets
of results, one for each group. If categorical, it will provide as many sets of results
as there are categories. If continuous, it will provide one set of results for the main
effect and one for the interaction. Although the command will allow a variable to
be interacted with the exposure variable as a fixed or study-specific fixed effect, the
variable necessarily will be included as a random effect in the individual regressions
(it will not run a regression with the interaction term only; the main effects must be
included as well). Therefore, although the overall effect will differ between a model
with a fixed-effects interacted variable and a random-effects one, the individual study
effects will be identical across the two approaches.

auto allows ipdforest to automatically detect the specification of the preceding model.
This option cannot be issued along with options re(), fe(), fets(), or ia(). The
auto option will work in most situations, but it comes with certain limitations. It
uses the returned command string of the preceding command, which is effectively
constrained to 244 characters; therefore, the auto option will return an error if
ipdforest follows a very wide regression model—in such a situation, only the man-
ual specification can be used. In addition, the variable names used in the preceding
model must follow certain rules: 1) fixed-effects covariates (manually with option
fe()) must not contain underscores; 2) for study-specific intercepts (manually with
option fets()), factor-variable format is allowed or a varlist (for example, cons 2–
cons 16), but each variable must contain a single underscore followed by the study
number (not necessarily sequential); and 3) for study-specific baseline scores (manu-
ally with option fets()), each variable must contain a single underscore followed by
the study number (again, not necessarily sequential). There are no restrictions for
random-effects covariates (manually with option re()). For interactions (manually
with option ia()), the factor-variable notation should be preferred (for example,
i.group#c.age) and, alternatively, the older xi: notation. Interactions expanded
to dummy variables cannot be identified with the auto option, and only the manual
specification should be used in this case. Variables whose names start with an I

and contain a capital X will be assumed to be expanded interaction terms, and if
detected in the last model, ipdforest will terminate with a syntax error.

label(varlist) specifies labels for the studies. Up to two variables can be specified
and converted to strings. If two variables are specified, they will be separated by
a comma. Usually, the author names and the year of study are selected as labels.
If label() is not specified, the command automatically uses the value labels of the
numeric cluster variable, if any, to label the forest plot. Either way, the final string
is truncated to 30 characters.

or reports odds ratios instead of coefficients. It can only be used following the execution
of xtmelogit.

gsavedir(string) specifies the directory in which to save the graph, if different from
the active directory.
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gsavename(string) specifies the optional name prefix for the graph. Graphs are saved
as gsavename graphname.gph or gsavename graphname.eps, where graphname in-
cludes a description of the summary effect (for example, main group for the main
effect if group is the exposure variable).

eps saves the graph in .eps format instead of the default .gph.

gph saves the graph in .gph format. gph is the default. Use it to save in both formats:
including only the eps option will save the graph in .eps format only.

export(string) exports the study identifiers, weights, effects, and standard errors in a
Stata dataset (named after string). It is provided for users who wish to use other
commands or software to draw the forest plots.

3.3 Stored results

ipdforest stores the following in r():

Scalars
r(Isq) heterogeneity measure I2 r(eff1pe ov) overall effect estimate
r(Hsq) heterogeneity measure H2

M r(eff1se ov) standard error of the overall
r(tausq) bτ2, between-study variance effect

estimate r(eff1pe sti) effect estimate for study i

r(tausqlo) bτ2, lower 95% confidence r(eff1se sti) standard error of the effect
interval for study i

r(tausqup) bτ2, upper 95% confidence
interval

If an interaction with a continuous variable is included in the model, it also stores
the following:

Scalars
r(eff2pe ov) overall interaction effect r(eff2pe sti) interaction effect estimate for

estimate study i

r(eff2se ov) standard error of the overall r(eff2se sti) interaction effect standard
interaction effect error for study i

If the interaction variable is binary, the first set of results corresponds to the effects
for the first category of the binary (for example, sex = 0) and the second set for the
second category (for example, sex = 1). If the variable is categorical, the command
returns as many sets of effect results as there are categories (with each set corresponding
to one category). Estimation results from xtmixed or xtmelogit in e() are restored
after the execution of ipdforest.

3.4 Methods

The ipdforest command is issued following a random-effects IPD meta-analysis con-
ducted using a linear (xtmixed) or logistic (xtmelogit) two-level regression with pa-
tients nested within studies. The command provides a meta-analysis summary table
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and a forest plot. Study effects are calculated within ipdforest, while the overall ef-
fect and variance estimates are extracted from the preceding regression. The default
estimation methods for xtmixed and xtmelogit are restricted maximum likelihood and
maximum likelihood, respectively. A description of these methods is beyond the scope
of this article.

ipdforest estimates individual study effects and their standard errors by using
one-level linear or logistic regression analyses. Following xtmixed, regress is used,
and following xtmelogit, logit is used for each study in the meta-analysis. The
ipdforest command controls these regressions for fixed- or random-effects covariates
that were specified in the preceding two-level regression. The user has full control over
the covariates to be included in the ipdforest command, including their specification as
fixed or random effects. However, we strongly recommend using the same specification
as in the preceding xtmixed or xtmelogit command because the reported overall effect
and its confidence interval is taken from that model.

In the estimation of individual study effects, ipdforest controls for a random-effects
covariate (that is, allowing the regression coefficient to vary by study) by including
the covariate as an independent variable in each regression. Control for a fixed-effects
covariate (where the regression coefficient is assumed constant across studies and is given
by the coefficient estimated under xtmixed or xtmelogit) is a little more complex.
Because it is not possible to specify a fixed value for a regression coefficient under
regress, the continuous outcome variable is adjusted by subtracting the contribution of
the fixed covariates to its values prior to analysis. For a binary outcome, the equivalent
is achieved using the offset option in logit. Patient weights are uniform; therefore,
each study’s weight is the ratio of its participants over the total number of participants
across all studies.

Between-study variability in the treatment effect, known as heterogeneity, arises
from differences in study design, quality, outcomes, or populations and needs to be
accounted for in the meta-analysis model when present. Heterogeneity is usually re-
ported in the form of measures or tests that compare the between- and within-study
variance estimates. For continuous outcomes, ipdforest reports two heterogeneity
measures, I2 and H2

M , based on the xtmixed output. I2 values of 25%, 50%, and
75% correspond to low, moderate, and high heterogeneity, respectively (Higgins et al.
2003), while H2

M takes values in the [0,+∞) range with 0 indicating perfect homogene-
ity (Mittlböck and Heinzl 2006). We have not attempted to calculate an IPD version
of Cochran’s Q, the orthodox χ2

k−1 homogeneity test, considering its poor performance
when the number of studies k is small (Hardy and Thompson 1998). For binary out-
comes, an estimate of the within-study variance is not reported under xtmelogit, and
hence, heterogeneity measures cannot be computed. The between-study variance esti-
mate τ̂2 and its confidence interval are reported under both models.

Fixed-effects meta-analysis models are widely used when heterogeneity is very low
or 0. However, a more conservative approach is to take account of even low levels
of between-study variability by adopting a random-effects model (Hunter and Schmidt
2000). When between-study variance is estimated to be close to 0, results with the two
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approaches converge. Therefore, although ipdforest is a postestimation command for
random-effects IPD meta-analysis, output is close to that for a fixed-effects model when
τ̂2 ≈ 0.

3.5 Example

As an example, we apply the ipdforest command to a dataset of four depression
intervention studies. Data were provided by the authors of the studies, and we had
complete information in terms of age, gender, exposure (control and intervention group
membership), continuous outcome baseline, and endpoint values for 518 patients. Be-
cause the findings of the IPD meta-analysis had not been published when this article
was being prepared, we used fake author names and generated random continuous and
binary outcome variables for the purposes of this example while keeping the covariates
at their actual values. We introduced correlation between baseline and endpoint scores
and between-study variability, although the exact specification of the data generation
is unimportant.

Using the semiartificial dataset, we perform a logistic IPD meta-analysis, followed
by the ipdforest command.

. use ipdforest_example

. describe

Contains data from ipdforest_example.dta
obs: 518
vars: 17 6 Feb 2012 11:35
size: 20,202

storage display value
variable name type format label variable label

studyid byte %22.0g stid Study identifier
patid int %8.0g Patient identifier
group byte %20.0g grplbl Intervention/control group
sex byte %10.0g sexlbl Gender
age float %10.0g Age in years
depB byte %9.0g Binary outcome, endpoint
depBbas byte %9.0g Binary outcome, baseline
depBbas1 byte %9.0g Bin outcome baseline, trial 1
depBbas2 byte %9.0g Bin outcome baseline, trial 2
depBbas5 byte %9.0g Bin outcome baseline, trial 5
depBbas9 byte %9.0g Bin outcome baseline, trial 9
depC float %9.0g Continuous outcome, endpoint
depCbas float %9.0g Continuous outcome, baseline
depCbas1 float %9.0g Cont outcome baseline, trial 1
depCbas2 float %9.0g Cont outcome baseline, trial 2
depCbas5 float %9.0g Cont outcome baseline, trial 5
depCbas9 float %9.0g Cont outcome baseline, trial 9

Sorted by: studyid patid
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We generate a centered age variable, interacted with the exposure variable in a
mixed-effects logistic regression model. The model includes fixed study-specific inter-
cepts and fixed study-specific effects for baseline and random treatment and age effects.
The ipdforest command follows the regression model, requesting outcomes for both
the main effect and the interaction.

. quietly summarize age

. quietly generate agec = age-r(mean)

. xtmelogit depB group agec sex i.studyid depBbas1 depBbas2 depBbas5 depBbas9
> i.group#c.agec || studyid:group agec, var nocons or

Refining starting values:

Iteration 0: log likelihood = -347.40378 (not concave)
Iteration 1: log likelihood = -336.07882 (not concave)
Iteration 2: log likelihood = -329.28268

Performing gradient-based optimization:

Iteration 0: log likelihood = -329.28268 (not concave)
Iteration 1: log likelihood = -326.79754
Iteration 2: log likelihood = -326.5689
Iteration 3: log likelihood = -326.55747
Iteration 4: log likelihood = -326.55747

Mixed-effects logistic regression Number of obs = 518
Group variable: studyid Number of groups = 4

Obs per group: min = 42
avg = 129.5
max = 214

Integration points = 7 Wald chi2(11) = 42.06
Log likelihood = -326.55747 Prob > chi2 = 0.0000

depB Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

group 1.840804 .3666167 3.06 0.002 1.245894 2.71978
agec .9867902 .0119059 -1.10 0.270 .9637288 1.010403
sex .7117592 .1540753 -1.57 0.116 .4656639 1.087912

studyid
2 1.050007 .5725515 0.09 0.929 .3606168 3.057302
5 .8014552 .5894511 -0.30 0.763 .1896011 3.387799
9 1.281413 .6886055 0.46 0.644 .4469621 3.673734

depBbas1 3.152909 1.49528 2.42 0.015 1.244587 7.987251
depBbas2 4.480302 1.863908 3.60 0.000 1.982385 10.12573
depBbas5 2.387336 1.722993 1.21 0.228 .5802064 9.823007
depBbas9 1.881203 .7086506 1.68 0.093 .8990571 3.936261

group#c.agec
1 1.011776 .0163748 0.72 0.469 .9801858 1.044385

_cons .5533714 .2398341 -1.37 0.172 .2366473 1.293993
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Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

studyid: Independent
var(group) 6.15e-21 2.03e-11 0 .
var(agec) 6.03e-18 4.41e-11 0 .

LR test vs. logistic regression: chi2(2) = 0.00 Prob > chi2 = 1.0000

Note: LR test is conservative and provided only for reference.

. ipdforest group, fe(sex) re(agec) ia(agec) or

One-stage meta-analysis results using xtmelogit (ML method) and ipdforest
Main effect (group)

Study Effect [95% Conf. Interval] % Weight

Hart 2005 2.118 0.942 4.765 19.88
Richards 2004 2.722 1.336 5.545 30.69
Silva 2008 2.690 0.748 9.676 8.11
Kompany 2009 1.895 0.969 3.707 41.31

Overall effect 1.841 1.246 2.720 100.00

One-stage meta-analysis results using xtmelogit (ML method) and ipdforest
Interaction effect (group x agec)

Study Effect [95% Conf. Interval] % Weight

Hart 2005 0.972 0.901 1.049 19.88
Richards 2004 0.995 0.937 1.055 30.69
Silva 2008 0.987 0.888 1.098 8.11
Kompany 2009 1.077 1.015 1.144 41.31

Overall effect 1.012 0.980 1.044 100.00

Heterogeneity Measures

value [95% Conf. Interval]

I (%) .
H .
tau est 0.000 0.000 .

Maximum likelihood converged successfully in this example, and the between-study
variance estimate τ̂2 was practically 0. Note that the intercept for the reference study
(studyid = 1) was estimated in cons. The reported coefficients under studyid are
the differences in intercept compared with the first study. I2 and H2

M could not be
estimated because residual variability is not reported under xtmelogit. The overall
treatment effect was significant at the 95% level, but the overall effect for the interaction
of treatment and age was not. The forest plots created by ipdforest are displayed in
figures 1 and 2.
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Figure 1. Main-effect IPD forest plot reporting odds ratios
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Figure 2. Interaction-effect IPD forest plot reporting odds ratios

4 Discussion

The aim of this article was to provide a practical guide for conducting one-stage IPD

meta-analysis and to present ipdforest, a new forest-plot command. ipdforest aims
to help meta-analysts better communicate their results through the familiar and dis-
tinctive forest plot—a graphical output not previously available in one-stage IPD meta-
analysis software routines.
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Although only binary or continuous exposure variables can be modeled, categorical
exposures can also be investigated with the use of dummy variables and a focus on the
comparison of interest through one of these. In addition, ipdforest is fully compat-
ible with the estimates produced by the multiple-imputation estimation command mi

estimate: xtmixed or mi estimate: xtmelogit.

Note that these commands were renamed in Stata 13: xtmixed to mixed and
xtmelogit to meqrlogit. ipdforest is not yet compatible with the new commands,
but users of version 13 can still use the older commands before calling ipdforest.
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