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Abstract. There is a growing consensus that it is difficult to pick instru-
ments that perfectly satisfy the exclusion restriction. Drawing on results from
Berkowitz, Caner, and Fang (2012, Journal of Econometrics 166: 255–266), we
provide in this article a nontechnical summary of how valid inferences can be
made when instrumental variables come close to satisfying the exclusion restric-
tion. Although the Anderson–Rubin (1949, Annals of Mathematical Statistics

20: 46–63) test statistic is robust to weak identification, it assumes that the in-
struments are perfectly orthogonal to the structural error term and is therefore
oversized under mild violations of the orthogonality condition. The fractionally
resampled Anderson–Rubin (FAR) test is a modification of the Anderson–Rubin
test that accounts for violations of the orthogonality condition. We show that in
small samples, the size of the resampling block of the FAR test can be modified to
obtain valid critical values and analyze its size and power properties. We focus on
power and not on size-adjusted power because the FAR test uses only one critical
value in its application. We also describe user-written commands to implement
the Anderson–Rubin and FAR tests in Stata.

Keywords: st0307, far, fractionally resampled Anderson–Rubin test, exclusion
restriction, instrumental variables, near exogeneity

1 Introduction

Instrumental-variable methods are used in economics to study major questions, includ-
ing the impact of institutions on economic performance and the returns to schooling.
Valid instruments must be relevant and exogenous. In the case of relevance, substantial
progress has been made in understanding the asymptotic properties of weak instru-
ments. Stock and Wright (2000) show how the Anderson–Rubin (1949) test (the AR

test) can be used to draw valid inferences when the instruments are weak.

c© 2013 StataCorp LP st0307
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In the case of exogeneity, however, researchers are becoming more concerned about
the difficulty of picking instruments that perfectly satisfy the exclusion restriction. For
example, in an influential study of the impact of institutions on long-term growth,
Acemoglu, Johnson, and Robinson (2001) use early settler mortality data from as far
back as the fifteenth and sixteenth centuries as an instrument for contemporary institu-
tions.1 Glaeser et al. (2004) argue that the early settlers brought their attitudes about
education to their colonies, affecting the long-term growth through their influence on hu-
man capital accumulation. Similarly, draft lotteries (Angrist 1990) and whether a man
grew up in the vicinity of a four-year college (Card 1995) are influential instruments for
estimating the returns to schooling. In each case, however, there are good reasons to
believe that the exclusion restriction is not necessarily perfect (see Wooldridge [2010,
95–96]).

In this article, we provide a nontechnical summary of the new test statistic derived
in Berkowitz, Caner, and Fang (2012) for instruments that come “close” to satisfying
the exclusion restriction but do not satisfy it perfectly. In our analysis, we use the AR

test because it is robust to weak identification. However, because the AR test uses the
overly strong assumption that an instrument is perfectly exogenous, it can have bad
small-sample properties (Caner 2010; Guggenberger 2012). The fractionally resampled
AR (FAR) test modifies the AR test on the basis of results from Wu (1990, sec. 2),
accounting for the extent to which an instrument violates the orthogonality condition
and is not oversized in large samples.

The rest of the article is organized as follows: Section 2 describes the AR test in a
setup that allows for instruments that do not perfectly satisfy the orthogonality condi-
tion. Section 3 summarizes the FAR test and shows how the block size for the FAR test
can be adjusted to improve the test size and power. Section 4 describes the syntax and
output of our user-written Stata command and details the different available options
through an example from Acemoglu, Johnson, and Robinson (2001, 2011). Section 5
presents the results of size and power simulations under different levels of violation of
the orthogonality condition. Section 6 concludes.

2 Inferences when instruments are not perfectly exoge-
nous

Consider the following setup:

y = WB + Y θ0 + u (1)

Y = WΓ + ZΠ + V (2)

In this system of equations, y is an n × 1 vector of outcomes, n is the sample size,
Y is an n×m matrix of endogenous variables, and Z is an n× k matrix of instruments.

1. We ignore the controversy about the construction of the early settler mortality variable. For this
debate, see Acemoglu, Johnson, and Robinson (2008) and Albouy (2008).
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For example, y can be long-term gross national product (GNP) per capita, n can be
the number of countries that are former colonies, and Y can be a set of contemporary
institutions. In Acemoglu and Johnson (2005), m = 2 and includes property rights and
contract enforcement. For simplicity, and without loss of generality, we consider the
case where Y is an n× 1 vector of property rights institutions.

There are a host of exogenous covariates in W , which is an n×l matrix. For example,
if l = 3, then W could include GNP, human capital, and temperature in 1960. The
coefficients obtained for θ0 and Π in (1) and (2) will remain the same after projecting
out W from the system. By using the projection matrix P = W (W ′W )−1W ′, we define

yW = y − Py
ZW = Z − PZ
YW = Y − PY

And the system of equations in (1) and (2) can be written as

yW = YW θ0 + uW (3)

YW = ZW Π + VW (4)

Thus the vector W of covariates can be ignored.

In Acemoglu, Johnson, and Robinson (2001), the parameter of interest θ0 in (3) is
the impact of institutions on long-term growth. Because long-term GNP per capita also
influences institutions and because there are potentially omitted variables in the residual
uW that influence both institutions and GNP per capita, the variable Y is endogenous.
Technically, this means that cov(YW , uW ) 6= 0. To correct for the endogeneity of insti-
tutions, one uses an instrument or a set of instruments, ZW , as an exogenous source of
variation for institutions. The instruments satisfy the condition

E(ZWiV
′
Wi) = 0, i = 1, . . . , n (5)

There is much literature for drawing inferences when instruments are weak but
still sufficiently relevant (Stock and Wright 2000), and there are now commands for
implementing valid tests in Stata (see Moreira and Poi [2003]). Here we consider tests
for instruments that are not perfectly exogenous, in which case the standard t statistic
and the AR test for testing H0 : θ = θ0 have massive size distortions (Berkowitz, Caner,
and Fang 2008) because they assume orthogonality as in (5). More realistically, a set
of instruments may exhibit near exogeneity as follows:

E(ZWiuWi) =
C√
n

(6)
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Equation (6) allows for a slight covariance between the instruments and the error
term. C is a k× 1 vector (one component for each instrument), and each element of C,
denoted by Cj (j = 1, . . . , k), is a constant. The sign of each Cj depends on the sign
of the covariance between the jth instrument and the error term. For example, when
k = 2, then we can have C = (−1, 2)′. For simplicity and without loss of generality,
we assume that the upper and lower bounds of the set containing the Cj values are
the same for all the instruments. Further technical details are described in section 2 of
Berkowitz, Caner, and Fang (2012).

To test the null hypothesis H0 : θ = θ0, the AR test is preferred for several reasons.
First, it can be used when the instruments are weak. Moreover, Guggenberger (2012)
shows that the AR test is the best choice for limiting size distortion when the exclusion
restriction is slightly violated. Caner (2010) also shows that the AR test is slightly
oversized in a framework of many instruments.

Let the n×1 vector of residuals of the structural equation under the null be denoted
uW (θ0):

uW (θ0) = yW − YW θ0

Then the AR test for testing H0 : θ = θ0 assumes that C = 0 (that is, the instruments
perfectly satisfy the exclusion restriction). The test statistic is given by

AR(θ0) = n× S
′

n(θ0)Ω̂
−1Sn(θ0) (7)

where Ω̂ = 1
n

∑n
i=1 ZWiZ

′
Wi{uW (θ0)}2 and Sn(θ0) = [{Z ′

WuW (θ0)}/n] can be inter-
preted as the k × 1 vector of estimated covariances between the instruments and the
residuals in the structural equation under the null hypothesis H0 : θ = θ0.

The limiting distribution of the AR test is central chi-squared with k degrees of
freedom. Berkowitz, Caner, and Fang (2008, 2012) show that the AR test overrejects
the null when the orthogonality condition is not perfectly satisfied. Moreover, in small
samples, the test can be oversized even when the correlation between the instruments
and structural error is close to 0. This size distortion gets worse as the correlation
between an instrument and the structural error terms gets stronger. This problem
arises because the AR test assumes that C = 0 in (6). In the next section, we explain
how the FAR test accounts for C 6= 0 and thus allows the researcher to draw valid but
conservative inferences.

3 The FAR test

The FAR test uses Wu’s (1990) jackknife histogram estimator to recover the limits of the
population mean of θ by taking a subset of size b from the n observations in the full sam-

ple. There are

(
n
b

)
blocks of size b with equal probability of being selected, and these

are drawn via simple random sampling without replacement. To test the null hypothesis
H0 : θ = θ0, we need to estimate Z ′

WuW (θ0). Following Berkowitz, Caner, and Fang
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(2012), we use the subscript * to label the resampled estimates. Using this notation,
we can write the FAR test as

FAR(θ0) =
bS

′

b(θ0)Ω̂
−1Sb(θ0)

(1 − f)

where Sb(θ0) =
∑b

i=1 Ziui/b and f is the fraction of the sample that generates the block

of size b.2 Note that Ω̂ is obtained from the full sample and replaced by (1−f)Ω̂ in each
iteration. From theorem 1 in Berkowitz, Caner, and Fang (2012, 258), under suitable
assumptions, the statistic Jb(t) = P∗{FAR(θ0) ≤ t}, where P∗ stands for the resampled
probability, converges to φmf (t), the cumulative distribution of

(
1 +

√
f√

1 − f

)2

χ2
k,nc (8)

where χ2
k,nc is the noncentral χ2 with k degrees of freedom and noncentrality parameter

nc = {1/(1 + 2
√
f
√

1 − f)}{(CΩ−1C)/2}. If half of the sample is resampled, then
f = 1/2 and the limit in (8) becomes

4χ2
k + 4C ′Ω−1L+ C ′Ω−1C (9)

where L ≡ N(0, 1), whereas the AR test limit is

χ2
k + 2C ′Ω−1L+ C ′Ω−1C

Equation (9) is used for testing H0 : θ = θ0 when C 6= 0 and corrects for the
size distortions obtained in the standard AR test. This version of the FAR test is very
conservative, especially in small samples. To correct for this, theorem 1 in Berkowitz,
Caner, and Fang (2012, 258) shows that the resampled fraction f can be modified,

fn = 1/2 − κn (10)

where κn > 0 is a data-driven deterministic sequence converging to 0. In practice,
κn = κ/

√
n is used. For example, if n = 100 and κ = 2.5, then κn = 2.5/

√
100 = 0.25

and fn = 0.25, so each resampling consists of 25 observations. κn = 2.5/
√
n provides

good power in our simulations, and κn = 3/
√
n is recommended when the researcher is

confident that the instrument comes close to perfectly satisfying the exclusion restric-
tion.

Our user-written far command takes advantage of the flexibility and fast execution
of the Mata language to perform the resampling process and estimate the FAR test in
an efficient way. The command is introduced in the next section.

2. For practical purposes, b = ceil(f*n) should be implemented (see [D] functions).
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4 The far command

4.1 Syntax

far depvar
[
varlist1

]
(varlist2 = varlist iv)

[
if
] [

in
] [

, reps(#) kappa(#)

theta(numlist1) ci level(#) grid(numlist2)
]

4.2 Description

The far command performs the FAR test (Berkowitz, Caner, and Fang 2012) for the
joint significance of the endogenous regressors in an instrumental-variables regression
of depvar using the optional controls in varlist1, the endogenous regressors in varlist2,
and the instrumental variables in varlist iv.

4.3 Options

reps(#) specifies the number of repetitions of the resampling procedure. A large
number of repetitions is necessary for the results in section 3 to be valid. The
default is reps(10000), and it gives fast and reliable estimates in small samples
(n < 100). If the number of repetitions is not large enough, the FAR test p-values
may vary.

kappa(#) specifies the value of the κ constant. Note that κn = κ/
√
n in (10). Any

positive real number may be used. The default is kappa(3) (see section 5 for justi-
fication of the selected default value).

theta(numlist1) allows for a user-defined hypothesis test. numlist1 is a list of values
for the endogenous parameters to be tested (one for each endogenous variable). If
theta() is not specified, the far command will perform a significance test (all the
values in numlist1 will be set as 0). By implementing this option, the user can invert
the FAR test to find confidence intervals for θ0.

ci enables the user to test for a grid of different values of θ0 and search for the (1−α)%
confidence interval for the true scalar θ. The significance level and the grid can
be customized by using the options level(#) and grid(numlist2). This option is
available when there is only one endogenous variable.

level(#) is the significance level for the test in the grid search. The default is
level(95).

grid(numlist2) specifies the grid for the values of θ0 to be tested. numlist2 consists of
three elements: the minimum level, the maximum level, and the increments of the
grid. The default is grid(-30, 30, 0.01).
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4.4 Stored results

far stores the following in r():

Scalars
r(n) number of observations r(kappa) the constant κ
r(ar) full-sample AR statistic r(k) number of instruments
r(arp) full-sample p-value r(l) number of controls
r(farp) FAR p-value r(m) number of endogenous
r(reps) resampling repetitions variables

Macros
r(cmdline) command as typed r(endogenous) list of endogenous variables
r(depvar) name of dependent variable r(instruments) list of instruments
r(title) title in estimation output r(grid) grid values
r(exogenous) list of controls

Matrices
r(theta) endogenous parameters r(ci) fractionally resampled

tested p-values for the
parameters in the grid

4.5 Example

Acemoglu, Johnson, and Robinson (2001) use two-stage least-squares methods to esti-
mate the effect of institutions on long-term economic growth. Their baseline dataset
consists of 64 countries that are former European colonies. They use the log of per-
capita gross domestic product with purchasing-power-corrected prices (logpgp95) as
the measure of long-term growth, an index of protection against expropriation from
1985 to 1995 (avexpr) as the measure of institutions, and the log early settler mortality
of colonizers (logem4) as the instrument for institutions. The fundamental identifying
assumption then is that early settler mortality influences long-term growth exclusively
through the quality of contemporary institutions [see (5)].

One important control that Acemoglu, Johnson, and Robinson include in their ro-
bustness checks is the incidence of malaria in 1994 (malfal94). There are two missing
values for this variable, which reduces the sample size to 62. This control is critical for
their exclusion restriction because it offsets the potential impact of early settler mortal-
ity through the contemporary disease environment. However, even after controlling for
the contemporary disease environment, there are still reasons to argue that the exclusion
restriction that Acemoglu, Johnson, and Robinson use is not perfect (see, for example,
Glaeser et al. [2004]). Thus we relax the strict exclusion restriction in (5) and allow for
the early settler mortality instrument to exhibit near exogeneity as in (6). We compare
the AR and FAR tests to examine how the potential correlation between the instrument
and structural error will affect inference.3

3. Acemoglu, Johnson, and Robinson (2011) point out that the inclusion of the variable malfal94 is
“highly problematic” because the current prevalence of malaria is endogenous. In our example, we
include malfal94 to show how our far command can easily incorporate control variables in the
first and second stages.
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In the next two command lines, we load the local data file fardata.dta and call the
far command for the specified instrumental-variable regression:4

. use fardata

. far logpgp95 malfal94 (avexp = logem4)

Fractionally resampled Anderson and Rubin test.

Full sample Full sample FAR
statistic p-value p-value reps N

AR-test 5.5421 0.0186 0.1462 10000 62

The output displays the full-sample AR statistic, the full-sample and the fractionally
resampled p-values, the number of resampling repetitions, and the number of observa-
tions. In this case, under the full-sample AR test, the hypothesis H0 : θ0 = 0 is rejected
at 5% (with a p-value of 1.86%), but the FAR test does not reject it. This is consistent
with the result in (9), which shows that the FAR test is more conservative.

To show other available options for the far command, we perform the same hypoth-
esis test, but this time, we increase the number of repetitions to 100,000 and set κ = 2.
Note that the null is not rejected at 15% under the FAR test after decreasing κ:

. far logpgp95 malfal94 (avexp = logem4), reps(100000) kappa(2)

Fractionally resampled Anderson and Rubin test.

Full sample Full sample FAR
statistic p-value p-value reps N

AR-test 5.5421 0.0186 0.1505 100000 62

To test if the θ0 parameter is equal to, say, 3, we use

. far logpgp95 malfal94 (avexp = logem4), theta(3)

Fractionally resampled Anderson and Rubin test.

Full sample Full sample FAR
statistic p-value p-value reps N

AR-test 2.5611 0.1095 0.3315 10000 62

Note that the p-value of the FAR test increases when testing H0 : θ0 = 3. We have
rejected that θ0 is equal to 0 and 3 already. To look for the θ0 values for which the
null hypothesis is not rejected at some fixed α significance level, we can perform a grid
search.

4. To obtain the results presented in this article, we set the initial value of the random-number seed
to 1111 at the beginning of the Stata session (see [R] set).
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We implement the grid search by using the ci option. To test the null under the
default grid,5 we simply use

. far logpgp malfal94 (avexp = logem4), ci
(output omitted )

We are not presenting the default grid here because of its extension.6 The user can
list the grid stored in the r(ci) matrix to inspect it. It is enough to say that all the
FAR p-values are greater than 0.05; thus the 95% confidence interval for θ0 obtained
from this search is [−∞,+∞]. A portion of the default grid can be displayed using the
following lines:

. far logpgp95 malfal94 (avexp = logem4), ci grid(-1,1,0.1)

Fractionally resampled Anderson and Rubin test.

Full sample Full sample FAR
statistic p-value p-value reps N

AR-test 5.5421 0.0186 0.1495 10000 62

. matrix list r(ci)

r(ci)[21,3]
theta FAR-p test

r1 -1 .2191 1
r2 -.9 .2166 1
r3 -.8 .2095 1
r4 -.7 .205 1
r5 -.6 .1967 1
r6 -.5 .1921 1
r7 -.4 .1791 1
r8 -.3 .1782 1
r9 -.2 .1706 1

r10 -.1 .1621 1
r11 0 .1536 1
r12 .1 .146 1
r13 .2 .1437 1
r14 .3 .1617 1
r15 .4 .2446 1
r16 .5 .3633 1
r17 .6 .6744 1
r18 .7 .9634 1
r19 .8 .7547 1
r20 .9 .6336 1
r21 1 .5617 1

5. This is equivalent to executing the following command:
far logpgp malfal94 (avexp = logem4), ci grid(-30, 30, 0.01) level(95).

6. The default grid has 6,001 consecutive hypothesis tests.
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The first column of the r(ci) matrix contains the grid of θ0 values defined by the
grid(numlist2) option. The second column corresponds to the FAR test p-values at
each of the different θ0 values. The third column contains a dummy variable that takes
the value of 1 if the corresponding θ0 is included in the confidence interval defined by the
level option (this occurs if the p-value in column 2 is greater than the critical α level).
The default confidence level corresponds to an α level of 5%; therefore, the elements in
the third column will be 1 if the corresponding FAR p-value is greater than 0.05.

In the next example, we derive a bounded confidence interval. In light of the de-
bate between Albouy (2008) and Acemoglu, Johnson, and Robinson (2001), Acemoglu,
Johnson, and Robinson (2011) recommend capping the settler mortality at 250 per
1,000 per annum. We can generate a transformed variable, estimate the AR and FAR

tests, and perform the grid search in two command lines. We increased the number
of resampling repetitions to 100,000 to improve the precision of the estimated interval,
and we set κ = 3.1 to show the full usage of the grid search:

. generate malaria250 = min(malfal94, 0.250) if malfal != .
(2 missing values generated)

. far logpgp95 malaria250 (avexp = logem4), kappa(3.1) reps(100000)

Fractionally resampled Anderson and Rubin test.

Full sample Full sample FAR
statistic p-value p-value reps N

AR-test 9.2185 0.0024 0.0180 100000 62

After we cap mortality at 250, the FAR p-value is 1.8%, and we reject H0 : θ0 = 0. The
grid search gives a 95% confidence interval for θ0 of [0.34, 4.39]. Acemoglu, Johnson,
and Robinson (2011) obtained the confidence interval [0.27, 0.95] by using the AR test
and including other covariates. Ours is more conservative, but it does not suffer the
small-sample problems discussed in section 2.

The lower limit of the confidence interval can be obtained using the following com-
mand line:

. far logpgp95 malaria250 (avexp = logem4), kappa(3.1) reps(10000) ci
> grid(.3,.5,.01)

Fractionally resampled Anderson and Rubin test.

Full sample Full sample FAR
statistic p-value p-value reps N

AR-test 9.2185 0.0024 0.0173 10000 62
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. matrix list r(ci)

r(ci)[21,3]
theta FAR-p test

r1 .3 .0402 0
r2 .31 .0397 0
r3 .32 .0426 0
r4 .33 .0464 0
r5 .34 .053 1
r6 .35 .054 1
r7 .36 .0595 1
r8 .37 .0694 1
r9 .38 .07 1

r10 .39 .0892 1
r11 .4 .0939 1
r12 .41 .0974 1
r13 .42 .1123 1
r14 .43 .1257 1
r15 .44 .1459 1
r16 .45 .1592 1
r17 .46 .1761 1
r18 .47 .2027 1
r19 .48 .2243 1
r20 .49 .2423 1
r21 .5 .27 1

By inspecting the grid, we can see that the lower limit of the interval is 0.34 by using
the indicators in the third column.

To make the dummy in the third column take the value of 1 on the basis of the FAR

p-values rounded to two decimal places, the user must set the confidence level to 95.5.
In this example, the rounded lower limit is 0.33.

Similarly, the upper limit can be obtained by

. far logpgp malaria250 (avexp=logem4), reps(100000) ci kappa(3.1)
> grid(4.3,4.5,0.01)

(output omitted )

This last result is for illustrative purposes; it needs to be carefully considered. With
a sample of 62 observations, selecting κ = 3.1 corresponds to a resampled fraction
f = 0.11, which implies a block size of b = 7. This fraction is too small. As the
block size diminishes, the resampling technique turns into a subsampling procedure.
Berkowitz, Caner, and Fang (2012) (section 4) show that as f → 0, the AR test is
always oversized. We choose κ = 3.1 only because it generates a bounded interval,
although in our simulations, we find that the best combinations of size and power are
obtained by selecting subsample sizes between 20% and 25% of the total observations.
κ values that generate f < 0.2 generate unreliable and unstable results, but this topic
should be further examined. In our example, the best choice is κ < 2. The statistical
implications of the estimates obtained by this smaller κ value and the best choice of the
block size are beyond the scope of this article.
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To empirically obtain valid confidence intervals, we suggest exploring the default
grid under κ values that correspond to f above 0.2 to check the overall sequence of the
test results and then fine-tune the grid intervals. By using this heuristic approach, we
needed three trials to find the presented bounded interval for this dataset. In general, the
confidence set can be bounded, disjointed, or even infinite if the model is misspecified,
which implies that the grid search might become excessively time consuming. We believe
that the option of user-defined grids gives the researcher enough flexibility for finding a
solution that is not too time consuming and not too computationally intensive.

5 Simulations

To choose the default value of the constant κ in the far command, we simulate the
system of equations in (3) and (4) under different scenarios in which the exclusion
condition is violated and explore the FAR test size and power properties. We choose
scenarios similar to those in Berkowitz, Caner, and Fang (2012) but with smaller cor-
relations between the structural error and the instruments. For empirical purposes, we
assume that the researcher chooses imperfect instruments that come close to satisfying
the exclusion restriction, so the covariance between the instruments and the residuals
in the structural equation is very small but nonzero. The data for zi, ui, and vi are
generated from a joint normal distribution N(0,Σ), where

Σ =




1 σzu 0
σzu 1 0.9
0 0.9 1


 (11)

and σzu = cov(ZWiuWi).

In (11), we set up σ2
z = σ2

u = σ2
v = 1, σzv = 0, and σuv = 0.9. Note that the

upper-left 2× 2 submatrix corresponds to our simulated version of the Ω matrix in (7).
We also set up σzu in three different ways:

In the first setup, we have σzu local to 0 as in (6),

σzu =
h√
n

and we choose h equal to 0.5 and 1 for the simulations. The larger h becomes, the worse
is the selected instrument.

The second setup corresponds to σzu constant,

σzu = D

and we choose D equal to 0.1 and 0.25 for the simulations.
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In the third setup, we have σzu consistent with the bounds of the compact set
containing C,

σzu =
an1/3

n1/2

and a is equal to 0.25 and 0.5 in the simulations.

To explore the size properties of the FAR test, we simulate one endogenous variable
(m = 1), one instrument (k = 1), and two controls (l = 2), one of them being a constant:
B = (1, 2)′. To model strong identification, we set Π = 2 in (4). We get results (not
reported) similar to the weak identification case. The sample size n is equal to 100 and
200, and κ is equal to 1.5, 2, 2.5, . . . , 6, so κn is equal to 1.5/

√
n, 2/

√
n, 2.5/

√
n, . . . ,

6/
√
n in (10). We give the data a heteroskedastic structure by using the following error

form:
u∗Wi = abs(ZWi)uWi

Each scenario was simulated 1,000 times with 1,000 resampling iterations. The
results for the setups 1, 2, and 3 for the size of the test are presented in table 1. We
found the same patterns as those found by Berkowitz, Caner, and Fang (2012). Given
that our correlations are smaller, the test is undersized when κn is equal to 1.5/

√
n and

2/
√
n, but the undersize is corrected when κn is equal to 2.5/

√
n and 3/

√
n, especially

in setups 2 and 3 when the sample size is 100. Note that when n = 200, the FAR test is
undersized in all the setups because of its conservative nature.
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Table 1. Size of the FAR test at θ0 = 0

Size at 10%

n = 100 n = 200

κ = 1.5 2.0 2.5 3.0 3.5 4.0 4.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Setup 1: σzu = h/
√

n
h = 0.5 0.0 0.1 0.3 2.0 3.3 8.0 16.2 0.0 0.7 1.7 2.3 3.1 6.1 7.7
h = 1.0 0.0 0.2 1.3 2.0 6.7 12.3 21.4 0.3 0.7 2.3 4.8 6.3 9.4 12.3

Setup 2: σzu = D
D = 0.1 0.0 0.0 0.6 2.9 6.4 11.5 20.9 0.4 1.3 4.2 6.7 8.4 14.9 19.8
D = 0.25 0.1 1.6 5.6 12.4 24.4 36.4 51.8 7.0 14.9 29.2 36.4 50.9 59.4 64.9

Setup 3: σzu = an1/3/n1/2

a = 0.25 0.0 0.0 0.8 3.6 7.4 14.0 23.4 0.4 1.4 4.5 7.3 8.5 15.5 20.8
a = 0.5 0.1 1.6 5.2 10.4 21.9 32.1 49.2 3.1 8.7 18.7 25.0 36.0 45.1 52.2

Size at 5%

Setup 1: σzu = h/
√

n
h = 0.5 0.0 0.0 0.0 0.5 0.5 1.8 4.6 0.0 0.0 0.2 0.7 0.2 1.8 1.7
h = 1.0 0.0 0.0 0.0 0.4 1.2 2.8 5.8 0.0 0.0 0.1 0.6 0.8 2.2 4.4

Setup 2: σzu = D
D = 0.1 0.0 0.0 0.0 0.6 1.0 2.7 6.7 0.0 0.2 0.6 1.6 2.0 4.2 6.0
D = 0.25 0.0 0.1 0.4 2.5 6.2 12.8 27.5 0.1 3.0 7.2 11.4 20.0 30.1 37.1

Setup 3: σzu = an1/3/n1/2

a = 0.25 0.0 0.0 0.0 0.6 1.3 3.6 7.9 0.0 0.2 0.7 1.6 2.0 4.4 6.2
a = 0.5 0.0 0.1 0.3 1.9 5.5 10.5 23.5 0.0 1.2 4.0 7.9 12.1 18.2 25.0

The correction factor in (10) is calculated for the different values of κ. Π = 2 in (4). Each result
corresponds to 1,000 heteroskedastic simulations and 1,000 resampling iterations.

To explore the power properties of the FAR test, we simulate scenarios with θ0 equal
to −2, −1.5, −1, −0.5, 0.5, 1, 1.5, and 2 and tested for θ0 = 0. The results are presented
in the tables 2, 3, and 4. We focus on power and not on size-adjusted power because the
FAR test uses only one critical value in its application. The simulation exercise shows
the test has low power when θ0 is equal to −0.5 and 0.5 and κn is equal to 1.5/

√
n

and 2/
√
n. The power improves when κn is equal to 2.5/

√
n and 3/

√
n. Considering

these results, we decided to set κ = 3 as the default value in the far command. This
κ value is the one that gave us the best size and power combinations and corresponds
to a resampling fraction f = 0.2 when n = 100. The researcher can easily adjust κ to
obtain resampling fractions above the 20% of the total sample. Lower f values generate
unreliable and unstable results, as discussed in section 4. Further discussion and other
setups for the covariance matrix can be found in Berkowitz, Caner, and Fang (2012).



542 Fractionally resampled AR test

Table 2. Power of the FAR test at θ0 = 0, covariance setup 1

θ

−2 −1.5 −1 −0.5 0.5 1 1.5 2

κ h n = 100

1.5 0.5 96.8 95.4 84.7 14.4 16.8 72.0 90.1 92.2
1.0 97.3 93.8 84.5 16.4 9.0 72.8 90.7 93.5

2.0 0.5 99.7 99.1 98.0 51.8 54.5 95.1 98.7 99.6
1.0 99.4 99.3 98.3 59.1 46.1 94.3 98.9 99.5

2.5 0.5 100.0 99.7 99.2 78.4 80.3 98.9 99.9 99.8
1.0 99.9 100.0 99.4 82.1 74.2 98.7 99.7 99.9

3.0 0.5 100.0 99.9 99.8 88.5 89.8 99.5 99.7 100.0
1.0 100.0 100.0 99.5 92.6 85.7 99.5 99.9 100.0

3.5 0.5 100.0 100.0 99.9 92.4 94.2 99.6 99.9 100.0
1.0 100.0 100.0 99.8 93.6 92.1 99.8 100.0 100.0

4.0 0.5 100.0 100.0 100.0 96.2 97.1 99.8 100.0 100.0
1.0 100.0 99.9 99.9 97.2 96.6 99.8 99.9 100.0

4.5 0.5 100.0 100.0 100.0 98.0 98.7 100.0 99.8 99.9
1.0 100.0 100.0 99.9 98.8 98.0 99.8 99.9 100.0

n = 200

1.5 0.5 99.9 98.0 91.5 8.9 5.6 77.9 94.6 98.3
1.0 99.0 98.7 91.9 5.1 8.9 80.7 95.5 98.3

2.0 0.5 100.0 99.9 99.8 59.6 52.7 99.1 99.7 99.9
1.0 100.0 100.0 99.7 50.0 62.9 99.2 99.9 100.0

2.5 0.5 100.0 100.0 99.9 87.0 86.3 99.7 100.0 100.0
1.0 100.0 100.0 99.9 83.7 90.0 99.8 100.0 100.0

3.0 0.5 100.0 100.0 100.0 96.7 97.2 100.0 100.0 100.0
1.0 100.0 100.0 100.0 95.2 97.8 100.0 100.0 100.0

3.5 0.5 100.0 100.0 100.0 98.9 99.2 100.0 100.0 100.0
1.0 100.0 100.0 100.0 98.2 99.2 100.0 100.0 100.0

4.0 0.5 100.0 100.0 100.0 99.0 99.7 100.0 100.0 100.0
1.0 100.0 100.0 100.0 98.8 99.3 100.0 100.0 100.0

4.5 0.5 100.0 100.0 100.0 100.0 99.7 100.0 100.0 100.0
1.0 100.0 100.0 99.9 99.6 99.9 100.0 100.0 100.0

5.0 0.5 100.0 100.0 100.0 99.9 99.7 100.0 100.0 100.0
1.0 100.0 100.0 100.0 99.8 99.7 100.0 100.0 100.0

5.5 0.5 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0
1.0 100.0 100.0 100.0 99.6 100.0 100.0 100.0 100.0

6.0 0.5 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0
1.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0

Setup 1 corresponds to cov(ZWiuWi) = h/
√

n. The corresponding correction
factor for the three setups is calculated as in (10) for the different values of κ.
Each result corresponds to 1,000 heteroskedastic simulations and 1,000 resampling
iterations.



A. Riquelme, D. Berkowitz, and M. Caner 543

Table 3. Power of the FAR test at θ0 = 0, covariance setup 2

θ

−2 −1.5 −1 −0.5 0.5 1 1.5 2

κ D n = 100

1.5 0.1 97.2 95.5 84.0 10.9 20.3 73.1 89.9 92.2
0.25 98.5 96.2 82.3 2.3 28.7 77.4 91.9 92.6

2.0 0.1 99.8 99.5 97.8 43.7 62.0 95.2 98.7 99.5
0.25 99.8 99.4 97.1 21.7 72.6 95.9 98.8 99.1

2.5 0.1 100.0 99.7 99.1 70.8 84.7 99.0 99.9 99.9
0.25 99.9 100.0 99.3 46.3 93.7 99.3 99.8 99.8

3.0 0.1 100.0 99.9 99.8 83.9 91.6 99.7 99.8 99.9
0.25 100.0 99.9 99.6 63.9 95.7 99.2 99.9 100.0

3.5 0.1 100.0 100.0 99.9 89.2 95.8 99.7 99.9 100.0
0.25 100.0 100.0 99.8 72.7 97.4 99.8 99.9 100.0

4.0 0.1 100.0 100.0 100.0 94.6 98.0 99.8 100.0 100.0
0.25 100.0 100.0 99.9 82.6 99.4 99.9 99.9 99.9

4.5 0.1 100.0 100.0 100.0 96.7 99.1 100.0 99.9 99.9
0.25 100.0 100.0 100.0 88.1 99.6 99.9 100.0 100.0

n = 200

1.5 0.1 99.9 98.1 91.5 5.2 10.7 79.5 94.7 98.5
0.25 99.4 98.9 90.2 0.4 24.8 84.8 95.4 98.4

2.0 0.1 100.0 99.9 99.8 45.7 65.9 99.2 99.6 99.9
0.25 100.0 100.0 99.6 13.9 85.1 99.6 99.9 100.0

2.5 0.1 100.0 100.0 99.9 77.4 91.8 99.8 100.0 100.0
0.25 100.0 100.0 99.9 45.0 96.3 99.8 100.0 100.0

3.0 0.1 100.0 100.0 100.0 92.4 98.6 100.0 100.0 100.0
0.25 100.0 100.0 100.0 65.8 99.5 100.0 100.0 100.0

3.5 0.1 100.0 100.0 100.0 97.0 99.5 100.0 100.0 100.0
0.25 100.0 100.0 100.0 82.2 99.9 100.0 100.0 100.0

4.0 0.1 100.0 100.0 100.0 98.0 100.0 100.0 100.0 100.0
0.25 100.0 100.0 100.0 88.6 99.9 100.0 100.0 100.0

4.5 0.1 100.0 100.0 100.0 99.6 99.8 100.0 100.0 100.0
0.25 100.0 100.0 99.9 94.1 99.9 100.0 100.0 100.0

5.0 0.1 100.0 100.0 100.0 99.8 99.9 100.0 100.0 100.0
0.25 100.0 100.0 100.0 95.8 99.9 100.0 100.0 100.0

5.5 0.1 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0
0.25 100.0 100.0 100.0 96.3 100.0 100.0 100.0 100.0

6.0 0.1 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0
0.25 100.0 100.0 100.0 97.8 99.9 100.0 100.0 100.0

Setup 2 corresponds to cov(ZWiuWi) = D. The corresponding correction factor
for the three setups is calculated as in (10) for the different values of κ. Each result
corresponds to 1,000 heteroskedastic simulations and 1,000 resampling iterations.
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Table 4. Power of the FAR test at θ0 = 0, covariance setup 3

θ

−2 −1.5 −1 −0.5 0.5 1 1.5 2

κ a n = 100

1.5 .25 97.3 95.3 83.9 9.8 21.3 73.3 89.6 92.0
.5 98.4 96.1 82.3 2.7 27.1 77.5 91.8 92.8

2.0 .25 99.9 99.5 98.0 41.8 64.1 95.4 98.7 99.5
.5 99.7 99.4 97.2 24.2 71.5 95.9 98.7 99.2

2.5 .25 100.0 99.7 99.2 67.8 85.6 99.0 99.9 99.9
.5 99.9 100.0 99.3 49.4 92.8 99.3 99.8 99.8

3.0 .25 100.0 99.9 99.7 81.1 92.3 99.7 99.8 99.9
.5 100.0 99.9 99.6 66.3 95.6 99.2 99.9 100.0

3.5 .25 100.0 100.0 99.9 87.8 96.0 99.7 99.9 100.0
.5 100.0 100.0 99.8 75.5 97.1 99.8 99.9 100.0

4.0 .25 100.0 100.0 100.0 94.0 98.4 99.8 100.0 100.0
.5 100.0 100.0 99.9 84.9 99.2 99.9 99.9 100.0

4.5 .25 100.0 100.0 100.0 96.0 99.3 100.0 99.9 99.9
.5 100.0 100.0 100.0 89.3 99.6 99.9 100.0 100.0

n = 200

1.5 .25 99.9 98.2 91.4 5.2 11.1 79.5 94.7 98.5
.5 99.3 98.9 91.0 0.6 20.5 83.5 95.6 98.5

2.0 .25 100.0 99.9 99.8 44.9 66.2 99.2 99.6 99.9
.5 100.0 100.0 99.6 20.0 81.5 99.3 99.9 100.0

2.5 .25 100.0 100.0 99.9 76.9 91.8 99.8 100.0 100.0
.5 100.0 100.0 99.9 55.3 95.8 99.8 100.0 100.0

3.0 .25 100.0 100.0 100.0 92.3 98.6 100.0 100.0 100.0
.5 100.0 100.0 100.0 76.3 99.4 100.0 100.0 100.0

3.5 .25 100.0 100.0 100.0 96.8 99.5 100.0 100.0 100.0
.5 100.0 100.0 100.0 88.6 99.9 100.0 100.0 100.0

4.0 .25 100.0 100.0 100.0 98.0 100.0 100.0 100.0 100.0
.5 100.0 100.0 100.0 92.5 99.8 100.0 100.0 100.0

4.5 .25 100.0 100.0 100.0 99.6 99.8 100.0 100.0 100.0
.5 100.0 100.0 99.9 97.3 99.8 100.0 100.0 100.0

5.0 .25 100.0 100.0 100.0 99.7 99.9 100.0 100.0 100.0
.5 100.0 100.0 100.0 98.1 99.9 100.0 100.0 100.0

5.5 .25 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0
.5 100.0 100.0 100.0 98.2 100.0 100.0 100.0 100.0

6.0 .25 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0
.5 100.0 100.0 100.0 99.0 99.9 100.0 100.0 100.0

Setup 3 corresponds to cov(ZWiuWi) = an1/3/n1/2. The corresponding correc-
tion factor for the three setups is calculated as in (10) for the different values
of κ. Each result corresponds to 1,000 heteroskedastic simulations and 1,000
resampling iterations.
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6 Conclusion

We have shown how the FAR test can be used to draw valid inferences when the in-
struments do not perfectly satisfy the exclusion condition. Our simulations for n = 100
exhibit good size and power combinations when we select approximately 20%–25% of
the total sample for the resampling block sizes. This corresponds to κn = 3/

√
n in (6).

κ values that generate smaller block sizes are not recommended. By taking advantage
of the speed of the Mata language, the far test can be easily performed in Stata, al-
lowing researchers to overcome the small-sample problems of the AR test in a fast and
user-friendly manner.
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