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Abstract. In this article, we explain how to calculate adjusted risk ratios and
risk differences when reporting results from logit, probit, and related nonlinear
models. Building on Stata’s margins command, we create a new postestimation
command, adjrr, that calculates adjusted risk ratios and adjusted risk differences
after running a logit or probit model with a binary, a multinomial, or an ordered
outcome. adjrr reports the point estimates, delta-method standard errors, and
95% confidence intervals and can compute these for specific values of the variable
of interest. It automatically adjusts for complex survey design as in the fit model.
Data from the Medical Expenditure Panel Survey and the National Health and
Nutrition Examination Survey are used to illustrate multiple applications of the
command.

Keywords: st0306, adjrr, risk ratio, adjusted risk ratio, risk difference, adjusted
risk difference, odds ratio, logistic, logit, probit, multinomial, ordered

1 Introduction

Researchers often fit logit models when the dependent variable is dichotomous. Because
the coefficients from logit models are, on their own, hard to interpret, researchers fre-
quently report their results using statistics generated from those coefficients, often odds
ratios. It is well known, however, that most people misinterpret odds ratios as risk ratios
(Klaidman 1990; Teuber 1990; Altman, Deeks, and Sackett 1998; Bier 2001). When the

c© 2013 StataCorp LP st0306
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risk of the outcome is high, these two measures diverge with the odds ratio being further
from 1.0 than the risk ratio. For these and other reasons, many people have called for
researchers to report risk ratios instead of odds ratios (for example, Greenland [1987];
Spiegelman and Hertzmark [2005]; Cummings [2009a]).

The search for the best way to estimate risk ratios has shown that these statis-
tics can be estimated in a number of ways from different kinds of models (for ex-
ample, Flanders and Rhodes [1987]; Greenland and Holland [1991]; Greenland [2004]).
Kleinman and Norton (2009) propose a simple and intuitive formula for the risk ratio,
adjusted for covariates. For models with categorical covariates, the adjusted risk ratio
(ARR) reproduces Mantel–Haenszel results. Kleinman and Norton (2009) also demon-
strate that their method is correct given the distribution of covariates, including complex
specifications with continuous variables, and is robust in many cases.

This article makes several contributions. First, we show how to compute an ARR

and an adjusted risk difference (ARD) in Stata not only for logit models but also for
other related models. These other models include the multinomial logit, ordered logit,
probit, multinomial probit, and ordered probit models. This shows that this approach
applies generally to models with binary or categorical dependent variables. In addition,
it is easy and fast to calculate these statistics in Stata because our command builds on
the margins command. However, our command makes it much easier than margins,
especially for multinomial and ordered models. Second, in addition to the ARR, we
compute the ARD. This statistic can be useful because it shows the predicted difference
in percentage point (or absolute) terms, which is sometimes of interest. Third, because it
is always important to report the level of uncertainty along with any estimated statistic,
our new command estimates delta-method standard errors. Again, because we build
on the margins command, estimating delta-method standard errors is fast and easy.
Fourth, the command will compute the two statistics for any two values of the variable
of interest, not only 0 and 1 (the default values). Although the variable of interest is
often binary, one could be interested in comparing probabilities for two different values
of, say, age. Fifth, we show how to compute all of these when the researcher wants
to control for complex survey design or robust standard errors. Large, representative
datasets often have sampling weights, clustered observations, and stratification. These
can be taken into account when computing ARRs and ARDs.

2 Methods

2.1 Estimating ARRs and ARDs

The ARR and ARD are two ways to express the relationship between two predicted
probabilities based on the fit model and a set of observations. One is the predicted
probability when the variable of interest equals 1; the other is the predicted probabil-
ity when the variable of interest equals 0 (more generally, pick any two values of the
variable). These predicted probabilities are then averaged over the entire dataset (or
perhaps an interesting subset of the data). The ARR is the ratio of the mean predicted
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probabilities, and the ARD is the difference of the mean predicted probabilities. The
ARD is sometimes called the average treatment effect because it compares the effect of
a change in the variable of interest (the treatment) for all observations. All of these
probabilities, and functions of probabilities, are easily calculated from logit or probit
models through simple algebraic manipulations.

For example, consider the probability of mortality within a year of treatment for a
population of patients, some of whom were randomly given a new drug. After fitting
the model, compute two predicted probabilities of mortality for each observation, one
assuming the patient did get the drug and the other assuming the patient did not. The
key is to hold all other covariates at their original values so that the only difference in
predicted probability is attributable to the new drug.

We begin with the simplest case, where the variable of interest is binary, the popula-
tion of interest is the entire sample, and the model (logit or probit) is for a dichotomous
outcome. Let P1 be the mean of the predicted probabilities that the dependent variable
y equals 1, computed over the whole sample, with the variable of interest x set equal to
1 and all other covariates X (including the constant term) equal to their original values.
Therefore, the probability is a function of the linear index βxx+Xβ. Let P0 be defined
in a corresponding way, but with x set to 0.

P1 =
1

N

N∑

i=1

Pr(yi = 1|X,x = 1) (1)

P0 =
1

N

N∑

i=1

Pr(yi = 1|X,x = 0) (2)

Then the ARR is the ratio P1/P0 and the ARD is the difference P1 − P0.

There are three ways to generalize the above approach. First, allow the variable of
interest x to take on any two policy relevant values, not just 0 and 1. For a continuous
variable, 0 and 1 may not be appropriate values of comparison. It might be of policy
interest, for example, to compare predicted outcomes for persons aged 85 and persons
aged 65, holding all else constant. Our new Stata command allows the user to specify
the range of values for the variable of interest.

Second, compute the statistic for a subset of the analysis data. Then the average
probabilities would not be computed over the entire sample of size N but for a subset
of interest. Our new Stata command allows the user to compute the ARR and ARD for
a subset of the data, for example, just for women or just for those with comorbidities.

Third, (1) and (2) can be modified to allow weights, as is often the case for complex
survey design. Instead of a simple average, one would compute a weighted average. Our
new Stata command automatically incorporates weights from a complex survey design
into the formulas for the ARR and ARD. Furthermore, the estimated standard errors
also automatically take into account stratification and clustering.
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We can incorporate all three of these generalizations into (1) and (2) by conditioning
on general values of x, averaging over a subset of the data, and allowing weights.

PA =
1

n

n∑

i=1

Pr(yi = 1|X,x = A)ωi (3)

PB =
1

n

n∑

i=1

Pr(yi = 1|X,x = B)ωi (4)

In (3) and (4), A and B represent any two values at which to estimate the predicted
probabilities, n represents the sample size of the subsample of interest, and ωi represents
the weights associated with the complex survey design.

Finally, we can adjust the definition of probability to be appropriate for models with
more than two outcomes such that the dependent variable y equals 1 (as opposed to 0).
While the above formulas work well for dichotomous outcomes (logit and probit), they
need to be modified for multinomial and ordered models. Our new Stata command
allows the user to compute the ARR and ARD for binary, multinomial, and ordered
outcomes. The following subsections show the specific formulas for these models that
extend the basic framework.

2.2 Logit model

The computation of the probabilities in (1) and (2) depends on the specific model. In
the logit model, the estimated coefficients are transformed to probabilities through the
logistic function. For the logit model, the formula for the probability that y equals 1 is
the logistic cumulative distribution function:

Pr(y = 1|X,x) =
1

1 + e−(βxx+Xβ)

2.3 Probit model

The probit model is a common alternative to the logit for binary outcomes. For the
probit model, the formula for the probability that y equals 1 is the normal cumulative
distribution function:

Pr(y = 1|X,x) = Φ(βxx+Xβ)

There is no substantive difference between simple logit and probit models; the choice
between them is largely a matter of personal preference. The magnitude of the coef-
ficients is quite different. The coefficients in the probit are predictably smaller by a
factor of about 0.6. However, predicted probabilities—and therefore statistics like the
ARR and ARD—are always nearly identical.
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2.4 Multinomial models

Multinomial models have three or more outcomes that are discrete and not ordered (for
example, the choice of mode of transportation or choice of major in college). For the
multinomial logit, the formula for the probabilities of each possible outcome j, for j = 1
to J − 1 (the Jth category has its coefficient normalized to 0), is as follows:

Pr(y = j, j 6= J |X,x) =
e(β

j
xx+Xβj)

∑
e(β

j
xx+Xβj) + 1

For the Jth category, the predicted probability is

Pr(y = J |X,x) =
1∑

e(β
J
x x+XβJ ) + 1

The formulas are similar for the multinomial probit model, but the cumulative nor-
mal replaces the cumulative logistic function.

2.5 Ordered models

Ordered models have three or more outcomes that are ordered. Examples include self-
reported health status (excellent, good, fair, or poor) and body mass index categories
(underweight, normal weight, overweight, or obese). For the ordered probit model, the
formula for the probabilities of each possible middle outcome (j ∈ 2, . . . , J − 1) is as
follows:

Pr(y = j, j 6= 1 or J |X,x) = Φ(βj
0 + βxx+Xβ) − Φ(βj

0 − 1 + βxx+Xβ)

For the first category, it is

Pr(y = 1|X,x) = Φ(β1
0 + βxx+Xβ)

and for the last (highest, Jth) category, it is

Pr(y = J |X,x) = 1 − Φ(βJ
0 − 1 + βxx+Xβ)

Again, for the ordered logit model, the cumulative logistic function would replace
the cumulative normal function in the above equations.

2.6 Survey commands

When a model is fit with svy commands, information to adjust for weights, clustering,
or stratification is automatically passed along to our new Stata command and is used
in margins to compute the ARR and ARD, adjusted for complex survey design. Stata
computes linearized standard errors, the default for survey data, which replace the
variance–covariance matrix of the estimated coefficients (which is conditional on the
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covariates) with an estimator that is unconditional on the covariates. Our command
designates the variance estimation type as “unconditional” for models with survey data,
generating linearized standard errors. For all other models, margins will calculate delta-
method standard errors using the variance estimation type designated in the previously
run model (bootstrap, jackknife, clustered standard errors, etc.).

3 The adjrr command

3.1 Mechanics of the adjrr command

The adjrr command uses the margins command to calculate ARRs and ARDs after
running a logit or probit model with a binary, a multinomial, or an ordered outcome.
The margins command is versatile and estimates marginal effects for complex, nonlinear
models, including those with interactions and survey data.

Within each type of nonlinear model, the adjrr command uses the margins com-
mand with the at() option. The at() option directs Stata to calculate the two indi-
vidual predicted probabilities that construct the ARR and ARD at specified values. For
multinomial and ordered outcome variables, the particular outcome value is selected,
and the code loops over each value the outcome can take. For example, in an ordered
model with five possible outcomes, the adjrr command computes the ARR and ARD

for each of the five outcomes. By using nlcom after margins, adjrr manipulates the
predicted probabilities to calculate the ARR and ARD.

Because the margins command takes into account the variance structure of the
previously run model and estimates delta-method standard errors, the adjrr command
also incorporates these various variance structures. When the original model is fit
controlling for complex survey design, the default is to compute linearized standard
errors, again taking into account the complex survey design.

3.2 Syntax

The syntax for calculating the ARR and ARD for a particular covariate after running a
specific model is

adjrr varname
[
if
] [

, x0(value0) x1(value1) at(atspec)
]

where varname represents the covariate of interest. The default of this command is
to calculate the ARR and ARD of a binary variable, setting the baseline value (x0())
equal to 0 and the resulting value (x1()) equal to 1. Therefore, when users evaluate a
continuous covariate such as age, simply typing

. adjrr age
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will calculate the ARR and ARD, comparing observations at age 1 with observations at
age 0, all else equal. In addition, users can specify other values at which to evaluate
a particular covariate by inputting specific values for x0() and x1(). For example,
suppose the desired comparison is between observations at age 65 and age 85. The user
will then input

. adjrr age, x0(65) x1(85)

to estimate the ARR and ARD of interest. Further options for this command include
designating a particular subsample over which to calculate the ARR and ARD by using
an if statement. For example, if the user wants to investigate the subsample of women
and compare observations at age 20 and age 30, the user will input

. adjrr age if female == 1, x0(20) x1(30)

The user may also specify values for other covariates in the model by using the
at() option. If the relevant comparison is between observations at age 20 and age 30,
treating all observations in the full sample as if they were women, including those who
are actually men, the user will input

. adjrr age, x0(20) x1(30) at(female == 1)

3.3 Output

When the user runs adjrr for a particular covariate, estimates of the ARR and ARD

are displayed on separate lines along with their delta-method standard errors and 95%
confidence intervals. In models where the outcome is multinomial or ordered, ARRs,
ARDs, standard errors, and confidence intervals are estimated for each outcome. adjrr
also reports the predicted probabilities that compose the elements of the ARR and ARD

formulas, their standard errors, and 95% confidence intervals. These elements can be
thought of as the baseline risk and the exposed risk. Additionally, two p-values are
reported. One p-value is from a linear test of equivalence between the baseline and
exposed risks. The second p-value is from a nonlinear test that the natural log of the
ARR is equal to 0.

adjrr stores results in r(). The 95% confidence interval for the ARR is estimated first
on the log scale before the endpoints are exponentiated. This transform-the-endpoints
method (previously discussed in Cummings [2011]; StataCorp [2011, 1330–1332]) results
in an asymmetric confidence interval for the ARR that is asymptotically equivalent to
a traditionally constructed confidence interval. This approach to estimating confidence
intervals performs better with small sample sizes.

3.4 Alternative approaches to calculating ARRs in Stata

There are alternative ways to calculate ARRs in Stata. For alternatives, see Cummings
(2009b, 2011) and Localio, Margolis, and Berlin (2007). However, we feel that our new
Stata command, adjrr, is the easiest to use and has the most features.
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4 Calculating ARRs and ARDs after running nonlinear

models

4.1 Medical Expenditure Panel Survey data

We illustrate the application of adjrr with data from the 2004 Medical Expenditure
Panel Survey (MEPS). The data in these examples were drawn from the Household
Component, one of four components. The Household Component contains data on a
sample of families and individuals drawn from a nationally representative subsample of
households that participated in the 2003 National Health Interview Survey. We used a
subset of the MEPS 2004 annual file that included all adults aged 18 and older who had
no missing data on the main variables of interest. The resulting dataset has 6 variables
and 19,386 observations.

We provide examples for each family of nonlinear models (binary, multinomial, and
ordered outcomes) for which our command can calculate ARRs and ARDs. Within each
example, the dependent variable of interest is health insurance status. Regression risk
analysis will be conducted treating this variable as a binary, a multinomial, and an
ordered outcome. In this MEPS dataset, health insurance is divided into three mutu-
ally exclusive categories. About 29% are covered by public insurance, 53% by private
insurance, and 18% are uninsured.

. use meps2004_adjrr.dta
(MEPS04 date with edits)

. summarize

Variable Obs Mean Std. Dev. Min Max

female 19386 .5495719 .4975494 0 1
age 19386 45.36088 17.387 18 85

race_bl 19386 .1382441 .3451649 0 1
race_oth 19386 .0653564 .2471601 0 1
insured 19386 .8223976 .3821875 0 1

ins_group 19386 1.646652 .764021 1 3

The explanatory variables in each model were age, sex, and race. Race is divided
simply into black and other nonwhite, with white as the omitted group.

. tab ins_group

Insurance
group Freq. Percent Cum.

1 Private 10,293 53.10 53.10
2 Public 5,650 29.14 82.24

3 Uninsured 3,443 17.76 100.00

Total 19,386 100.00

The models used in this article are for illustrative purposes only, and readers should
not infer causality or focus on the substantive findings.
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4.2 Logit model

Using a binary measure of health insurance, we estimated the probability of having any
insurance versus having none based on a few demographics.

. logit insured female age race_bl race_oth, nolog

Logistic regression Number of obs = 19386
LR chi2(4) = 1132.62
Prob > chi2 = 0.0000

Log likelihood = -8501.2678 Pseudo R2 = 0.0625

insured Coef. Std. Err. z P>|z| [95% Conf. Interval]

female .3009373 .0387592 7.76 0.000 .2249706 .3769039
age .0391182 .0013055 29.96 0.000 .0365595 .0416769

race_bl .0002987 .0556061 0.01 0.996 -.1086872 .1092846
race_oth .3806466 .0848323 4.49 0.000 .2143784 .5469148

_cons -.2819593 .0583701 -4.83 0.000 -.3963626 -.1675559

After running a logit model, the adjrr command calculates and displays estimates of
the ARR and ARD with delta-method standard errors.

. adjrr female

R1 = 0.8415 (0.0035) 95% CI (0.8347, 0.8483)
R0 = 0.7997 (0.0041) 95% CI (0.7916, 0.8078)
ARR = 1.0522 (0.0070) 95% CI (1.0387, 1.0660)
ARD = 0.0418 (0.0054) 95% CI (0.0312, 0.0524)
p-value (R0 = R1): 0.0000
p-value (ln(R1/R0) = 0): 0.0000

. adjrr age, x0(20) x1(30)

R1 = 0.7454 (0.0042) 95% CI (0.7371, 0.7537)
R0 = 0.6650 (0.0069) 95% CI (0.6515, 0.6784)
ARR = 1.1210 (0.0061) 95% CI (1.1090, 1.1330)
ARD = 0.0804 (0.0033) 95% CI (0.0739, 0.0869)
p-value (R0 = R1): 0.0000
p-value (ln(R1/R0) = 0): 0.0000

The ARR estimate on the variable female can be interpreted as women being 1.0522
times more likely (5.22% more likely) to have insurance than men, on average, holding
all else constant. The ARD represents an absolute risk measure and can be interpreted
as women having insurance 4.18 percentage points more often than men, on average.

Because insurance was common (82% in the study sample), the adjusted odds ratio
of 1.35 [exp(0.3001)] was much further from 1 than the ARR of 1.05.

The ARR estimate on the continuous variable age can be interpreted similarly. On
average, 30-year-olds are 12.1% more likely to have insurance than 20-year-olds. The
ARD shows that 30-year-olds, on average, have health insurance 8.04 percentage points
more often than 20-year-olds, holding all else constant.
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4.3 Probit model

A comparable probit model can be fit predicting insurance status as a function of the
same demographic variables. Although the probit coefficients are typically smaller, the
substantive results are essentially the same as those of the logit model.

. probit insured female age race_bl race_oth, nolog

Probit regression Number of obs = 19386
LR chi2(4) = 1161.97
Prob > chi2 = 0.0000

Log likelihood = -8486.5894 Pseudo R2 = 0.0641

insured Coef. Std. Err. z P>|z| [95% Conf. Interval]

female .1617922 .0218733 7.40 0.000 .1189214 .2046629
age .0223198 .0007202 30.99 0.000 .0209082 .0237313

race_bl -.0052502 .0313762 -0.17 0.867 -.0667466 .0562461
race_oth .2019072 .0462274 4.37 0.000 .1113032 .2925112

_cons -.1157799 .0335045 -3.46 0.001 -.1814475 -.0501123

Calculating the ARR and ARD separately when sex and age are the variables of
interest, the command generates the following results. The estimates are similar to
those reported after running the logit model.

. adjrr female

R1 = 0.8406 (0.0035) 95% CI (0.8339, 0.8474)
R0 = 0.8011 (0.0041) 95% CI (0.7930, 0.8091)
ARR = 1.0494 (0.0069) 95% CI (1.0360, 1.0631)
ARD = 0.0396 (0.0054) 95% CI (0.0290, 0.0501)
p-value (R0 = R1): 0.0000
p-value (ln(R1/R0) = 0): 0.0000

. adjrr age, x0(20) x1(30)

R1 = 0.7429 (0.0043) 95% CI (0.7345, 0.7512)
R0 = 0.6664 (0.0066) 95% CI (0.6534, 0.6794)
ARR = 1.1147 (0.0055) 95% CI (1.1041, 1.1255)
ARD = 0.0765 (0.0030) 95% CI (0.0707, 0.0822)
p-value (R0 = R1): 0.0000
p-value (ln(R1/R0) = 0): 0.0000

Alternatively, we can calculate the ARR and ARD for a subgroup. Restricting the
sample to individuals who report their race as black, we can recalculate the ARR and
ARD for the variable female as follows:

. adjrr female if race_bl == 1

R1 = 0.8296 (0.0072) 95% CI (0.8154, 0.8438)
R0 = 0.7882 (0.0086) 95% CI (0.7714, 0.8051)
ARR = 1.0525 (0.0076) 95% CI (1.0377, 1.0676)
ARD = 0.0414 (0.0057) 95% CI (0.0302, 0.0527)
p-value (R0 = R1): 0.0000
p-value (ln(R1/R0) = 0): 0.0000
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These estimates show that among blacks, on average, women are 1.0525 times more
likely (5.25% more likely) to be insured than men. Black women are also 4.14 percentage
points more likely to be insured than black men, on average.

4.4 Multinomial models

When users run either a logit or a probit model with a multinomial outcome variable,
ARRs and ARDs can be calculated for each outcome by using the adjrr command. The
multinomial health insurance variable, ins group, captures whether an individual has
private (ins group = 1), public (ins group = 2), or no insurance (ins group = 3).
The following simple multinomial logistic model is fit.

. mlogit ins_group female age race_bl race_oth, nolog

Multinomial logistic regression Number of obs = 19386
LR chi2(8) = 5015.31
Prob > chi2 = 0.0000

Log likelihood = -16924.793 Pseudo R2 = 0.1290

ins_group Coef. Std. Err. z P>|z| [95% Conf. Interval]

1_Private (base outcome)

2_Public
female .4801498 .0379564 12.65 0.000 .4057567 .5545429

age .0640783 .0012046 53.20 0.000 .0617174 .0664392
race_bl .6329817 .0527671 12.00 0.000 .5295601 .7364032

race_oth -.0808391 .0772467 -1.05 0.295 -.2322397 .0705616
_cons -4.127384 .0707389 -58.35 0.000 -4.26603 -3.988739

3_Uninsured
female -.181544 .0397481 -4.57 0.000 -.2594489 -.1036392

age -.020199 .0014168 -14.26 0.000 -.0229759 -.017422
race_bl .1675143 .0581024 2.88 0.004 .0536356 .2813929

race_oth -.3975927 .0858646 -4.63 0.000 -.5658842 -.2293012
_cons -.2113852 .0622577 -3.40 0.001 -.3334081 -.0893622

Regardless of the reference outcome chosen for the above regression, the adjrr com-
mand can estimate the ARR and ARD with standard errors for each outcome category.
The syntax of this command is equivalent to the logit case. If we isolate female as the
variable of interest, the output of the adjrr command is as follows:
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. adjrr female

R1(outcome 1) = 0.5134 (0.0046) 95% CI (0.5044, 0.5225)
R0(outcome 1) = 0.5535 (0.0052) 95% CI (0.5434, 0.5636)
ARR(outcome 1) = 0.9277 (0.0120) 95% CI (0.9044, 0.9515)
ARD(outcome 1) = -0.0400 (0.0069) 95% CI (-0.0536, -0.0264)
p-value (R0 = R1)(outcome 1): 0.0000
p-value (ln(R1/R0) = 0)(outcome 1): 0.0000

R1(outcome 2) = 0.3277 (0.0040) 95% CI (0.3199, 0.3355)
R0(outcome 2) = 0.2464 (0.0041) 95% CI (0.2383, 0.2544)
ARR(outcome 2) = 1.3301 (0.0274) 95% CI (1.2774, 1.3850)
ARD(outcome 2) = 0.0813 (0.0057) 95% CI (0.0701, 0.0925)
p-value (R0 = R1)(outcome 2): 0.0000
p-value (ln(R1/R0) = 0)(outcome 2): 0.0000

R1(outcome 3) = 0.1588 (0.0035) 95% CI (0.1520, 0.1657)
R0(outcome 3) = 0.2001 (0.0041) 95% CI (0.1920, 0.2083)
ARR(outcome 3) = 0.7936 (0.0239) 95% CI (0.7481, 0.8419)
ARD(outcome 3) = -0.0413 (0.0054) 95% CI (-0.0519, -0.0307)
p-value (R0 = R1)(outcome 3): 0.0000
p-value (ln(R1/R0) = 0)(outcome 3): 0.0000

In modeling health insurance as a categorical variable, we can create a richer un-
derstanding of how different types of health insurance vary between men and women.
We find women are more likely to have public insurance than men. In contrast, men
are more likely than women to have private insurance or to be uninsured. Interpreting
the ARR estimates for outcome 1 (private insurance), we find that women are 1.0723
times less likely (7.23% less likely, where 0.0723 = 1− 0.9277) to have private insurance
than men, on average. In terms of absolute differences in insurance coverage, women,
on average, have private insurance four percentage points less often than men.

4.5 Ordered models

We can extend our simple model to an ordered probit model by considering the health
insurance categories as representing different levels of coverage that can be ordered. We
use the same outcome variable, ins group, for this model, and the insurance groups
are now considered ordered (for the purpose of this illustration only) according to this
assumption: that private insurance represents a higher level of coverage in comparison
with public insurance. Thus being uninsured represents the lowest level of coverage.
After running the simple ordered model, we calculate ARRs and ARDs with standard
errors for each insurance category. All ARRs and ARDs will be correctly estimated
regardless of the reference category chosen when running the regression.
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. oprobit ins_group female age race_bl race_oth, nolog

Ordered probit regression Number of obs = 19386
LR chi2(4) = 188.76
Prob > chi2 = 0.0000

Log likelihood = -19338.067 Pseudo R2 = 0.0049

ins_group Coef. Std. Err. z P>|z| [95% Conf. Interval]

female .0147683 .016844 0.88 0.381 -.0182454 .0477819
age .0049324 .0004587 10.75 0.000 .0040335 .0058314

race_bl .1533977 .0239079 6.42 0.000 .1065391 .2002562
race_oth -.1688425 .0350418 -4.82 0.000 -.237523 -.1001619

/cut1 .3269836 .0253022 .2773923 .3765749
/cut2 1.175754 .0258825 1.125026 1.226483

. adjrr female

R1(outcome 1) = 0.5310 (0.0046) 95% CI (0.5219, 0.5401)
R0(outcome 1) = 0.5369 (0.0052) 95% CI (0.5268, 0.5470)
ARR(outcome 1) = 0.9891 (0.0123) 95% CI (0.9653, 1.0136)
ARD(outcome 1) = -0.0058 (0.0067) 95% CI (-0.0189, 0.0072)
p-value (R0 = R1)(outcome 1): 0.3806
p-value (ln(R1/R0) = 0)(outcome 1): 0.3803

R1(outcome 2) = 0.2906 (0.0034) 95% CI (0.2839, 0.2973)
R0(outcome 2) = 0.2885 (0.0035) 95% CI (0.2817, 0.2954)
ARR(outcome 2) = 1.0070 (0.0081) 95% CI (0.9913, 1.0230)
ARD(outcome 2) = 0.0020 (0.0023) 95% CI (-0.0025, 0.0066)
p-value (R0 = R1)(outcome 2): 0.3813
p-value (ln(R1/R0) = 0)(outcome 2): 0.3815

R1(outcome 3) = 0.1784 (0.0033) 95% CI (0.1719, 0.1850)
R0(outcome 3) = 0.1746 (0.0036) 95% CI (0.1675, 0.1817)
ARR(outcome 3) = 1.0218 (0.0251) 95% CI (0.9737, 1.0722)
ARD(outcome 3) = 0.0038 (0.0043) 95% CI (-0.0047, 0.0123)
p-value (R0 = R1)(outcome 3): 0.3803
p-value (ln(R1/R0) = 0)(outcome 3): 0.3809

Modeling health insurance as an ordered categorical variable reveals slightly differ-
ent conclusions than when modeling insurance as an unordered categorical variable.
Women are now estimated to have a higher likelihood of being uninsured than males.
Women remain less likely to have private insurance than men, but the predicted relative
difference is smaller. Interpreting the coefficients for outcome 3 (uninsured), women are
1.0218 times more likely (2.18% more likely) to be uninsured than men, on average. Al-
ternatively, women, on average, are uninsured 0.38 percentage points more often than
men.

4.6 Interactions

We demonstrate two further extensions to the adjrr command, models with interaction
terms and survey data, using a dataset from the Stata 12 Survey Data Reference Manual.
This dataset is a selected sample from the National Health and Nutrition Examination
Survey.
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When users run a model with interaction terms, the interacted variables and the
interaction term must be properly identified for the margins command to correctly
evaluate the model. This means using # to show interactions and using the prefixes
i. and c. to indicate indicator and continuous variables. Once the model is appropri-
ately specified, the adjrr command can be run as before to estimate the ARR and ARD

for the covariate of interest.

We ran a logit model using nhanes2.dta, which estimates the outcome of diabetes
as a function of sex, age, and race. Our outcome of interest is a binary variable denot-
ing whether an individual has diabetes. The race variables included in the regression
are broken down into black, white, and other race. In the notation below, we indi-
cate female as an indicator variable, age as a continuous variable, and the interaction
between age and sex. We would include such an interaction term in our model if we
believe age affects the risk of diabetes differently between men and women.

. webuse nhanes2

. logit diabetes i.female c.age i.female#c.age i.black i.orace, nolog

Logistic regression Number of obs = 10349
LR chi2(5) = 380.57
Prob > chi2 = 0.0000

Log likelihood = -1809.4745 Pseudo R2 = 0.0952

diabetes Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.female 1.352549 .4851081 2.79 0.005 .4017543 2.303343
age .071462 .0063009 11.34 0.000 .0591124 .0838115

female#c.age
1 -.0197972 .0078278 -2.53 0.011 -.0351395 -.0044549

1.black .7177366 .127091 5.65 0.000 .4686427 .9668304
1.orace .1989662 .3520485 0.57 0.572 -.4910362 .8889686

_cons -7.142681 .3961563 -18.03 0.000 -7.919133 -6.366229

. adjrr female

R1 = 0.0515 (0.0029) 95% CI (0.0457, 0.0572)
R0 = 0.0447 (0.0029) 95% CI (0.0390, 0.0503)
ARR = 1.1529 (0.0996) 95% CI (0.9733, 1.3656)
ARD = 0.0068 (0.0041) 95% CI (-0.0013, 0.0149)
p-value (R0 = R1): 0.0979
p-value (ln(R1/R0) = 0): 0.0996

Once interaction terms are incorporated into a model, running the adjrr command
and interpreting the results are equivalent to the case without interaction terms. As long
as Stata’s standard # notation is used, the adjrr command automatically takes into
account the interaction of the variable of interest with other variables. In our example,
adjrr reveals that women are 1.1529 times more likely (15.29% more likely) to have
diabetes than men, on average. In terms of absolute differences, women, on average,
have diabetes 0.68 percentage points more often than men.
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Given this model specification, we may be interested in calculating ARRs and ARDs
for the variable female at a particular age. One approach is using the at() option to
set the sample to a specific age, such as the mean. The syntax for the at() specification
follows the margins command. For example,

. adjrr female, at((mean) age)

R1 = 0.0382 (0.0030) 95% CI (0.0323, 0.0441)
R0 = 0.0257 (0.0028) 95% CI (0.0201, 0.0312)
ARR = 1.4868 (0.2019) 95% CI (1.1395, 1.9401)
ARD = 0.0125 (0.0041) 95% CI (0.0044, 0.0206)
p-value (R0 = R1): 0.0025
p-value (ln(R1/R0) = 0): 0.0035

When we set all observations to the mean age, adjrr estimates that women are 1.4868
times more likely (48.68% more likely) to have diabetes than men, on average. This
large relative difference corresponds to the small absolute difference of 1.25 percentage
points.

4.7 Survey commands

Extending the estimation of ARRs and ARDs with survey data is simple. After users
identify the survey design of the dataset and run the regression model with the survey
prefix command, they can run the adjrr command as previously described.

Below we run the equivalent logit model as in section 4.6, but we now incorporate
the appropriate sampling units, weights, and strata from nhanes2.dta. Notice how
including the survey design parameters generates different estimates.



E. C. Norton, M. M. Miller, and L. C. Kleinman 507

. svyset psu [pweight=finalwgt], strata(strata)

pweight: finalwgt
VCE: linearized

Single unit: missing
Strata 1: strata

SU 1: psu
FPC 1: <zero>

. svy: logit diabetes i.female c.age i.female#c.age i.black i.orace, nolog
(running logit on estimation sample)

Survey: Logistic regression

Number of strata = 31 Number of obs = 10349
Number of PSUs = 62 Population size = 117131111

Design df = 31
F( 5, 27) = 61.30
Prob > F = 0.0000

Linearized
diabetes Coef. Std. Err. t P>|t| [95% Conf. Interval]

1.female 1.76606 .5556064 3.18 0.003 .6328936 2.899227
age .0760729 .005669 13.42 0.000 .064511 .0876348

female#c.age
1 -.02733 .0086152 -3.17 0.003 -.0449008 -.0097592

1.black .7938007 .128747 6.17 0.000 .5312196 1.056382
1.orace -.3278488 .301033 -1.09 0.285 -.9418097 .286112

_cons -7.408693 .3781967 -19.59 0.000 -8.180031 -6.637356

. adjrr female

R1 = 0.0382 (0.0026) 95% CI (0.0330, 0.0433)
R0 = 0.0301 (0.0027) 95% CI (0.0248, 0.0354)
ARR = 1.2660 (0.1469) 95% CI (1.0085, 1.5893)
ARD = 0.0080 (0.0039) 95% CI (0.0004, 0.0156)
p-value (R0 = R1): 0.0470
p-value (ln(R1/R0) = 0): 0.0507

Specifying the survey design also changes the ARR and ARD estimates. Women, on
average, are calculated as being 1.2660 times more likely (26.6% more likely) to have
diabetes than men. Alternatively, women have diabetes 0.8 percentage points more
often than men.

We remind users that Stata does not allow the if qualifier of the adjrr command
with complex survey design, because the weights would be wrong for any subset of the
data. The at() option is still allowed.

5 Conclusion

Our new Stata command, adjrr, easily computes ARRs and ARDs by building on the
margins command. Calculating these estimates and delta-method standard errors is
simple and user friendly with the adjrr command. We further extend the basic re-
sults from Kleinman and Norton (2009) to models where the variable of interest is not
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dichotomous, to subsets of the data, to complex survey design, and to models with
multinomial and ordered outcomes. Our new Stata command allows for all of these
extensions.
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