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Abstract. I describe the commands heckmancopula and switchcopula, which im-
plement copula-based maximum-likelihood estimations of sample-selection models.

Keywords: st0308, heckmancopula, switchcopula, copula method, sample-selection
models

1 Introduction

Sample-selection issues are common problems in empirical studies of labor economics
and other applied microeconomics. A common estimation method is maximum likeli-
hood estimation under the assumption of joint normality. It is well known, however,
that the violation of distributional assumptions leads to inconsistency of a maximum
likelihood estimator. Early work on sample-selection models that relaxes the normality
assumption was done by Lee (1983, 1984). His approach was to transform nonnormal
disturbances in the models into normal variates that are then assumed to be jointly
normally distributed. As we will see, this is a special case of the copula approach
that Smith (2003) applies to sample-selection models. The copula approach adds more
flexibility to model specifications.

In this article, I discuss the maximum likelihood estimation of sample-selection mod-
els with the copula approach to relax the assumption of joint normality. Although there
are several types of sample-selection models, I discuss two in particular: a bivariate
sample-selection model and an endogenous switching regression model. I also intro-
duce the Stata commands heckmancopula and switchcopula, which implement the
estimation of each model, respectively.

2 The models

This section outlines the two types of sample-selection models I discuss in this article.
The first model is a bivariate sample-selection model, which is also known as a Heckman
model or a type 2 tobit model. The second model is an endogenous switching regression
model, also known as a Roy model or a type 5 tobit model.

c© 2013 StataCorp LP st0308



548 Copula-based MLE of sample-selection models

2.1 The bivariate sample-selection model

This model consists of two equations: a selection equation and an outcome equation.
The selection equation is

Si =

{
0 if S∗

i = zi
′γ + εsi ≤ 0

1 if S∗
i = zi

′γ + εsi > 0
(1)

where Si is an indicator of selection and zi is a vector of covariates. The outcome of
interest is observable only when Si = 1. That is,

yi =

{
x′iβ + ε1i if Si = 1

. if Si = 0

If the error terms, εsi and ε1i, in these two equations are not independent, the ordinary
least-squares (OLS) regression of yi on xi results in a biased estimator of β.

This bivariate sample-selection model is common in empirical studies of labor eco-
nomics and other applied microeconomics. For example, a wage for an individual is
observable only when the individual is employed, and an employment status is presum-
ably endogenous such that the errors are not independent.

2.2 Endogenous switching regression model

An endogenous switching regression model is also common in empirical applications.
The outcome of interest is only observable in one of two possible regimes, and selection
into one regime is endogenously determined. Such endogenous selection can arise, for
example, in studies on wage differentials between union and nonunion workers or be-
tween workers in a public sector and in a private sector. The model comprises three
equations: a selection equation and two outcome equations. The selection equation may
once again be formalized as (1). The outcome equations of this model are

y1i = x1i
′β1 + ε1i if Si = 1

y0i = x0i
′β0 + ε0i if Si = 0

where x0i and x1i are vectors of covariates. For observation i, observable outcome yi is
either y0i or y1i. However, both of the outcomes cannot be observed simultaneously.

The error terms, ε0i and ε1i, of the outcome equations are assumed to be dependent
on εsi. If independent, OLS regression of each outcome equation separately yields consis-
tent estimators of the parameters in the model. If dependent, separate OLS regressions
yield inconsistent estimators of β0 and β1. To obtain consistent estimates, we need to
take the dependence of the error terms into account.

3 Maximum likelihood estimation

The standard estimation of the models described above is maximum likelihood estima-
tion. Let fsj be a joint probability density function (p.d.f.) of εs and εj for j = 0, 1.
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Likewise, let fk be a univariate p.d.f. of εk for k = s, 0, 1. Then the likelihood of a
bivariate sample-selection model can be written as

L =
N∏

i=1

{∫ −zi
′γ

−∞

fs(εs)dεs

}Si=0{∫ ∞

−zi
′γ

fs1(εs, ε1i)dεs

}Si=1

(2)

and the likelihood of an endogenous switching regression model is

L =

N∏

i=1

{∫ −zi
′γ

−∞

fs0(εs, ε0i)dεs

}Si=0{∫ ∞

−zi
′γ

fs1(εs, ε1i)dεs

}Si=1

(3)

Define Fk as the cumulative distribution functions (c.d.f.’s) of εk, and define Fsj as the

joint c.d.f. of εs and εj . Then
∫ −zi

′γ

−∞
fs(εs)dεs is simply Fs(−zi

′γ), meaning the integral
inside the first pair of brackets in (3) can be written as

∫ −zi
′γ

−∞

fs0(εs, ε0i)dεs =
∂

∂ε0
Fs0(−zi

′γ, ε0)|ε0=ε0i

and the integral inside the second pair of brackets in (2) and (3) can be written as
∫ ∞

−zi
′γ

fs1(εs, ε1i)dεs =
∂

∂ε1
{F1(ε1) − Fs1(−zi

′γ, ε1)} |ε1=ε1i

To implement the maximum likelihood estimation, we must specify functional forms
of marginal and joint c.d.f.’s (or equivalently, specify the marginal and joint distributions
of the error terms). The specification of the distributions is a key element of the model
estimation because, in general, misspecification results in inconsistency.

3.1 Joint normality

It has been standard to assume that the errors are jointly normally distributed.

Under the assumption of joint normality, the likelihood function for the bivariate
sample-selection model (2) can now have a specific form,

L =
N∏

i=1

{Φ(−zi
′γ)}Si=0

[
σ−1

1 φ

(
yi − xi

′β

σ1

)
Φ

{
zi

′γ + (ρ1/σ1)(yi − xi
′β)√

1 − ρ2
1

}]Si=1

and the likelihood function (3) can be written as

L =

N∏

i=1

[
σ−1

0 φ

(
y0i − x0i

′β0

σ0

)
Φ

{
−zi

′γ − (ρ0/σ0)(y0i − x0i
′β0)√

1 − ρ2
0

}]Si=0

×
[
σ−1

1 φ

(
y1i − x1i

′β1

σ1

)
Φ

{
zi

′γ + (ρ1/σ1)(y1i − x1i
′β1)√

1 − ρ2
1

}]Si=1
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where σj is the standard deviation of εj , ρj is the coefficient of correlation between εs

and εj , and φ(·) and Φ(·) are the p.d.f. and c.d.f. of a standard normal distribution,
respectively.

The Stata commands heckman and movestay (Lokshin and Sajaia 2004) implement
the maximum likelihood estimation of the bivariate sample-selection model and the
endogenous switching regression model, respectively, under the assumption of joint nor-
mality.

The consistency of the estimators relies on joint normality. The violation of the dis-
tributional assumption in maximum likelihood estimation usually leads to inconsistency
of the estimators. However, the normality assumption is often too strong: for exam-
ple, (log of) wages may have thicker tails than normal distribution implies. A copula
method is useful both to relax the assumption of normality and to fit the model by the
maximum likelihood method so that the estimator attains efficiency.

Even though the copula method is already well known in the literature of finance,
it is not yet known among applied researchers of labor economics and other applied
microeconomics. The following section introduces the copula method with particular
reference to sample-selection models.

3.2 The copula approach

This subsection provides a brief description of the copula approach to sample-selection
models. See Smith (2003) for a more thorough discussion. Also see Nelsen (2006) for
a general introduction to copulas and Trivedi and Zimmer (2005) for applications of
copulas in other econometric models.

In short, the copula method generates a joint distribution given marginal distribu-
tions. Consider two continuous random variables ω1 and ω2.

1 Let ui = Fi(ωi) be a
marginal c.d.f. of ωi for i = 1, 2, and let F (ω1, ω2) be a bivariate joint c.d.f. The copula
function C(·) couples two marginal c.d.f.’s to generate a bivariate c.d.f.,

F (ω1, ω2) = C{F1(ω1), F2(ω2); θ}
= C(u1, u2; θ)

where θ is a parameter that governs the degree of dependence. The properties of the
copula function are as follows:

• C(u1, 0; θ) = C(0, u2; θ) = 0

• C(u1, 1; θ) = u1 and C(1, u2; θ) = u2

• ∂2C/∂u1∂u2 ≥ 0

1. The copula method can apply to discrete random variables and cases with more than two variables.
However, I discuss the case of two-dimensional continuous random variables because this fits the
context of the econometric model in this article.
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To implement the estimation, we need the partial derivative of a joint c.d.f. It is

∂

∂ω1
F (ω1, ω2) =

∂

∂u1
C(u1, u2; θ) ×

∂F1(ω1)

∂ω1

The expression
∂F1(ω1)

∂ω1
is simply a p.d.f.: f1(ω1).

Given this specification, the likelihood functions (2) and (3) can be written as

L =

N∏

i=1

[Fs(−zi
′γ)]

Si=0
[{

1 − ∂

∂u1
C(u1i, usi; θ1)

}
× f1(ε1i)

]Si=1

and

L =
N∏

i=1

{
∂

∂u0
C(u0i, usi; θ0) × f0(ǫ0i)

}Si=0 [{
1 − ∂

∂u1
C(u1i, usi; θ1)

}
× f1(ε1i)

]Si=1

where uk = Fk(εk) is a c.d.f. of marginal distribution of εk for k = s, 0, 1.

Many different copulas are available. One of the most frequently used copulas is the
Gaussian copula,

Φ2

{
Φ−1(u1),Φ

−1(u2); θ
}

where Φ2(·, ·; θ) is a c.d.f. of a bivariate normal distribution with a coefficient of cor-
relation θ,−1 ≤ θ ≤ 1, which is a dependence parameter in the copula framework. If
marginal distributions of ω1 and ω2 are normal, then the joint distribution is reduced to
a bivariate normal distribution; if even only one of the marginal distributions is other
than normal, it is not reduced. As a matter of fact, this Gaussian copula appears as
part of the estimation relaxing the joint normality assumption by Lee (1984, 1983), even
though Lee himself does not refer to it as the copula method. In addition to a Gaussian
copula, a Farlie–Gumbel–Morgenstern (FGM) copula and a Plackett copula are often
frequently used.

Smith (2003) argues that copulas of the Archimedean family are useful in empirical
modeling with mathematical properties that are easy to deal with. An Archimedean
copula takes a form of

C(u1, u2; θ) = ϕ−1 {ϕ(u1) + ϕ(u2)}

where ϕ(·) is a generator function that is unique to each Archimedean copula. Using
the rule for the derivative of an inverse function,

∂

∂u1
C(u1, u2; θ) =

ϕ′(u1)

ϕ′{C(u1, u2; θ)}
where ϕ′(·) is the derivative of ϕ(·).

See table 1 for a list of selected copulas, all of which are supported by the commands
heckmancopula and switchcopula. Note that a product copula is a copula correspond-
ing to the case where the underlying two random variables are independent. One of the
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desirable properties of copulas is that different copulas exhibit different dependence
patterns. To illustrate the dependence pattern of each copula, figures 1 and 2 show the
contour plots of the p.d.f. of each copula. Here each marginal distribution is a standard
normal distribution.

Table 1. Copula functions

Copula name C(u1, u2; θ)

Product u1u2

Gaussian Φ2{Φ−1(u1),Φ
−1(u2); θ}

FGM u1u2{1 + θ(1 − u1)(1 − u2)}

Plackett
r −

√
r2 − 4u1u2θ(θ − 1)

2(θ − 1)

Archimedean family ϕ(t)

AMH u1u2 {1 − θ(1 − u1)(1 − u2)}−1
log

{
1 − θ(1 − t)

t

}

Clayton
(
u−θ

1 + u−θ
2 − 1

)−1/θ
θ−1

(
t−θ − 1

)

Frank −θ−1 log

{
1 +

(e−θu1 − 1)(e−θu2 − 1)

(e−θ − 1)

}
− log

(
e−θt − 1

e−θ − 1

)

Gumbel exp
[
−
{
(− log u1)

θ + (− log u2)
θ
}1/θ

]
{− log(t)}θ

Joe 1 −
{
(ũ1)

θ + (ũ2)
θ − (ũ1ũ2)

θ
}1/θ − log

{
1 − (1 − t)θ

}

Notes: For Plackett, r = 1 + (θ − 1)(u1 + u2). For Joe, euj = 1 − uj .
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Figure 1. Contour plots of copulas
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(d) AMH: θ = 0.8

Figure 2. Contour plots of copulas, continued
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As the figures show, copulas exhibit various dependence patterns. Gaussian, FGM,
Plackett, and Frank copulas exhibit similar dependence patterns. All of these copulas
are symmetric in that the dependence patterns of an upper tail and a lower tail are
the same. However, the Frank copula, for example, exhibits a weaker tail dependence
than the Gaussian does. Ali–Mikhail–Haq (AMH), Clayton, Gumbel, and Joe copulas
are unique in that their dependence patterns are asymmetric between upper and lower
tails.

4 Related issues

4.1 Selecting copulas and marginal distributions

To implement this maximum likelihood estimation, we need to specify the marginal
distribution of εk (that is, the functional form of Fk for k = s, 0, 1) and the depen-
dence structure (that is, the copula function that links εs and εj). Note that marginal
distributions of εk are not necessarily the same. Likewise, a copula function for the
dependence between εs and ε0 is not necessarily the same as that for the dependence
between εs and ε1.

It is essential to select appropriate copulas and marginal distributions. If depen-
dence patterns are known, it is easier to choose the best-fitting copula. However, it
may be rare to have such information in advance, especially because of the latent struc-
ture of the models. The selection of copula is usually a posterior rather than prior
consideration. Copulas are not nested relative to each other. Thus information criteria
such as the Akaike information criterion (AIC) or Bayesian information criterion (BIC) is
useful to choose the best-fitting copula. If the marginal distributions are fixed and the
numbers of parameters to estimate are the same, choosing the copula with the smallest
information criterion is equivalent to choosing the copula with the largest log-likelihood
value. Alternatively, the selection among competing models can be tested by the Vuong
test (Vuong 1989).2

The same argument applies to the selection of marginal distributions. In principle,
a marginal distribution can be any univariate distribution. This is another advantage
of the copula approach. The commands heckmancopula and switchcopula support
well-known univariate distributions: normal and logistic distributions for the selection

2. For example, compare the Joe and Gaussian copula models. The Vuong test statistic V is calculated
as

V =

√
Nm

q

N−1
PN

i=1
(mi − m)2

=
Nm

√
N − 1sm

where mi = ln LJ
i − ln LG

i , with ln LJ
i and ln LG

i denoting the contribution of observation i to the

log likelihood of the Joe and Gaussian models, respectively, and where m = N−1
PN

i=1
mi, and

sm is the sample standard deviation of m. V has an asymptotic standard normal distribution.
At a 5% significance level, the Joe copula is preferred if V exceeds 1.96; the Gaussian copula is
preferred if V is less than −1.96; and the test is inconclusive if V falls between these two critical
values. Equivalently, we can run a regression of the difference of the contributions on a constant
term only and see whether the constant is statistically significant.
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equation, each of which corresponds to probit and logit models, respectively, and normal,
logistic, and Student’s t distributions for the outcome equations (table 2). Among
the three marginal distributions for the outcome equations, Student’s t distribution
is the most flexible. It is well known that a normal distribution is a limiting case of
Student’s t distribution when the degrees-of-freedom parameter goes to ∞. Student’s
t distribution also closely approximates the logistic distribution when the degrees-of-
freedom parameter equals 8 (Albert and Chib 1993). With smaller degrees of freedom,
Student’s t distribution can exhibit thicker tails than the other two distributions. For
this reason, it is recommended that one choose Student’s t distribution as marginal
distributions for the outcome equation.3

For the selection equation, the choice of normal distribution or logistic distribution
usually does not have a significant impact on estimation results, because the probit and
logit models are not significantly different in a binary choice model. As discussed above,
the information criteria and the Vuong test are useful in helping one choose a better
specification if one is interested in discriminating the two distributions.

Table 2. Available marginal distributions

Normal Logistic Student’s t

Fs
√ √

F0
√ √ √

F1
√ √ √

4.2 Measure of dependence

As the figures above show, each copula exhibits a unique dependence pattern. Besides
the dependence pattern, applied researchers are also interested in the degree of depen-
dence. Even though a dependence parameter θ governs degrees of dependence, it does
not share universal meanings across copulas. In other words, the dependence param-
eter of one copula cannot be directly compared with the parameters of other copulas.
Instead, it is common to report Kendall’s τ as a measure of the degree of dependence.
This measure can be expressed in terms of a copula. For a pair of continuous random
variables ω1 and ω2 with marginal c.d.f.’s u1 and u2 and joint distribution by copula,

τ = 4

∫ ∫
C(u1, u2; θ)dC(u1, u2; θ) − 1

3. The Student’s t distribution is still limited in that it is symmetric. For example, the skewed t
distribution is more flexible so that it allows asymmetry. However, its distribution and density
functions are not yet available in Stata. When it becomes available in Stata, such flexible distri-
bution can be added to the list of available marginal distributions. The mathematical structure of
the copula method makes it easy to add more marginal distributions, which is also an advantage
of the method.
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Furthermore, Kendall’s τ of the Archimedean copulas can be calculated as

τ = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt

where ϕ(t) is a generator function. For some copulas, Kendall’s τ can be expressed as
a closed form in terms of θ. This measure takes the range of [−1, 1]. A value closer
to 1 (−1) indicates a stronger (negative) dependence. For some copulas, dependence is
limited so that the interval is limited to be narrower than [−1, 1]. See table 3 for τ in
terms of θ and its range.

Table 3. Copula function and Kendall’s τ

Copula name Range of θ θind Kendall’s τ(θ) Range of τ

Product N.A. N.A. N.A. 0

Gaussian −1 ≤ θ ≤ 1 0
2

π
sin−1(θ) −1 ≤ τ ≤ 1

FGM −1 ≤ θ ≤ 1 0
2

9
θ −2

9
≤ τ ≤ 2

9

Plackett 0 < θ < ∞ 1 — −1 ≤ τ ≤ 1

Archimedean family

AMH −1 ≤ θ ≤ 1 0

„

3θ − 2

θ

«

−0.1817 ≤ τ <
1

3

−2

3

„

1 − 1

θ

«2

ln (1 − θ)

Clayton 0 ≤ θ < ∞ 0
θ

θ + 2
0 ≤ τ < 1

Frank −∞ < θ < ∞ 0 1 − 4

θ
{1 − D1(θ)} −1 < τ < 1

Gumbel 1 ≤ θ < ∞ 1
θ − 1

θ
0 ≤ τ < 1

Joe 1 ≤ θ < ∞ 1 — 0 ≤ τ < 1

Notes: θind is the value of θ if independent. For Frank, D1(θ) is a Debye function:

D1(θ) =
1

θ

R θ
0

t

et − 1
dt. For Plackett and Joe, there is no closed form.

One of the most important facts about Kendall’s τ is that τ = 0 indicates indepen-
dence.4 In sample-selection models, it is important to test the independence of the error

4. This is not true for the coefficient of correlation. Zero coefficient of correlation does not necessarily
mean independence, although in the case of joint normal distribution, zero coefficient of correlation
implies independence.



T. Hasebe 557

terms. If independent, it is possible to fit the model consistently by OLS regression, and
the OLS regressions are generally more efficient. As table 3 shows, the specific value of θ
corresponds to τ = 0 for each copula. That is, the product copula is a special (nested)
case of each copula. Therefore, a usual hypothesis test such as a likelihood-ratio test
can be conducted. The test statistic is asymptotically distributed as χ2 under the null
of independence.

However, for Clayton, Gumbel, and Joe copulas, the independence happens at the
boundary of the parameter’s space (see table 3 above). In such cases, the test should
be a one-tail test rather than the usual two-tail test. The test statistic is distributed
with the mixture of χ2 under the null hypothesis of independence.5 Furthermore, if
the model (with any copula) is fit by quasi (pseudo)-maximum-likelihood estimation
instead of maximum likelihood estimation, a likelihood-ratio test is no longer appropri-
ate, although a Wald or Lagrangian (Kuhn–Tucker) multiplier test is still valid with an
appropriate calculation of an asymptotic variance matrix.

Clayton, Gumbel, and Joe copulas allow only positive dependence such that 0 ≤
τ ≤ 1. This seems restrictive, but a simple modification of the model evades the
restriction: specify yi = xiβ + ε1i as in the outcome equation, but let ε1i = −ε∗1i and
define the copula with respect to (ε∗1i, εsi) instead. This formulation does not change
any other structure of the model but does allow for a negative dependence between ε1i

and εsi even with these copulas: −1 ≤ τ ≤ 0.6

4.3 Treatment effects

In this subsection, I briefly describe an application of the endogenous switching re-
gression model to a policy evaluation. Interested readers are referred to the study
by Heckman, Tobias, and Vytlacil (2003), on which the discussion of this subsection is
based.

The literature of policy evaluation is usually willing to measure an average treat-
ment effect (ATE). Suppose that regime 1 indicates treatment and regime 0 indicates
nontreatment. In the framework of a switching regression model, the ATE (conditional
on the sets of covariates x0 and x1) is

E(y1 − y0|x1, x0) = x1
′β1 − x0

′β0

The average treatment effect on the treated (ATET) is often of interest as well; this
is

E(y1 − y0|x, S = 1) =x′β1 − x′β0 + E(ε1 − ε0|εs > −z′γ)
=ATE + E(ε1|εs > −z′γ) − E(ε0|εs > −z′γ)

5. See, for example, Gouriéroux, Holly, and Monfort (1982).
6. Equivalently, we can modify the selection equation instead of the outcome equation. However, in

the endogenously switching regression model, the modification of the outcome equation is preferable
because it keeps the relation between the selection equation and the other outcome equation intact.



558 Copula-based MLE of sample-selection models

The ATET involves the calculation of conditional expectations of εj . It is

E(εj |εs > −z′γ) =

∫ ∞

−∞

εjfj|s(εj |εs > −z′γ)dεj

= {1 − Fs(−z′γ)}−1

∫ ∞

−∞

∫ ∞

−z′γ

εjfsj(εs, εj)dεsdεj

where fj|s(εj |·) is a conditional density of εj . The second equality uses Bayes’s Rule.
The integral depends on the functional form of joint p.d.f.’s, that is, copula and marginal
distributions.7 If a copula is Gaussian and a marginal distribution of εj is normal,8 it
can be shown that

∫ ∞

−∞

∫ ∞

−z′γ

εjfsj(εs, εj)dεsdεj = σjθjφ
[
Φ−1 {Fs (−z′γ)}

]

where σj is a scale parameter for εj . φ(·) and Φ−1(·) are the p.d.f. of standard normal
and the inverse function of the p.d.f. of standard normal, respectively. Otherwise, there
is no closed-form expression of the integral, but it can be evaluated by the numerical
integration method.

The estimates of the population ATE and ATET above can be obtained by averaging
the predicted values over the appropriate sample: the entire sample for the ATE and the
subsample of those who actually are treated for the ATET. The ATE on the untreated
can also be estimated in the same fashion.

5 The heckmancopula and switchcopula commands

In this section, I describe the Stata commands heckmancopula and switchcopula to
implement a maximum likelihood estimation. We use the Stata ml commands to maxi-
mize the log-likelihood function.

5.1 heckmancopula

Syntax

heckmancopula depvar
[
=
]

varlist
[
if
] [

in
] [

weight
]
, select(

[
depvars =

]

varlists)
[
copula(copula) margsel(margin) margin1(margin) df(#) negative

noconstant vce(vcetype) maximize options
]

7. Note that fsj(εs, εj) = ∂2

∂εsεj
Fsj(εs, εj) = ∂2

∂usuj
C(us, uj ; θj) × fs(εs) × fj(εj) for j = 0, 1.

8. The marginal distribution of εs can be any distribution.
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Options

select(
[
depvars =

]
varlists) specifies the selection equation. If depvars is specified,

it should be coded as 0 and 1, with 0 indicating an outcome not observed for an
observation and 1 indicating an outcome observed for an observation. select() is
required.

copula(copula) specifies a copula function governing the dependence between the errors
in the outcome equation and selection equation. copula may be one of the following
(see table 1):

product, gaussian, fgm, plackett, amh, clayton, frank, gumbel, joe

The default is copula(gaussian). The result table reports the estimate of the
dependence parameter θ, theta (and an ancillary parameter, atheta). For copulas
for which Kendall’s τ can be calculated analytically as in table 2, the result table
reports the estimate of τ .

margsel(margin) specifies the marginal distribution of the error term in the selection
equation. margin may be normal (or probit) or logistic (or logit). The default
is margsel(normal).

margin1(margin) specifies the marginal distribution of the error term in the outcome
equation. margin may be normal, logistic, or t; see table 2. The default is
margin1(normal).

df(#) fixes the degrees of freedom if margin1() is t. The specified value must be
greater than 0. When margin1() is t and df() is not specified, the degrees of
freedom will be a parameter to estimate. The result table reports an ancillary
parameter (lndf, log of degrees of freedom) and an estimated degree of freedom,
df(). If margin1() is not t, this option will be ignored.

negative makes the error term of the outcome equation negative. That is, yi = x′iβ−ε1i

instead of yi = x′iβ + ε1i. This option allows a negative dependence between the
selection and outcome equations.

noconstant suppresses a constant term of the outcome equation.

vce(vcetype) specifies the type of standard errors reported; see [R] vce option.

maximize options control the maximization process; see [R] maximize.
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Stored results

heckmancopula stores the following in e():

Scalars
e(N) number of observations e(ic) number of iterations
e(k) number of parameters e(rc) return code
e(k eq) number of equations in e(b) e(converged) 1 if converged, 0 otherwise
e(k eq model) number of equations in e(ll0) log likelihood,

overall model test independent model
e(k aux) number of auxiliary parameters e(AIC) AIC
e(k dv) number of dependent variables e(BIC) BIC
e(df m) model degrees of freedom e(df) fixed value of df(); only when
e(ll) log likelihood df() is specified
e(p) significance e(negative) 1 if option negative is
e(rank) rank of e(V) specified, 0 otherwise

Macros
e(cmd) heckmancopula e(user) name of likelihood-evaluator
e(depvar) names of dependent variables program
e(wtype) weight type e(technique) maximization technique
e(wexp) weight expression e(crittype) optimization criterion
e(title) title in estimation output e(properties) b V
e(clustvar) name of cluster variable e(predict) program used to implement
e(chi2type) Wald or LR; type of model χ2 predict

test e(copula) specified copula()
e(vce) vcetype specified in vce() e(margsel) specified margsel()
e(vcetype) title used to label Std. Err. e(margin1) specified margin1()
e(opt) type of optimization
e(ml method) type of ml method

Matrices
e(b) coefficient vector e(gradient) gradient vector
e(ilog) iteration log (up to 20 e(V) variance–covariance matrix

iterations) of the estimators

Functions
e(sample) marks estimation sample

Prediction

After an execution of heckmancopula, the predict command is available to compute
several statistics. Here is its syntax:

predict
[
type

]
newvar

[
if
] [

in
] [

, options
]

The options for predict are the following:

psel computes the probability of the outcome being observed for each observation:
{Fs(zi

′γ) = 1 − Fs(−zi
′γ)}. This is a default.

xbsel computes the linear prediction of the selection equation (zi
′γ) for each observa-

tion.

xb computes the linear prediction of the outcome (dependent) variable for each obser-
vation: E(yi|xi) = xi

′β.
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cll computes the contribution to the log-likelihood function of each observation. This
will be useful to conduct Vuong’s test.

y c0 computes the expected value of the dependent variable in the outcome equation
for each observation, conditional on not being observed: E(yi|xi1, Si = 0) = xi

′β +
E(εi|Si = 0). If copula() is gaussian and margin1() is normal, it is computed
analytically; otherwise, it is computed numerically.

y c1 computes the expected value of the dependent variable in the outcome equation for
each observation, conditional on being observed: E(yi|xi, Si = 1) = xi

′β+E(εi|Si =
1). If copula() is gaussian and margin1() is normal, it is computed analytically;
otherwise, it is computed numerically.

5.2 switchcopula

Syntax

switchcopula (depvar0
[
=
]

varlist0)
[
(depvar1

[
=
]

varlist1)
] [

if
] [

in
]

[
weight

]
, select(depvars

[
=
]

varlists)
[
copula0(copula) copula1(copula)

margsel(margin) margin0(margin) margin1(margin) df0(#) df1(#)

negative0 negative1 consel vce(vcetype) maximize options
]

When dependent variables and sets of covariates in both regime regressions are the
same, you need to specify only one equation. If dependent variables or the sets of
covariates are different across regimes, you need to specify two equations separately,
and each equation must be enclosed by parentheses. In such cases, the first equation
will be the equation for regime 0, and the second equation will be the equation for
regime 1.

Options

select(depvars

[
=
]

varlists) specifies the selection equation. depvars should be coded
as 0 and 1, with 0 indicating an observation being in regime 0 and 1 indicating an
observation being in regime 1. select() is required.

copula0(copula) specifies a copula function for the dependence between the errors in
the regime 0 equation and selection equation. copula may be one of the following
(see table 1):

product, gaussian, fgm, plackett, amh, clayton, frank, gumbel, joe

The default is copula0(gaussian). The result table reports the estimate of the
dependence parameter θ, theta0 (and an ancillary parameter, atheta0). For copulas
for which Kendall’s τ can be calculated analytically as in table 2, the result table
reports the estimate of τ as tau0.
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copula1(copula) specifies a copula function for the dependence between the errors in
the regime 1 equation and selection equation. See copula0() above for the list of
available copulas. The default is copula1(gaussian). copula0() and copula1()

are not necessarily the same.

margsel(margin) specifies the marginal distribution of the error term in the selection
equation. margin may be normal (or probit) or logistic (or logit). The default
is margsel(normal).

margin0(margin) specifies the marginal distribution of the error term in regime 0. mar-

gin may be normal, logistic, or t; see table 2. The default is margin0(normal).

margin1(margin) specifies the marginal distribution of the error term in regime 1. mar-

gin may be normal, logistic, or t; see table 2. The default is margin1(normal).

df0(#) fixes the degrees of freedom if margin0 is t. The specified value must be greater
than 0. When margin0 is t and df0() is not specified, the degrees of freedom will
be a parameter to estimate. The result table reports an ancillary parameter (lndf0,
log of degrees of freedom) and an estimated degree of freedom, df0. If margin0 is
not t, this option will be ignored.

df1(#) fixes the degrees of freedom if margin1() is t; see df0().

negative0 makes the error term of the regime 0 equation negative. That is, yi0 =
x′0iβ − ε0i instead of y0i = x′0iβ0 + ε0i. This option allows a negative dependence
between the regime 0 and selection equations.

negative1 makes the error term of the regime 1 equation negative. That is, yi1 =
x′1iβ − ε1i instead of y1i = x′1iβ1 + ε1i. This option allows a negative dependence
between the regime 1 and selection equations.

consel allows contributions to the likelihood of the selection equation by observations
in which the selection decision is observed but in which the outcome variables or
some of the covariates in the outcome equations are not observed.

vce(vcetype) specifies the type of standard errors reported; see [R] vce option.

maximize options control the maximization process; see [R] maximize.
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Stored results

switchcopula stores the following in e():

Scalars
e(N) number of observations e(converged) 1 if converged, 0 otherwise
e(k) number of parameters e(ll0) log likelihood,
e(k eq) number of equations in e(b) independent model
e(k eq model) number of equations in e(AIC) AIC

overall model test e(BIC) BIC
e(k aux) number of auxiliary parameters e(df0) fixed value of df0(); only when
e(k dv) number of dependent variables option df() is specified
e(df m) model degrees of freedom e(df1) fixed value of df1(); only when
e(ll) log likelihood option df1() is specified
e(p) significance e(negative0) 1 if option negative0 is
e(rank) rank of e(V) specified, 0 otherwise
e(ic) number of iterations e(negative1) 1 if option negative1 is
e(rc) return code specified, 0 otherwise

Macros
e(cmd) switchcopula e(crittype) optimization criterion
e(depvar) names of dependent variables e(properties) b V
e(wtype) weight type e(predict) program used to implement
e(wexp) weight expression predict
e(title) title in estimation output e(copula0) specified copula0()
e(clustvar) name of cluster variable e(copula1) specified copula1()

e(chi2type) Wald or LR; type of model χ2 e(margsel) specified margsel()
test e(margin0) specified margin0()

e(vce) vcetype specified in vce() e(margin1) specified margin1()
e(vcetype) title used to label Std. Err. e(user) name of likelihood-evaluator
e(opt) type of optimization program
e(ml method) type of ml method
e(technique) maximization technique

Matrices
e(b) coefficient vector e(gradient) gradient vector
e(ilog) iteration log (up to 20 e(V) variance–covariance matrix

iterations) of the estimators

Functions
e(sample) marks estimation sample

Prediction

After an execution of switchcopula, the predict command is available to compute
several statistics with the following syntax:

predict
[
type

]
newvar

[
if
] [

in
] [

, options
]

The options for predict are the following:

psel computes the probability of being in regime 1 for each observation: Fs(zi
′γ) =

1 − Fs(−zi
′γ). This is a default.

xbsel computes the linear prediction of the selection (zi
′γ) for each observation.

xb0 computes the linear prediction of the dependent variable in regime 0 for each ob-
servation: E(y0i|x0i) = x0i

′β0.
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xb1 computes the linear prediction of the dependent variable in regime 1 for each ob-
servation: E(y1i|x1i) = x1i

′β1.

cll computes the contribution to the log-likelihood function of each observation. This
will be useful to conduct Vuong’s test.

y0 c0 computes the expected value of the dependent variable in regime 0 conditional on
being in regime 0 for each observation: E(y0i|x0i, Si = 0) = x0i

′β0 + E(ε0i|Si = 0).
If copula0() is gaussian and margin0() is normal, it is computed analytically;
otherwise, it is computed numerically.

y0 c1 computes the expected value of the dependent variable in regime 0 conditional on
being in regime 1 for each observation: E(y0i|x0i, Si = 1) = x0i

′β0 + E(ε0i|Si = 1).
If copula0() is gaussian and margin0() is normal, it is computed analytically;
otherwise, it is computed numerically.

y1 c0 computes the expected value of the dependent variable in regime 1 conditional on
being in regime 0 for each observation: E(y1i|x1i, Si = 0) = x1i

′β1 + E(ε1i|Si = 0).
If copula1() is gaussian and margin1() is normal, it is computed analytically;
otherwise, it is computed numerically.

y1 c1 computes the expected value of the dependent variable in regime 1 conditional on
being in regime 1 for each observation: E(y1i|x1i, Si = 1) = x1i

′β1i +E(ε1i|Si = 1).

5.3 Notes

An ancillary dependence parameter, which is directly estimated in the maximum like-
lihood routine, is transformed to the dependence parameter in different ways across
copulas. Let θ∗ be the ancillary parameter. Then

θ =





(eθ∗ − e−θ∗

)/(eθ∗

+ e−θ∗

) (Gaussian, FGM, AMH)

eθ∗

(Plackett, Clayton)

1 + eθ∗

(Gumbel, Joe)
θ∗ (Frank)

This transformation ensures that the ancillary parameter takes any real value, but the
parameter space of the dependence parameter is restricted as in table 3.

In addition to the dependence parameter, the maximum likelihood routine estimates
a scale parameter of the error of the outcome equation.9 When the marginal distribution
is normal, the standard deviation of the error term is equal to the scale parameter. If
the marginal distribution is logistic, the standard deviation is the scale parameter times√
π2/3. If the marginal distribution is Student’s t, the standard deviation is the scale

parameter times
√
ν/(ν − 2), where ν is the degrees of freedom. When ν ≤ 2, the

standard deviation is not defined. Because the scale parameter must be positive, the
routine directly estimates a log of the scale parameter (lnsigma) and transforms it into
the scale parameter (sigma).

9. The scale parameter of the selection equation is set to 1 for identification.
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6 Examples

This section illustrates the commands heckmancopula and switchcopula by examples
that use real data.

6.1 Example 1

The example of the bivariate sample-selection model is a classical example: wage equa-
tion for married women, which is illustrated on page 807 of Wooldridge (2010).10 The
data are samples of 753 married women, and out of them, the wages are observed for
428 working women. The selection equation includes nonwife income (nwifeinc), ed-
ucation (educ), experience and its square (exper and expersq), age (age), number of
children younger than 6 years of age (kidslt6), and number of children between 6 and
18 inclusive (kidsge6). The wage equation includes education and experience terms.

. use mroz

. *set locals

. local y lwage

. local x1 educ exper expersq

. local xs nwifeinc educ exper expersq age kidslt6 kidsge6

10. The data, which are named MROZ.RAW, are available online at
http://mitpress.mit.edu/books/econometric-analysis-cross-section-and-panel-data.
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. heckmancopula `y´ `x1´, select(`xs´) // this is equivalent to heckman command

Iteration 0: log likelihood = -832.8989
Iteration 1: log likelihood = -832.88509
Iteration 2: log likelihood = -832.88508

Sample Selection Model: Copula gaussian, Margins probit-normal

Number of obs = 753
Wald chi2(7) = 178.09

Log likelihood = -832.88508 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

select
nwifeinc -.0121321 .0048767 -2.49 0.013 -.0216903 -.002574

educ .1313415 .0253823 5.17 0.000 .0815931 .1810899
exper .1232818 .0187242 6.58 0.000 .0865831 .1599806

expersq -.0018863 .0006004 -3.14 0.002 -.003063 -.0007095
age -.0528287 .0084792 -6.23 0.000 -.0694476 -.0362098

kidslt6 -.8673987 .1186509 -7.31 0.000 -1.09995 -.6348472
kidsge6 .0358723 .0434753 0.83 0.409 -.0493377 .1210824

_cons .2664491 .5089578 0.52 0.601 -.7310899 1.263988

lwage
educ .1083502 .0148607 7.29 0.000 .0792238 .1374767
exper .0428368 .0148785 2.88 0.004 .0136754 .0719982

expersq -.0008374 .0004175 -2.01 0.045 -.0016556 -.0000192
_cons -.5526968 .2603784 -2.12 0.034 -1.063029 -.0423644

lnsigma
_cons -.4103808 .0342291 -11.99 0.000 -.4774686 -.343293

atheta
_cons .0266137 .1471821 0.18 0.857 -.2618579 .3150852

theta .0266074 .1470779 -.2560324 .3050562
tau -.0169408 .0936658 -.1973505 .1648308

LR test of independence : Test statistic 0.032 with p-value 0.8577

This is the estimation under the joint normality assumption. It is equivalent to
using the command heckman. atheta is an ancillary dependence parameter, and it is
transformed into a dependence parameter theta. tau is the implied value of Kendall’s
τ . The estimation result fails to reject the null of independence of the error terms. This
is the benchmark result as traditionally estimated.

Next we want to see how the copula approach improves from this benchmark result.
To do so, we need to specify a copula function. In this example, we do not have a par-
ticular idea about the dependence structure. Therefore, we will choose the copula that
attains the smallest value of the AIC or BIC as the best-fitting copula. In this example,
we fix the marginal distributions: normal distributions for the selection equation and
Student’s t for the outcome equation. Thus choosing the minimum of the information
criteria is equivalent to choosing the largest log likelihood. For this purpose, we keep
the log likelihood of the joint normal model. We also compute the contribution to the
log likelihood of each observation for the Vuong test later.
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. *keep the largest value currently attained

. local llmax = `e(ll)´

. *contributions of log likelihood by each observation

. predict cll0, cll

Then we will find the best-fitting copula by using loops.

. local copulalist gaussian fgm plackett amh frank clayton gumbel joe

. foreach copula of local copulalist {
2. quietly heckmancopula `y´ `x1´, select(`xs´) margin1(t)

> copula(`copula´) difficult
3. if `e(ll)´ > `llmax´ {
4. local llmax = `e(ll)´
5. estimates store best_model
6. }
7.

. if "`copula´" == "joe" | "`copula´" =="gubmel" | "`copula´" ==
> "clayton" {

8. quietly heckmancopula `y´ `x1´, select(`xs´) margin1(t)
> copula(`copula´) negative difficult

9. if `e(ll)´ > `llmax´ {
10. local llmax = `e(ll)´
11. estimates store best_model
12. }
13. }
14. }
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. * display the estimation result of the selected copula

. estimates replay best_model

Model best_model

Sample Selection Model: Copula negative joe, Margins probit-t

Number of obs = 753
Wald chi2(7) = 176.88

Log likelihood = -791.15422 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

select
nwifeinc -.010185 .0047913 -2.13 0.034 -.0195758 -.0007943

educ .1214399 .0254369 4.77 0.000 .0715845 .1712953
exper .1255698 .018608 6.75 0.000 .0890988 .1620409

expersq -.0019304 .0005934 -3.25 0.001 -.0030935 -.0007673
age -.0531146 .0084491 -6.29 0.000 -.0696746 -.0365546

kidslt6 -.8784918 .1185076 -7.41 0.000 -1.110762 -.646221
kidsge6 .0363442 .0430393 0.84 0.398 -.0480113 .1206997

_cons .3409341 .5086481 0.67 0.503 -.6559977 1.337866

lwage
educ .1115073 .0116006 9.61 0.000 .0887707 .134244
exper .0322427 .0119188 2.71 0.007 .0088824 .055603

expersq -.0006094 .0003376 -1.80 0.071 -.0012712 .0000524
_cons -.4060346 .183045 -2.22 0.027 -.7647962 -.0472729

lnsigma
_cons -.8663791 .0640459 -13.53 0.000 -.9919069 -.7408514

lndf
_cons 1.188338 .1636655 7.26 0.000 .8675592 1.509116

atheta
_cons -1.536328 .6708635 -2.29 0.022 -2.851196 -.22146

theta 1.21517 .1443495 1.057775 1.801348
df 3.281621 .5370881 2.381092 4.522731

tau -.10928872
LR test of independence : Test statistic 5.184 with p-value 0.0114

The best-fitting copula is the Joe copula with the modification to allow the negative
dependence. lndf is an ancillary parameter of the degrees of freedom of the Student’s t
distribution. This parameter estimate is transformed into the degrees of freedom df().
The estimated degrees of freedom of 3.28 indicates that the distribution has much
thicker tails than the normal distribution assumes. The estimated coefficients of each
equation are comparable to some extent, although the squared experience in the outcome
equation is no longer significant at the 5% level. The most remarkable difference from
the joint normal model is that this model rejects the null of the independent errors.
The estimated Kendall’s τ is −0.11, which is not strong but negative dependence.11

11. Kendall’s τ is numerically computed because the Joe copula does not have the closed form.
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The log-likelihood value improves considerably (from −832.89 to −791.15). To see
whether the copula model is statistically preferred, we conduct the Vuong test.

. * contributions to the log likelihood of the copula model

. predict cll1, cll

. * difference of the contributions to the log likelihoods

. quietly generate dll = cll1 - cll0

. * OLS on dll as Vuong test

. regress dll

Source SS df MS Number of obs = 753
F( 0, 752) = 0.00

Model 0 0 . Prob > F = .
Residual 149.851017 752 .199269969 R-squared = 0.0000

Adj R-squared = 0.0000
Total 149.851017 752 .199269969 Root MSE = .4464

dll Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons .0427708 .0162676 2.63 0.009 .0108355 .0747061

This OLS regression indicates that the model with the Joe copula is statistically
preferred to the joint normal model at any meaningful level of significance.

6.2 Example 2

The second example illustrates the command switchcopula in the estimation of wage
equations between private and public sectors. The data are from Vijverberg and Zeager
(1994). The selection into the private or public sector is presumably endogenous. If the
selection dummy variable psel takes a value of 1, an individual is in the public sector.
Out of 1,820 workers, 1,109 are in the public sector. Although all 1,820 observations
have the selection dummy and the covariates of the selection, the wage information is
missing for 174 observations. To allow those 174 observations to contribute to the log
likelihood, we specify the option consel.

As in the example above, we find the best-fitting copulas by using loops, while
the marginal distributions of the outcome equations are fixed as Student’s t, and the
selection is the normal distribution. Then the combination of the Plackett copulas
attains the largest log-likelihood value. The result happens to be the combinations of the
same copula, but this is not necessarily so. In a different application, the combination
of different copulas may attain the largest log-likelihood value. The loop commands
are suppressed below. What follows is just the addition of one more loop to the loop
commands shown above.
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. use switch, clear

. replace agesq = agesq/100
(1820 real changes made)

. local x1 edst1 edst5 edfm1 edfm5 eduni ypexp ypexpsq yojob yojobsq sex
> married relig skilled salaam

. local x0 edst1 edst5 edcum ypexp ypexpsq yojob yojobsq sex married relig
> skilled salaam

. local xs edst1 edst5 edfm1 edfm5 eduni age sex married relig skilled salaam
> citizen foc1 foc2

. local y0 lnw

. local y1 lnw

. local s psec

. * the benchmark model under the joint normality

. switchcopula (`y0´ = `x0´) (`y1´ = `x1´), select(`s´ = `xs´) difficult con

Iteration 0: log likelihood = -2252.1933 (not concave)

(output omitted )

Switching Regression: Copulas gaussian-gaussian, Margins probit-normal-normal

Number of obs = 1820
Wald chi2(14) = 231.36

Log likelihood = -2226.2722 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

select
edst1 -.2023882 .0953016 -2.12 0.034 -.389176 -.0156005
edst5 .4370122 .0827266 5.28 0.000 .274871 .5991533
edfm1 .4716647 .0927867 5.08 0.000 .2898061 .6535232
edfm5 1.200002 .5595647 2.14 0.032 .1032756 2.296729
eduni -.5138716 .7013145 -0.73 0.464 -1.888423 .8606796

(output omitted )

regime0
edst1 .0409216 .0684712 0.60 0.550 -.0932796 .1751227
edst5 .2673884 .0597577 4.47 0.000 .1502655 .3845113
edcum 1.083325 .0733416 14.77 0.000 .9395787 1.227072

(output omitted )

regime1
edst1 -.0041889 .0579059 -0.07 0.942 -.1176824 .1093046
edst5 .2535571 .0495447 5.12 0.000 .1564514 .3506629
edfm1 .6639572 .0450099 14.75 0.000 .5757394 .752175
edfm5 .8519544 .1264819 6.74 0.000 .6040545 1.099854
eduni -.0940355 .1845686 -0.51 0.610 -.4557833 .2677122

(output omitted )
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lnsigma0
_cons -.4059838 .0563064 -7.21 0.000 -.5163422 -.2956253

lnsigma1
_cons -.5587282 .0343784 -16.25 0.000 -.6261087 -.4913477

atheta0
_cons 1.087205 .138568 7.85 0.000 .815617 1.358794

atheta1
_cons 1.127529 .09885 11.41 0.000 .9337871 1.321272

sigma0 .666321 .0375181 .5966992 .7440662
sigma1 .571936 .0196623 .5346683 .6118013
theta0 .7958559 .0508009 .6726773 .876113
theta1 .810172 .033967 .7323547 .8670999

tau0 -.5859575 .053413 -.6797442 -.4697115
tau1 -.6012527 .036889 -.6680373 -.5231573

LR test of independence : Test statistic 51.916 with p-value 0.0000

To save space, we show the estimated coefficients for only selected variables. Note
that the sets of the covariates in the three equations are all different. The section select

reports the result of the selection equation. The sections regime0 and regime1 report
the result of the private-sector wage equation and the public-sector wage equation,
respectively. Because df0() is greater than df1(), the error term of the private-sector
wage equation has a thicker tail distribution than the error term of the public-sector
wage equation. This model can reject the null of independent errors. Because it is
difficult to estimate Kendall’s τ , the table does not report τ for the Plackett copula.
However, we can see that because theta0 and theta1 are greater than 1, the errors
are positively dependent. Although it is not reported, the Vuong test, which can be
done in the same way as illustrated in the previous example, indicates that this model
is statistically preferred to the benchmark model under the joint normality assumption.

Finally, we estimate the wage differential between the sectors by using the predict

command. This can be interpreted as a treatment effect of being in the public sector on
wages. We estimate the effect from the best-fitting copula model and the benchmark
model under the joint normality. In addition, we estimate it from the model with the
Gaussian copula and Student’s t as marginal distributions of the outcome equations and
normal as the marginal distribution of the selection equation for comparison.12

. * after the copula estimation

. predict xb0_0, xb0

. predict xb1_0, xb1

. predict cll0, cll

. local llmax = `e(ll)´

12. The best-fitting model is statistically preferred to this model on the basis of the Vuong test result.
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. * the best model is Plackett and Plackett

. switchcopula (`y0´ = `x0´) (`y1´ = `x1´), select(`s´ = `xs´) difficult consel
> margin0(t) margin1(t) copula0(plackett) copula1(plackett)

(output omitted )

. predict xb0_1, xb0

. predict xb1_1, xb1

. predict cll1, cll

. * the Gaussian copulas with t as marginal distributions for the comparison

. switchcopula (`y0´ = `x0´) (`y1´ = `x1´), select(`s´ = `xs´) difficult consel
> margin0(t) margin1(t)

(output omitted )

. predict xb0_2, xb0

. predict xb1_2, xb1

. predict cll2, cll

. generate te0 = xb1_0 - xb0_0

. generate te1 = xb1_1 - xb0_1

. generate te2 = xb1_2 - xb0_2

. summarize te*

Variable Obs Mean Std. Dev. Min Max

te0 1820 -.7016716 .3438785 -2.621601 .8278053
te1 1820 -.6578262 .3610136 -2.913495 .2958744
te2 1820 -.2265623 .3123378 -2.254359 1.029594

Although the estimated effects are all negative, the magnitudes are estimated differ-
ently. The estimate from the benchmark model (te0) shows that workers in the public
sector earn less than workers in the private sector by 70%. The estimate from the
best-fitting copula model (te1) is slightly lower at 65%. However, the estimate from
the model with Gaussian copulas and Student’s t marginal distributions (te2) is much
smaller. These comparisons imply that not only different marginal distributions but
also different dependence structures can yield much different estimation results.

7 Conclusion

In this article, I discussed the maximum likelihood estimation of sample-selection models
with a copula method to relax the assumption of joint normality; I also describe the Stata
commands heckmancopula and switchcopula, which implement the estimation. The
former command fits a bivariate sample-selection model, and the latter command fits
an endogenous switching regression model. These commands allow applied researchers
to relax the joint normality assumption, which may not be true in applications.
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