Background Information

Common Names:
Fusarium head blight; FHB, head blight of maize

Scientific Name:
Fusarium graminearum (anamorph = asexual stage), Gibberella zeae (teleomorph = sexual stage)

Synonyms:
Botryosphaeria saubinetii, Dichomera saubinetii, Dothidea zeae, Fusarium roseum, Gibbera saubinetii, Gibberella roseum, Gibberella saubinetii, Sphaeria saubinetii, Sphaeria zeae

Taxonomy:
Kingdom: Animalia; Phylum: Ascomycota; Class: Sordariomycetes; Order: Hypocreales; Family: Nectriaceae

Crop Hosts:
Wheat (Triticum spp. L.), barley (Hordeum vulgare L.), oat (Avena sativa), maize (Zea mays), triticale (x Triticosecale)

Introduction

Fusarium graminearum Schwabe [teleomorph Gibberella zeae (Schweinitz) Petch] is of world-wide importance on small grain cereals and corn, occurring under a wide range of soil and environmental conditions (CAB International 2003; Gilchrist and Dubin 2002; Parry et al. 1995; Stack 2003). Since the early 1990s, fusarium head blight (FHB) caused primarily by F. graminearum has become one of the most significant cereal diseases faced by producers in central Canada and the prairie region, and the mid-western United States (e.g., Gilbert and Tekauz 2000; McMullen et al. 1997b; Tekauz et al. 2000). Fusarium graminearum was identified by CIMMYT to be a major limiting factor to wheat production in many parts of the world (Stack 1999). The fungus can produce several mycotoxins, including deoxynivalenol (DON) and zearalenone. In non-ruminants, feed contaminated with DON can reduce growth rates, while zearalenone can cause reproductive problems (Charmley et al. 1996; D’Mello et al. 1999). Barley (Hordeum vulgare L. emend. Bowden) infected with F. graminearum and contaminated with mycotoxins can also cause quality problems for the malting and brewing industries (Schwarz 2003). Fusarium graminearum has also been linked to human illnesses (Goswami and Kistler 2004).

Fusarium graminearum is a genetically diverse species, with eleven distinct lineages currently known as the FG complex (Qu et al. 2008). There is little gene flow within these lineages, and all are well suited to infect their hosts in warm and wet climates (O’Donnell et al. 2000; Hope et al. 2005). According to Qu et al. (2008) one lineage in China can begin infection below 15 °C, and all lineages can overwinter on crop debris in any climate wheat is grown. This leaves high risk of continual infection, especially with rotations of less than two years between host crops.

Environmental conditions, especially temperature and moisture, are the key factors influencing the distribution and severity of fusarium head blight caused by F. graminearum (Shaner 2003; Stack 1999; Sutton 1982; Xu 2003). Moisture appears to be the most important environmental factor influencing the severity of infection caused by F. graminearum in small grain cereals, given...
that fusarium head blight development can occur at temperatures that range from approximately 9 °C to 30 °C (Anon. 2011; de Wolf et al. 2003; McMullen et al. 1997a; Shaner 2003; Stack 1999).

Known Distribution

Fusarium graminearum has been reported wherever wheat is grown (Sutton 1982; CAB International 2003; Goswami and Kistler 2004), and infection has reached epidemic proportions in the United States over the last decade (O'Donnell et al. 2000). In South America, *F. graminearum* persists in southern Brazil and northern Argentina, while in Africa it plagues eastern South Africa and countries along the south coast of the Mediterranean (Wang et al. 2011). *Fusarium graminearum* persists within all of central Europe and southwestern Russia, and infects wheat fields grown along the eastern coast of China, and further inland where irrigation is used (Hope 2005; Qu et. al. 2008). In North America, increased levels of *Fusarium* head blight and percentage seed infection with *F. graminearum* have been associated with wheat under irrigation compared with dryland production (Clear and Patrick 2010; Strausbaugh and Maloy 1986; Turkington et al. 2005).

Description and Biology

Airborne ascospores produced by *G. zeae*, the sexual stage of *F. graminearum*, fall on flowering spikelets of wheat, germinate and enter the plant through natural openings, such as degrading anther tissue or stomates (Bushnell et al. 2003; Trail 2009). The fungus then grows, spreading through the xylem and pith of the wheat. As colonization continues, tissue becomes bleached and necrosis occurs (Figure 1).

Following infection, the fungus expresses genes for mycotoxin production, including DON, which causes shriveled, undersized grains known as tombstones (Trail 2009).

Fusarium graminearum has both sexual and asexual lifecycles (Figure 2) (Mathre 1997; Parry et al. 1995). Sexual reproduction takes about two weeks, and since *F. graminearum* is homothallic, it does not need two parents. Meiosis produces ascospores, which are forcibly discharged into the air through flask-shaped perithecia. Asexual conidia are produced during especially wet periods, and are moved via rain-splash dispersal. Conidia also overwinter on crop residues.

Host Crops and Other Plants

Fusarium graminearum affects many cereal crops. The main host crops are wheat (*Triticum* spp.), and barley (*Hordeum* spp.); however, rye (*Secale cereale*) and triticale (*X Triticosecale*) can also be affected (Parry et al. 1995). *Fusarium graminearum* causes head blight or ‘scab’ on rice (*Oryza* spp.), oats (*Avena* spp.) and Gibberella stalk and ear rot disease on maize (*Zea* spp.), and can also infect other plant species without causing disease symptoms. Other host genera include *Agropyron*, *Agrostis*, *Bromus*, *Calamagrostis*, *Cenchrus*, *Cortaderia*, *Cucumis*, *Echinocloa*, *Glycine*, *Hierochloe*, *Lolium*, *Lycopersicon*, *Medicago*, *Phleum*, *Poa*, *Schizachyrium*, *Secale*, *Setaria*, *Sorghum*, *Spartina*, and *Trifolium* (Farr et al. 1989; Goswami and Kistler 2004).

Potential Distribution

CLIMEX (Sutherst et al. 2007) was used to infer potential distribution and abundance of *F. graminearum* based on knowledge regarding prevailing conditions where the species exists. CLIMEX calculates an Ecodimatic Index (EI) that describes the suitability of locations for growth and survival. The EI is defined by variables that reflect conditions during the growing season (Growth Index) combined with variables that describe the effect of stress (Stress Index).

Temperature parameters were initially based on published information related to FHB biology (Anderson 1948; Anon. 2011; Clear and Patrick 2010; Doohan et al. 2003; McMullen et al. 1997; Parry et al. 1995; Shaner 2003; Sutton 1982; Xu 2003). Adjustments were made to reflect the known distribution and severity of FHB in the eastern prairies of Canada, especially Manitoba, and Prince Edward Island on the east coast of Canada (Clear and Patrick 2010; Gilbert and Tekauz 2000; Martin and Johnston 1997; Martin and MacLeod 1991; Tekauz et al. 2000).

Moist conditions resulting from high relative humidity, dew, rainfall or irrigation during flowering are critical for head infection (Mathre 1997; Wiese 1987). Much research indicates that high levels of moisture are associated with infections (e.g., Anderson 1948; McMullen et al. 1997a; De Wolf et al. 2003). Overall, adequate periods of either high humidity or surface wetness over successive days are required for FHB epidemics to occur. Soil moisture parameters were fitted iteratively to distribution data on FHB at Manitoba and Prince Edward Island where FHB is an established problem. As suggested pre-

![Figure 2. Fusarium graminearum life cycle (Trail 2009).](image-url)
Cold Stress was not used in the model, as *F. graminearum* overwinters in the coldest grain-growing areas. Wet Stress parameters have minimal impact worldwide, although some Wet Stress does accumulate in small areas of Colombia, Sierra Leone, and in parts of Asia. Heat Stress precludes persistence across the globe where temperatures regularly exceed 35 °C. There are areas of limiting Dry Stress on all continents. A PDD value of 300 was set to limit the distribution in Norway, whilst retaining as suitable the areas shown in Lanseth and Elen (1997) and Koziak et al. (2004). The PDD value has minimal impact in the southern hemisphere, only precluding *F. graminearum* from persisting in the coldest areas of the Andes and in Tierra del Fuego. Its impact is greatest in the northern hemisphere, where most of the Arctic Circle and some surrounding areas are made unsuitable.

To verify the model (Table 1) for temperate northern climates, results were compared with independent data for the observed distribution of FHB for northern European countries (Baumgardt et al. 2008; Börjesson 2010; Bottalico 1998; Bottalico and Perrone 2002; CAB International 2003; Elen et al. 1997; Elen et al. 1997; Fredlund et al. 2008; Gagkaeva et al. 2004; Henriksen 1999; Hofgaard et al. 2010; Koziak et al. 1997, 2003, 2004; Langseth and Elen 1996, 1997; Waalwijk et al. 2003; Yli-Mattila et al. 2002, 2008, 2010). The EI values are consistent with the known northern European occurrences of this disease and the projected range is also consistent with distribution data available elsewhere (Fernandes et al. 2004) (Figure 3).

Table 1. CLIMEX Parameter Values for *Fusarium graminearum*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM0</td>
<td>lower soil moisture threshold</td>
<td>0.2</td>
</tr>
<tr>
<td>SM1</td>
<td>lower optimum soil moisture</td>
<td>0.45</td>
</tr>
<tr>
<td>SM2</td>
<td>upper optimum soil moisture</td>
<td>1.5</td>
</tr>
<tr>
<td>SM3</td>
<td>upper soil moisture threshold</td>
<td>2.5</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DV0</td>
<td>lower threshold</td>
<td>9 °C</td>
</tr>
<tr>
<td>DV1</td>
<td>lower optimum temperature</td>
<td>20 °C</td>
</tr>
<tr>
<td>DV2</td>
<td>upper optimum temperature</td>
<td>25 °C</td>
</tr>
<tr>
<td>DV3</td>
<td>upper threshold</td>
<td>35 °C</td>
</tr>
<tr>
<td>Heat Stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTHS</td>
<td>heat stress temperature threshold</td>
<td>35 °C</td>
</tr>
<tr>
<td>THHS</td>
<td>temperature threshold stress accumulation</td>
<td>0.005 week⁻¹</td>
</tr>
<tr>
<td>Wet Stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMDS</td>
<td>soil moisture dry stress threshold</td>
<td>0.2</td>
</tr>
<tr>
<td>HDS</td>
<td>stress accumulation rate</td>
<td>-0.01 week⁻¹</td>
</tr>
<tr>
<td>Dry Stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMWS</td>
<td>soil moisture wet stress threshold</td>
<td>2.5</td>
</tr>
<tr>
<td>HWS</td>
<td>stress accumulation rate</td>
<td>0.01 week⁻¹</td>
</tr>
<tr>
<td>Threshold Annual Heat Sum</td>
<td>number of degree-days above DV0 needed to complete one generation</td>
<td>300 °C days</td>
</tr>
<tr>
<td>Irrigation Scenario</td>
<td>2.5 mm day⁻¹ as top-up throughout the year</td>
<td></td>
</tr>
</tbody>
</table>
An irrigation scenario of 2.5 mm day-1 applied as top-up increases both the potential range of *F. graminearum* as well as the suitability of areas already within the modelled range (Figure 4).

Potential Impact in Africa

The projected potential distribution in Africa (Figure 5) matches the known distribution of *F. graminearum*, and indicates areas at climatic risk.

Figure 4. Modelled global climate suitability for *Fusarium graminearum* as a composite of natural rainfall and irrigation based on the irrigation areas identified in Siebert et al. (2005). Location records taken from GBIF.

Figure 5. Modelled climate suitability of Africa for *Fusarium graminearum* as a composite of natural rainfall and irrigation based on the irrigation areas identified in Siebert et al. (2005). Location records taken from GBIF.
References

ACKNOWLEDGEMENTS

HarvestChoice would like to acknowledge Noboru Ota for spatial data analysis and the production of all maps. This brief was prepared with support from the Bill and Melinda Gates Foundation by way of the HarvestChoice project with additional support from the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and The International Science and Technology Practice and Policy Center (InSTePP), University of Minnesota.

ABOUT HARVESTCHOICE

HarvestChoice generates knowledge products to help guide strategic investments to improve the well-being of poor people in sub-Saharan Africa through more productive and profitable farming. Learn more at www.harvestchoice.org.
Revision History

Figure 4 was a duplicate of Figure 3 in the original September 2014 publication. The revised March 2016 version contains the correct figure.