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Abstract. In this article, we describe a suite of commands that enable the user
to estimate the probability that the conclusions of a meta-analysis will change
with the inclusion of a new study, as described previously by Sutton et al. (2007,
Statistics in Medicine 26: 2479–2500). Using the metasim command, we take a sim-
ulation approach to estimating the effects in future studies. The method assumes
that the effect sizes of future studies are consistent with those observed previously,
as represented by the current meta-analysis. Two-arm randomized controlled tri-
als and studies of diagnostic test accuracy are considered for a variety of outcome
measures. Calculations are possible under both fixed- and random-effects assump-
tions, and several approaches to inference, including statistical significance and
limits of clinical significance, are possible. Calculations for specific sample sizes
can be conducted (by using metapow). Plots, akin to traditional power curves, can
be produced (by using metapowplot) to indicate the probability that a new study
will change inferences for a range of sample sizes. Finally, plots of the simulation
results are overlaid on extended funnel plots by using extfunnel, described in
Crowther, Langan, and Sutton (2012, Stata Journal 12: 605–622), which can help
to intuitively explain the results of such calculations of sample size. We hope the
command will be useful to trialists who want to assess the potential impact new
trials will have on the overall evidence base and to meta-analysts who want to
assess the robustness of the current meta-analysis to the inclusion of future data.

Keywords: st0304, metasim, metapow, metapowplot, meta-analysis, diagnostic
test, sample size, evidence-based medicine
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1 Introduction

Sutton et al. (2007) argued that following the completion of a new randomized trial,
the updated meta-analysis containing the new study would potentially be of more in-
terest where multiple studies of the same topic exist in certain contexts. However, this
goes against findings that many trialists do not consider previous trials, formally or
informally, when designing new trials (Cooper, Jones, and Sutton 2005).

Relatively recently, formal methodology to assess the ability of new trials to af-
fect the conclusions of an updated meta-analysis were developed (Sutton et al. 2009b).
These methodologies were piloted in a study that applied them retrospectively to sev-
eral clinical contexts (Goudie et al. 2010). A coherent framework for designing, an-
alyzing, and reporting evidence that used such methods has also been described in
Sutton, Cooper, and Jones (2009a). Very recently, the methods have been adapted for
diagnostic test accuracy by Hinchliffe et al. (2013) and for cluster-randomized controlled
trials by Rotondi and Donner (2012). Both Bayesian (Sutton et al. 2007) and frequen-
tist (Goudie et al. 2010) implementations of the general approach have been considered.

Here we describe a collection of three commands to implement the frequentist ver-
sion of the methodology in the contexts of (two-arm) randomized controlled trials and
diagnostic test accuracy. metasim simulates data for future studies of a specified sample
size by using predictions based on a meta-analysis of the existing evidence. Although
this command can be used on its own, as described in sections 2.2 and 3, it is primarily
designed to be used as a subroutine that is called by metapow (sections 2.2 and 4).
metapow calculates the probability that a future study with a sample size specified by
the user will change the inferences of an existing meta-analysis.1 Several alternative ap-
proaches to inference can be specified, including both statistical significance and limits
of clinical significance. metapowplot (sections 2.2 and 5) presents a graph of power for
a range of sample sizes for the new study by repeatedly invoking metapow.

The structure of the remainder of this article is as follows: Section 2 describes
the methods implemented in the three commands. Sections 3, 4, and 5 describe the
syntax for metasim, metapow, and metapowplot, respectively. In section 6, plots of the
simulated study results are overlaid on the previously described command extfunnel

(Crowther, Langan, and Sutton 2012). This can help to intuitively explain the results
of the power calculations through the use of boundary contours where inferences of
the meta-analysis will change, indicating the effect size and precision combinations of
future studies that would change inferences of the meta-analysis (Langan et al. 2012).
Section 7, the discussion, concludes the article.

1. We refer to the probability that inferences of the meta-analysis will change as “power” throughout
the remainder of the article, although we acknowledge this is not what is usually referred to as
“power” in a single-study context.
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2 Methods

2.1 Overview of methods

Simulation methods to establish appropriate sample sizes are often used as an alternative
to closed-form solutions when complex analyses need to be carried out (Feiveson 2002)
(for example, for analyses that include models with random effects). The approach
suggested by Sutton et al. (2007) focuses not on the simulated study itself but on the
modified meta-analysis, including the simulated study, because in some contexts, the
results of the updated meta-analysis will be of more interest than those of the study on
its own. Below is the nontechnical summary of the process as described by Sutton et al.
(2007).

1. From a meta-analysis of the existing studies, a distribution for the chosen outcome
measures in a new clinical trial or diagnostic test accuracy study is derived. An
estimate for the outcome measure from this distribution is then sampled, repre-
senting the underlying effect in the new (simulated) study.

2. Data representing the new study are generated stochastically according to the
estimate sampled in step 1 for a specified sample size.

3. These simulated study data are then added to the existing meta-analysis, which
is then re-meta-analyzed.

4. The hypothesis test, on which decisions are to be based, is then considered.
Whether the null is retained or rejected in favor of the alternative hypothesis
at a specified level of statistical significance is recorded.

5. Steps 2–4 are repeated a large number of times (N), and the outcome of the
hypothesis test is noted each time.

6. Power is estimated by calculating the proportion of the N simulations in which
the null hypothesis is rejected.

7. The procedure is iterative: the sample size for a new study specified in step 2 is
modified and steps 2–6 repeated until the desired level of power is achieved.

2.2 Overview of software

Figure 1 presents a schematic representation of the relationship between the Stata com-
mands described in this article and previously described commands. It has already been
explained that metapowplot calls metapow, which in turn calls metasim. Additionally,
however, because others have written excellent routines for conducting meta-analysis in
Stata, the preexisting metan command (Harris et al. 2008) is called by metapow to con-
duct meta-analyses of two-arm comparative study data, such as data from randomized
controlled trials. Similarly, metandi (Harbord and Whiting 2009) and midas (Dwamena
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2007) are both called by metapow for conducting meta-analyses of diagnostic test ac-
curacy studies. Two commands are used because convergence issues with the bivariate
diagnostic model are well documented (Rabe-Hesketh, Skrondal, and Pickles 2005). In
addition, because both routines use different estimation algorithms, midas is invoked
if metandi fails to converge. The command extfunnel, described in Crowther, Lan-
gan, and Sutton (2012), can be used to further illustrate the simulation results, and we
show in section 6 how output from metapow can be overlaid on the plots produced by
extfunnel.

Figure 1. Software relationship diagram: arrows denote the calling of a command

metasim

metasim simulates a specified number of new studies based on the estimate obtained
from a preexisting meta-analysis, assuming the effect size seen in the new study will
be consistent with the existing studies in the meta-analysis. The command can be
used independently, but it was designed to be used in conjunction with metapow (see
section 4).

metasim will simulate data for a new study represented by the values for each of the
variables entered in the variable list. These are saved in a Stata data file, temppow.dta,
in the specified working directory.
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metapow

metapow implements an approach to estimating the power of a study based on the
evidence-based approach to sample-size determination for adding new studies to a
meta-analysis of two-arm randomized controlled trials and diagnostic accuracy stud-
ies described in Sutton et al. (2007) and Hinchliffe et al. (2013), respectively. Power is
determined through simulation, with data for new studies being generated with metasim.

As well as estimating the power of the updated meta-analysis including the new
study, metapow can also estimate the power of the new study when analyzed on its
own. The results of individual simulations are stored in a file, temppow2.dta, located
in the specified working directory. While this function can be used directly to estimate
the power for particular sample sizes, the higher-level command metapowplot uses this
command to construct power curves across different sample sizes.

metapowplot

metapowplot produces a plot of the power values for a range of sample sizes. The
command calls on metapow, which calculates power for a single sample size. metapow in
turn calls on metasim, which simulates new studies by using the results of the existing
meta-analysis.

Users need to input a minimum and maximum sample size for which they want
to calculate a power estimate. The power estimates are stored with their confidence
intervals (CIs) in a file called temppow3.dta within the working directory.

3 The metasim command

3.1 Syntax

metasim varlist, n(integer) es(numlist) var(numlist)

type(clinical | diagnostic)
[
measure(or | rr | rd | nostandard | dor | ss)

p(real) r(real) studies(integer)

model(fixed | fixedi | random | randomi | bivariate) tausq(numlist)

dist(normal | t) corr(real) path(string)
]
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The dataset should contain the data for the existing studies with variable names
that are consistent with those entered in varlist. The user should input a maximum
of six variables. For trials with a binary outcome, four variables are required: these
correspond to the number of events and nonevents in the experimental group followed
by those of the control group. And for continuous outcomes, six variables should be
entered: sample size, mean, and standard deviation of the experimental group followed
by those of the control group. For diagnostic studies, four variables are required: the
true positives, false positives, false negatives, and true negatives.

3.2 Options

n(integer) relates to the number of patients in the new study. If users simulate a new
clinical trial, then n() specifies the number of patients in the control group. If
users simulate a new diagnostic accuracy study with sensitivity and specificity as
the outcome measure of accuracy, then n() is the number of diseased patients. If
users simulate a new diagnostic accuracy study with the diagnostic odds ratio (DOR),
then n() is the number of positive test results. n() is required.

es(numlist) specifies the pooled estimates from the meta-analysis of existing studies.
If using the odds ratio (OR), the DOR, or relative risk (RR), then users need to
specify ln(OR), ln(DOR), or ln(RR) estimates, respectively. If using sensitivity and
specificity, then users need to specify logit(sensitivity) and logit(specificity), in that
order. es() is required.

var(numlist) specifies the variances for es(). Two values should be entered when using
sensitivity and specificity. var() is required.

type(clinical | diagnostic) specifies the type of new study that the user would like
to simulate: a two-arm clinical trial or a diagnostic test accuracy study. type() is
required.

measure(or | rr | rd | nostandard | dor | ss) specifies the outcome measure used in the
meta-analysis to pool the results. The OR (or), RR (rr), risk difference (rd),
and unstandardized mean difference (nostandard) can only be used when simu-
lating a new clinical study. The DOR (dor) and sensitivity and specificity (ss) can
only be used when simulating a new diagnostic accuracy study. The default for a
type(clinical) study with four variables entered into the varlist is rr; the default
for a type(clinical) study with six variables entered into the varlist is nostandard;
and the default for a type(diagnostic) study is ss.

p(real) is the estimated event rate in the control group in a simulated, new clinical
study. When users simulate a new diagnostic accuracy study, this is the estimated
probability of being diseased given a positive result in the new study. When this op-
tion is not specified, metasim will calculate this value by averaging the probabilities
across the studies included in the dataset in memory. Note that p() is only relevant
in the diagnostic framework when dor is used as the option in measure().
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r(real) is the ratio of patients in the control group to the treatment group in a simulated,
new clinical study. When users simulate a new diagnostic accuracy study, this is the
ratio of diseased to healthy people if using sensitivity and specificity and is the ratio
of positive to negative results if using the DOR. The default is r(1).

studies(integer) specifies the number of new studies to be simulated and included in
the updated meta-analysis. The default is studies(1). When more than one study
is specified, each is assumed to have the same sample size.

model(fixed | fixedi | random | randomi | bivariate) defines the type of model used to
meta-analyze the preexisting data. The default is model(fixed) unless the out-
come measure is the nonstandardized mean difference, in which case the default is
model(fixedi). The model(fixedi) option specifies a fixed-effects model by using
the inverse-variance method. The model(random) option uses the random-effects
DerSimonian and Laird method, taking the estimate for heterogeneity from the
Mantel–Haenszel method. The model(randomi) option specifies a random-effects
model by using the method of DerSimonian and Laird, with the estimate of het-
erogeneity being taken from the inverse-variance fixed-effects model. All the above
options call on the metan command within metasim. The final option is the bivariate
random-effects model (model(bivariate)). This method calls on a combination of
the metandi and midas commands (a variable is created to indicate which has been
used for each simulation). It may only be specified when simulating a new diagnostic
accuracy study.

tausq(numlist) is the measure of between-study variance taken from the preexisting
meta-analysis. The default is tausq(0). If measure(ss) is specified, then two
values must be entered for tausq(). If a random-effects model is selected and the
value for tausq() is still 0, then a warning message will appear to notify the user,
but the command will continue to run.

dist(normal | t) specifies the distribution of effect sizes used to sample a value to
simulate a new study. The default for model(random) and model(randomi) is a
predictive distribution based on the t distribution (dist(t)), allowing for hetero-
geneity between studies (and the uncertainty in the heterogeneity). The default for
all other models is dist(normal), based on the mean and variance entered in es()

and var().

corr(real) is the correlation between the sensitivity and specificity. The default is
corr(0). This option is only needed if the user chooses the bivariate model.

path(string) specifies the directory in which to save files created by metasim. This
overrides the default of the working directory.

3.3 Example

We illustrate metasim with a systematic review of antibiotic use for the common cold
from the Cochrane database of systematic reviews (Arroll and Kenealy 1999). We re-
turn to this example in sections 4.3 and 5.3 to illustrate metapow and metapowplot.
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Six trials were conducted to compare antibiotics versus placebo for outcome symptoms
persisting beyond seven days and labeled as “event” in table 1. A total of 1,147 subjects
participated: 664 in the treatment group and 483 in the control group. The trials are
summarized in table 1.

Table 1. Six trials included in antibiotics for the common cold and acute purulent
rhinitis meta-analysis

Study Year a (event/trt) b (no event/trt) c (event/ctrl) d (no event/ctrl)

Herne 1980 7 39 10 12
Hoaglund 1950 39 115 51 104

Kaiser 1996 97 49 94 48
Lexomboon 1971 8 166 4 83
McKerrow 1961 5 10 8 10

Taylor 1977 12 117 3 56

The review concluded that “there was insufficient evidence of benefit to warrant
the use of antibiotics” (Arroll and Kenealy 1999). Further trials could be potentially
beneficial. A fixed-effects meta-analysis using the inverse-variance method was carried
out on the six trials with the OR. The command line is given below, and the results are
presented in figure 2.

. metan event_t noevent_t event_c noevent_c, or fixedi
> label(namevar=Study, yearvar=Year) textsize(150)
> xlabel(0.125, 0.25, 0.5, 1, 2, 4, 8) scheme(sj)
> title("Forest plot") favours("Favours treatment" # "Favours control")
> xtitle("Odds ratio")

Study | OR [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
Herne (1980) | 0.215 0.067 0.689 6.87
Hoaglund (1950) | 0.692 0.422 1.134 38.04
Kaiser (1996) | 1.011 0.620 1.648 38.88
Lexomboon (1971) | 1.000 0.293 3.417 6.15
McKerrow (1961) | 0.625 0.151 2.586 4.61
Taylor (1977) | 1.915 0.519 7.058 5.46
---------------------+---------------------------------------------------
I-V pooled OR | 0.796 0.587 1.080 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 8.07 (d.f. = 5) p = 0.153
I-squared (variation in OR attributable to heterogeneity) = 38.0%

Test of OR=1 : z= 1.47 p = 0.143
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Overall  (I−squared = 38.0%, p = 0.153)

Taylor (1977)

Hoaglund (1950)

Lexomboon (1971)

ID

Kaiser (1996)

Herne (1980)

Study

McKerrow (1961)

0.80 (0.59, 1.08)

1.91 (0.52, 7.06)

0.69 (0.42, 1.13)

1.00 (0.29, 3.42)

OR (95% CI)

1.01 (0.62, 1.65)

0.22 (0.07, 0.69)

0.62 (0.15, 2.59)

100.00

5.46

38.04

6.15

Weight

38.88

6.87

%

4.61

0.80 (0.59, 1.08)

1.91 (0.52, 7.06)

0.69 (0.42, 1.13)

1.00 (0.29, 3.42)

OR (95% CI)

1.01 (0.62, 1.65)

0.22 (0.07, 0.69)

0.62 (0.15, 2.59)

100.00

5.46

38.04

6.15

Weight

38.88

6.87

%

4.61

Favours treatment  Favours control 

1.125 .25 .5 1 2 4 8

Odds ratio

Forest plot

Figure 2. Forest plot of common cold data using fixed-effects meta-analysis with the
inverse-variance method

The results suggest a slight treatment benefit, but this is not significant at the 5%
level (OR = 0.80, 95% CI: [0.59,1.08]). It is possible that additional information in the
form of another trial could lead to this result becoming statistically significant. The
command metasim allows the user to simulate a new trial based on the above results.
By inputting the pooled log OR from the meta-analysis as the estimate, along with the
variance of the pooled log OR, users can write the command as follows:

. metasim event_t noevent_t event_c noevent_c, es(-0.228) var(0.155) n(100)
> type(clinical) measure(or) model(fixedi)
New study/studies simulated are saved in file called E:\Meta-analysis\
> metapow\temppow

. use temppow, clear

. list

event_t noeven~t event_c noeven~c

1. 21 79 31 69

A new trial has been generated with 100 patients in the treatment arm and 100
patients in the control arm. The trial is saved in the working directory in a file named
temppow. The file will contain four variables with the same names as those in the current
dataset. In this case, these will be event t, noevent t, event c, and noevent c.
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4 The metapow command

4.1 Syntax

metapow varlist, n(integer) nit(integer) type(clinical | diagnostic)
pow(numlist)

[
measure(or | rr | rd | nostandard | dor | ss)

inference(ciwidth | pvalue | lci | uci) p(real) r(real) studies(integer)

model(fixed | fixedi | random | randomi | bivariate) npow(numlist) ci(real)

dist(normal | t) ind nip(integer) sos(sens | spec) path(string)

level(integer)
]

4.2 Options

n(integer); see the metasim options in section 3.2.

nit(integer) is the number of simulations on which the estimated power is based. The
larger the number specified, the more accurate the estimate will be, but the longer
the analysis will take. nit() is required.

type(clinical | diagnostic); see the metasim options in section 3.2.

pow(numlist) specifies the value used as a cutoff in determining the power. One or two
values may be input. The value represents different things, depending on the option
chosen for inference(). pow() is required.

measure(or | rr | rd | nostandard | dor | ss); see the metasim options in section 3.2.

inference(ciwidth | pvalue | lci | uci) defines the approach to inference used to cal-
culate power. The default is inference(ciwidth). This counts the number of
times that the CI width of the estimate from the updated meta-analysis (that is,
with the simulated study included) is less than the specified value. This option can
be used regardless of the measure of accuracy. Two other approaches to inference
are inference(lci) and inference(uci). These will count the number of times
that the lower or upper CI is higher or lower than a given value, respectively. The
inference(lci) option can be used regardless of the measure of accuracy. The
inference(uci) option is currently only available when working with clinical trial
data and not diagnostic data. A final option only available when using clinical trial
data is inference(pvalue). This counts the number of times that a p-value is
significant to a specified level. When you use sensitivity and specificity, two values
may be input into pow() for inference(ciwidth) and inference(lci). These will
instruct the command to count the number of times that the CI widths for both
sensitivity and specificity are less than their respective specified values. Sensitiv-
ity must be given first followed by specificity for the calculation to be correct. To
use the inference(ciwidth) or inference(lci) option for just sensitivity or just
specificity, you should also use the sos() option (described below).
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p(real); see the metasim options in section 3.2.

r(real); see the metasim options in section 3.2.

studies(integer); see the metasim options in section 3.2.

model(fixed | fixedi | random | randomi | bivariate); see the metasim options in sec-
tion 3.2.

npow(numlist) recalculates the power with a new value for the same inference() with-
out having to rerun the whole command. Instead, it uses the data stored in temppow2

and allows alternative approaches to inference to be explored. This is particularly
valuable when the required simulation time is lengthy.

ci(real) specifies the width of the CI for the corresponding power estimate. The default
is ci(95).

dist(normal | t); see the metasim options in section 3.2.

ind instructs the command to calculate the power for the newly simulated study on its
own in addition to the newly updated meta-analysis.

nip(integer) specifies the number of integration points used for quadrature when the
bivariate model is selected. Higher values should result in greater accuracy but
typically at the expense of longer execution times (see Harbord and Whiting [2009]).

sos(sens | spec) is used in addition to the inference() option and specifies whether
inferences are focused on sensitivity or specificity when using inference(ciwidth)

or inference(lci). The default is sos(sens). If sos() is not specified, then the
inferences are based on both sensitivity and specificity, and two values should be
entered for pow().

path(string); see the metasim options in section 3.2.

level(integer) specifies the confidence level, as a percentage, for the individual study
and pooled CIs. This is the level given in the metan, metandi, and midas commands
when called on to meta-analyze the current dataset. The default is level(95).

4.3 Example

The same example described in section 3.3 is used here to demonstrate the command
metapow. This command allows the user to estimate the power that a new trial of a
specified sample size would give to the meta-analysis. In this example, the inference is
the p-value. metapow is told to estimate the power that a new trial with 100 patients
in the treatment arm and 100 patients in the control arm would have at detecting a
p-value less than 0.05 in the updated meta-analysis.
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. metapow event_t noevent_t event_c noevent_c, n(100) type(clinical)
> measure(or) model(fixedi) nit(100) inference(pvalue) pow(0.05)
...............................................................................
> .....................

Fixed effect inverse variance-weighted model
Statistic used was odds ratio

n= 100 (in control group)
m= 100 (in treatment group)

Power of meta-analysis is: 31.00 (95% CI: 22.13, 41.03)

Level of significance used to estimate power = 0.05
Simulation estimates are saved in file called E:\Meta-analysis\metapow\temppow2

The output from the command describes the type of meta-analysis model specified
and the inference used. It also gives the power estimate. In this case, the power estimate
is 31.0% (95% CI: [22.1, 41.0]), meaning that the p-value was below 0.05 in 31 of the 100
iterations. It is possible to recalculate the power with a different cutoff value without
having to rerun the whole analysis. The option npow() can be specified to do this as
shown below. Notice that the dots are not displayed, which is because the analysis is
not being run. The output also informs the user that the level used to estimate power
has changed.

. metapow event_t noevent_t event_c noevent_c, n(100) type(clinical)
> measure(or) model(fixedi) nit(100) inference(pvalue) pow(0.05) npow(0.1)

Level used to estimate power has changed
Simulated data has not changed

Fixed effect inverse variance-weighted model
Statistic used was odds ratio

n= 100 (in control group)
m= 100 (in treatment group)

Power of meta-analysis is: 49.00 (95% CI: 38.86, 59.20)

Simulation estimates are saved in file called E:\Meta-analysis\metapow\temppow2

metapow stores the estimates from each of the 100 iterations in a file called temppow2.
Because the command also calls on metasim, the last newly simulated study will also be
saved in a file called temppow. These will both be found within the working directory
in Stata.

In this example, only 100 simulations were run, resulting in quite a wide CI for
power. This could be reduced by increasing the number of simulations.



M. J. Crowther, S. R. Hinchliffe, A. Donald, and A. J. Sutton 463

5 The metapowplot command

5.1 Syntax

metapowplot varlist, start(#) stop(#) step(#) nit(integer)

type(clinical | diagnostic) pow(numlist)
[
measure(or | rr | rd | nostandard | dor | ss)

inference(ciwidth | pvalue | lci | uci) p(real) r(real) studies(integer)

model(fixed | fixedi | random | randomi | bivariate) npow(numlist) ci(real)

dist(normal | t) ind nip(integer) sos(sens | spec) path(string)

graph(lowess | connected | overlay) noci regraph level(integer)
]

5.2 Options

start(#) is the smallest total sample size of a new study for which the user wishes to
calculate a power value. start() is required.

stop(#) is the largest total sample size of a new study for which the user wishes to
calculate a power value. stop() is required.

step(#) is the step size to be used within the range of total sample sizes specified by
start() and stop(). A step size of 10 between the range of 10 to 30 would mean
that the power would be estimated for sample sizes of 10, 20, and 30. step() is
required.

nit(integer); see the metapow options in section 4.2.

type(clinical | diagnostic); see the metasim options in section 3.2.

pow(numlist); see the metapow options in section 4.2.

measure(or | rr | rd | nostandard | dor | ss); see the metasim options in section 3.2.

inference(ciwidth | pvalue | lci | uci); see the metasim options in section 3.2.

p(real); see the metasim options in section 3.2.

r(real); see the metasim options in section 3.2.

studies(integer); see the metasim options in section 3.2.

model(fixed | fixedi | random | randomi | bivariate); see the metasim options in sec-
tion 3.2.

npow(numlist); see the metapow options in section 4.2.

ci(real); see the metapow options in section 4.2.

dist(normal | t); see the metasim options in section 3.2.
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ind; see the metapow options in section 4.2.

nip(integer); see the metapow options in section 4.2.

sos(sens | spec); see the metapow options in section 4.2.

path(string); see the metasim options in section 3.2.

graph(lowess | connected | overlay) allows the user to choose the type of line used to
connect the specific estimates of power at the specified sample sizes. The default
is graph(connected), which plots each point and connects them with a line. The
other options are a lowess plot, which plots a smoothed line to the specific points,
and an overlay plot, which plots both the points and the lowess curve. Because
power is estimated through simulation, there is sampling error in each estimate that
will decrease with the number of simulations specified (but also increase evaluation
time). Thus smoothing may be desirable if several different but inaccurate estimates
are considered. The lowess line should be similar to the connected option for larger
simulations.

noci prevents the command from plotting CIs (indicating the sampling error in the
estimation of power at specified sample sizes) on the graph.

regraph allows the user to regraph the power curves with alternative graph options
without having to rerun the simulations for the specified range of sample sizes.

level(integer); see the metapow options in section 4.2.

5.3 Example

The command metapowplot is used to calculate the power value at various sample sizes
by calling on metapow. The command then plots the power values against sample size.
In the command below, the range of sample sizes has been specified as 100 to 1,000
with steps of 100; the results are shown in figure 3. All other options remain the same
as those in section 4.3.

. metapowplot event_t noevent_t event_c noevent_c, start(100) step(100)
> stop(1000) type(clinical) measure(or) model(fixedi) nit(100)
> inference(pvalue) pow(0.05)

Sample size

t = 100 Treatment/Control = 50/50
t = 200 Treatment/Control = 100/100
t = 300 Treatment/Control = 150/150
t = 400 Treatment/Control = 200/200
t = 500 Treatment/Control = 250/250
t = 600 Treatment/Control = 300/300
t = 700 Treatment/Control = 350/350
t = 800 Treatment/Control = 400/400
t = 900 Treatment/Control = 450/450
t = 1000 Treatment/Control = 500/500
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Fixed effect inverse variance-weighted model
Statistic used was odds ratio
Level of significance used to estimate power = 0.05
Power estimates used to plot the graph are saved in file called E:\Meta-analysis\
> metapow\temppow3
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Figure 3. Power curve for common cold data based on the OR using a fixed-effects model
with the inverse-variance method

metapowplot has stored the power values and corresponding sample sizes in a file
called temppow3. Because the command calls on both metapow and metasim, the esti-
mates from the last sample size are stored in temppow2, and the final newly simulated
study is stored in temppow. All these files can be found in the working directory.

The output describes the options chosen by the user. Figure 3 shows the power
curve generated by metapowplot. The power is estimated to reach 60% with a total
sample size of 800: 400 patients in the treatment arm and 400 patients in the control
arm. This implies that when updated with more information, the current meta-analysis
from the Cochrane database could provide significant evidence to suggest a benefit in
the use of antibiotics for the common cold.

If you are designing a new trial, we would recommend running a minimum of 1,000
simulations at each sample size and perhaps over a narrower, targeted range of sample
sizes of interest.
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5.4 Diagnostic example

This example focuses on the diagnostic test accuracy options within the commands. A
meta-analysis was carried out in 1999 to assess the diagnostic value of the digital rec-
tal examination (DRE) in detecting prostate cancer (Hoogendam, Buntinx, and de Vet
1999). Studies were included if they compared DRE with biopsy or surgery as the refer-
ence standard. A total of 14 studies met the inclusion criteria, giving a total of 21,839
patients. Table 2 gives the results from each study.

Table 2. Fourteen studies included in DRE as screening test for prostate cancer

Study Year TP FP FN TN

Kirky 1994 8 6 6 541
Vihko 1985 6 21 3 741

Chodak 1989 32 112 13 1974
Ciatto 1994 17 8 9 1391
Lee 1989 10 19 12 743

Pode 1995 22 93 9 876
Dalkin 1993 9 33 15 695
Palken 1991 17 28 6 264
Teillac 1990 8 18 10 546

Catalona 1994 146 836 118 5530
Menor 1990 59 48 16 1389
Richie 1994 16 194 8 426

Gustafsson 1992 42 153 23 1564
Littrup 1994 77 287 95 2471

A separate DerSimonian and Laird random-effects meta-analysis of sensitivity and
specificity was carried out on the 14 studies. Figure 4 gives the results of the random-
effects meta-analysis of sensitivity. The results give a pooled estimate for sensitivity of
0.60 (95% CI: [0.53, 0.67]). This suggests that the test correctly identifies only 60% of
the diseased patients. The other 40% would be given false negative results. The results
of the random-effects meta-analysis of specificity are shown in figure 5. The pooled
estimate for specificity was 0.95 (95% CI: [0.92, 0.96]). This suggests that 95% of the
healthy patients are correctly identified by the test. This result is fairly good because
it means that only 5% of the healthy patients would receive false positive results.
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NOTE: Weights are from random effects analysis
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Figure 4. Forest plot of prostate data using DerSimonian and Laird random-effects
meta-analysis of logit sensitivity
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NOTE: Weights are from random effects analysis
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Figure 5. Forest plot of prostate data using DerSimonian and Laird random-effects
meta-analysis of logit specificity

The command line given below estimates power values for sample sizes ranging from
100 to 1,000 in steps of 100 based on the lower confidence interval value for the pooled
sensitivity estimate only. The cutoff for this has been set to 0.53, which is the same
as the lower confidence interval value in the current meta-analysis for sensitivity (see
figure 4). metapowplot will count how many times the lower confidence interval value
for the pooled sensitivity is greater than or equal to 0.53 and base the power value on
this.
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. metapowplot TP FP FN TN, start(100) step(100) stop(1000) type(diagnostic)
> measure(ss) model(randomi) nit(200) sos(sens) inference(lci) pow(0.53)

Sample size

t = 100 Diseased/Healthy = 50/50
t = 200 Diseased/Healthy = 100/100
t = 300 Diseased/Healthy = 150/150
t = 400 Diseased/Healthy = 200/200
t = 500 Diseased/Healthy = 250/250
t = 600 Diseased/Healthy = 300/300
t = 700 Diseased/Healthy = 350/350
t = 800 Diseased/Healthy = 400/400
t = 900 Diseased/Healthy = 450/450
t = 1000 Diseased/Healthy = 500/500

Random effects model with inverse variance-weighted estimates of heterogeneity
Statistics used were sensitivity and specificity
Lower confidence interval value for sens used to estimate power = 0.53
Power estimates used to plot the graph are saved in file called E:\Meta-analysis\
> metapow\temppow3
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Figure 6. Power curve for prostate data based on sensitivity using DerSimonian and
Laird random-effects model

Figure 6 shows the power curve obtained from the above command line. The power
reaches about 98% for a total sample size of 1,000. This means that when a study with
500 diseased patients and 500 healthy patients was added to the current meta-analysis
for sensitivity, the lower CI value for the pooled sensitivity was greater than or equal to
0.53 in about 98 of the 100 iterations.
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6 Other uses

An intuitive way to visualize this process is to plot all the results of the individual
simulations, at a specified sample size, on an extended funnel plot (Langan et al. 2012;
Crowther, Langan, and Sutton 2012). Extended funnel plots illustrate how the conclu-
sions of a meta-analysis would be impacted by the addition of a single new trial across
a range of effect estimates and standard errors. By directly overlaying the simulation
results at a specific sample size, stored in temppow2.dta, we can draw direct conclusions
about the area where a new study would likely lie and its impact on hypothesis tests.

In figure 7, we overlay the simulated individual studies from the example in sec-
tion 4.3. The majority of points lies in the region of the plot where a new study, when
added to the existing meta-analysis, would produce a statistically significant result,
with the updated effect estimate and 95% CI less than the null. This process can be
repeated as desired for different sample sizes. In this example, we can directly relate
the 28% power to 28 of the 100 simulated studies lying in the left-hand region of the
plot, indicating a change in conclusions for the updated meta-analysis.

. merge 1:1 _n using "temppow2.dta", nogen noreport

. metan event_t noevent_t event_c noevent_c, or fixedi nograph

(output omitted )

. gen logor=log(_ES)
(94 missing values generated)

. gen t1 = log(indes)

. extfunnel logor _selogES, fixedi eform
> xlabel(0.1 0.2 0.5 1 2 5, format(%2.1f)) yrange(0 1)
> addplot(scatter indse_es indes, msize(tiny) msym(T) mcol(black) xscale(log))
> ylabel(,format(%2.1f)) sumd sumdpos(0.9) pred
> legend(order(1 "Non-sig. effect (5% level)" 2 "Sig. effect > NULL (5% level)"
> 3 "Sig. effect < NULL (5% level)" 4 "Prediction interval" 6 "Null effect"
> 7 "Pooled effect" 8 "Original studies" 9 "Simulated studies"))
Original meta-analysis results:

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
1 | 0.215 0.067 0.689 6.87
2 | 0.692 0.422 1.134 38.04
3 | 1.011 0.620 1.648 38.88
4 | 1.000 0.293 3.417 6.15
5 | 0.625 0.151 2.586 4.61
6 | 1.915 0.519 7.058 5.46
---------------------+---------------------------------------------------
I-V pooled ES | 0.796 0.587 1.080 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 8.07 (d.f. = 5) p = 0.153
I-squared (variation in ES attributable to heterogeneity) = 38.0%

Test of ES=1 : z= 1.47 p = 0.143

Building graph:
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Figure 7. Extended funnel plot with simulated studies overlaid

7 Discussion

We hope the commands will be useful to 1) trialists who want to assess the potential
impact new trials will have on the overall evidence base and those involved in funding
new trials; and 2) meta-analysts who want to assess the robustness of the current meta-
analysis to the inclusion of future data.

Finally, we thought it may be helpful to outline ongoing and potential future work.
We have created a prototype set of commands that conducts the same calculations as
the commands described here but that uses a Bayesian approach to all meta-analyses
estimation. This is done through the use of the WinBUGS software, which links with
Stata through a previously written command (Thompson, Palmer, and Moreno 2006).
We hope to develop these to a point where they can be released in the future because
a Bayesian approach to meta-analysis offers several advantages, as described elsewhere
(Sutton et al. 2007).

A further Stata command, with the specific purpose of prioritizing a portfolio of
meta-analyses for updating and which adapts much of the methodology described herein,
is also very near completion.
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Finally, others have extended the approaches described here to the context of cluster
randomized controlled trials (Rotondi and Donner 2012) and written software in R to
implement them; we hope this extension of the methodology can also be coded in a
Stata command.
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