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1. Introduction

Particulate pollution, especially PM> s, is thought to be the form of pollution with the most
serious human health impacts (WHO, 2013). It is estimated that PM» s exposure causes 3.1
million deaths a year, globally, and any level above zero is deemed unsafe, i.e. there is no
threshold above zero below which negative health effects do not occur (WHO 2013). Black
carbon is an important fraction of PM2.5 pollution (Vidanoja et al., 2002) that may contribute
significantly to anthropogenic radiative forcing (Bond et al., 2013) and, therefore, there may
be significant co-benefits to reducing its concentration (Victor et al., 2015). Though the
environmental Kuznets curve (EKC) was originally developed to model the ambient
concentrations of pollutants, most subsequent applications focused on pollution emissions. Yet,
it would seem more likely that economic growth could eventually reduce the concentrations of
local pollutants than emissions (Selden and Song, 1994; Stern et al., 1996). Here, we examine
the role of income, convergence, and time related factors in explaining changes in PMas
particulate pollution in a global panel of countries between 1990 and 2010. We use a recently
developed model that integrates the EKC and convergence approaches. We find that economic
growth has positive but relatively small effects, time effects are also small but larger in
wealthier and formerly centrally planned economies, and, for our main dataset, convergence
effects are small and not statistically significant. The surprising finding is that there isn’t an
EKC even for local pollution concentrations, though the effects of economic growth are much

smaller than they are for emissions of carbon and sulfur dioxide.

The environmental Kuznets curve (EKC) has been the dominant approach among economists
to modeling ambient pollution concentrations and aggregate emissions since Grossman and
Krueger (1991) introduced it a quarter of a century ago. The EKC is characterized by an income
turning point — the level of GDP per capita after which economic growth reduces rather than
increases environmental impacts. Though the EKC was originally developed to model the
ambient concentrations of pollutants, most subsequent applications have focused on pollution
emissions and in particular carbon dioxide and sulfur dioxide (Carson, 2010). Recent studies
using global data sets find that, in fact, income has a monotonic positive effect on the emissions
of both these pollutants (Wagner, 2008; Vollebergh et al., 2009; Stern, 2010; Anjum et al.,
2014).

Both Selden and Song (1994) and Stern et al. (1996) noted that ambient concentrations of
pollutants were likely to fall before emissions did. Stern (2004) suggests that this may be due

to both the decline in urban population densities and the decentralization of industry that tend



to accompany economic growth. Furthermore, actions through which governments can try to
reduce local air pollution include moving industry outside of populated areas and building taller
smokestacks. The latter reduced urban air pollution in developed countries in the 20" Century
at the expense of increasing acid rain in neighboring countries and the formation of sulfate
aerosols (Wigley and Raper, 1992). Additionally, pollutants with severe and obvious human
health impacts such as particulates are more likely to be controlled earlier than pollutants with
less obvious impacts such as carbon dioxide (Shafik, 1994). Despite this, relatively little recent

research has attempted to apply the EKC to pollution concentrations rather than emissions.

More recently, it has become popular to model the evolution of emissions using convergence
approaches. Pettersson ef al. (2013) provide a review of the literature on convergence of carbon
emissions. There are three main approaches to testing for convergence: sigma convergence,
which tests whether the dispersion of the variable in question declines over time using either
just its variance or its full distribution (e.g. Ezcurra, 2007); stochastic convergence, which tests
whether the time series for different countries cointegrate; and beta convergence, which tests
whether the growth rate of a variable is negatively correlated to the initial level. We are not
aware of attempts to test for convergence in pollution concentrations rather than emissions.
Yet, it seems reasonable that high concentrations of pollution would encourage defensive

action to reduce that pollution (Ordas Criado et al., 2011).

Sanchez and Stern (2016) propose a regression model that nests both the EKC and beta
convergence models, which can be seen as an extension of Ordas Criado et al.’s (2011) model
to also include the EKC effect. The model allows us to test the contributions of economic

growth, convergence, and time effects to the evolution of pollution.

Our main results use population-weighted estimates of national average concentrations of
PM: 5 pollution from the World Bank Development Indicators. These data are based on Brauer
et al. (2016), who used satellite observations of aerosol optical depth, pollution emissions data
to obtain estimates, which were then regressed on the available ground-based observations.
The resulting coefficients were used to project calibrated PM2 s for all parts of the world. To
check robustness we also use the Environmental Performance Index dataset. These data are
based on Boys ef al. (2014) and van Donkelaar ef al. (2015). Neither of these latter studies uses
ground-based ambient observations in deriving their estimates. More details are provided in
the Appendix. Because both these datasets are weighted by population exposure, they most

reflect the concentrations of these pollutants in densely populated areas such as cities. Thus,



though obviously particulates travel between cities and countries in the wind, we are capturing

local pollution to a large extent with this data set.

The next section of the paper reviews previous research on modeling particulate pollution
concentrations. The third section presents our modeling approach, the fourth our data, and the

fifth our results. The sixth section presents our conclusions.
2. Previous Research

Grossman and Krueger (1991) estimated the first EKC models as part of a study of the potential
environmental impacts of NAFTA. They estimated EKCs for SO,, dark matter (fine smoke),
and suspended particles (SPM) using the GEMS dataset. This dataset is a panel of ambient
measurements from a number of locations in cities around the world. Each regression involved
a cubic function in levels (not logarithms) of PPP (Purchasing Power Parity adjusted) per capita
GDP, various site-related variables, a time trend, and a trade intensity variable. The turning
points for SO, and dark matter were at around $4,000-5,000 while the concentration of
suspended particles appeared to decline even at low income levels. However, Harbaugh et al.
(2002) re-examined an updated version of Grossman and Krueger’s data. They found that the
locations of the turning points for the various pollutants, as well as even their existence, were
sensitive both to variations in the data sampled and to reasonable changes in the econometric

specification.

Shafik’s (1994) study was particularly influential, as its results were used in the 1992 World
Development Report. Shatik estimated EKCs for ten different indicators using three different
functional forms. She found that local air pollutant concentrations conformed to the EKC
hypothesis with turning points between $3,000 and $4,000. Selden and Song (1994) estimated
EKC:s for four emissions series: SO,, NO,, SPM, and CO. The estimated turning points were
all very high compared to the two earlier studies. For the fixed effects version of their model
they are (in 1990 US dollars): SO,, $10,391; NO,, $13,383; SPM, $12,275; and CO, $7,114.
This showed that the turning points for emissions were likely to be higher than for ambient

concentrations.

There has been little recent EKC research on particulate pollution. Keene and Deller (2015)
recently published an EKC analysis of PM2.5 concentrations for a cross-section of U.S.
counties. The model includes state dummies and various control variables and they use OLS

and spatial econometric estimators. They find that the peak of the EKC occurs at between



US$24,000 and US$25,500, depending on the estimator used.

Some recent research focuses on Chinese cities. Brajer ef al. (2011) investigate ambient
concentrations of SO», NO», and total suspended particulates and also construct indices of total
air pollution using the Nemerow approach and an alternative proposed by Khanna (2000). Their
data cover the period 1990-2006 for 139 Chinese cities. They use a logarithmic EKC model
with city random effects and a linear time trend with the addition of population density variable.
Using the quadratic EKC model, they estimate the turning point for TSP at RMB 3,794, not
controlling for population density, and at RMB 6,253, controlling for population density.
However, the regression coefficient of the cube of log income in a cubic EKC model is
statistically significantly greater than zero. This second turning point occurs around RMB 125k.
Hao and Liu (2016) estimate EKC models for PM2.5 concentrations and the official Air
Quality Index in a cross-section of 73 Chinese cities in 2013. They find an inverted U shape
curve with highly significant parameter estimates for OLS and SEM estimates, with turning

points of RMB 9k to 40k and PM s, respectively.

3. Models

Our model combines the three main approaches in the literature and includes other possible
drivers of change in concentrations by nesting these existing specifications in a single

regression equation:

Ci = a+ B1G; + B2GioG; + B3Gio + PaCio + Zl/)j Xji + &
j

where 7 indexes countries, 0 indicates the initial year of the sample, and ¢; is a random error
term. C; and G; are the long-run growth rates of concentrations and income, respectively. G;o
is the log of income per capita in the first year in the sample in each country and Cj is the log
of concentrations in the initial year. X is a vector of additional explanatory or “control”
variables. We also estimate models that exclude the control variables, and which exclude the
control and levels variables, G;, and Cj;y. The latter model is analogous to the traditional EKC

model, but estimated using differences rather than levels of the variables.

We compute long-run growth rates using: ¥; = (Y;r — Y;o) /T, where Y is the logarithm of
concentrations or per capita income and 7+1 is the number of years in the sample. By

formulating our model in long-run growth rates we avoid most of the econometric problems



troubling the existing literature on the environmental Kuznets curve, which are discussed in
several recent contributions (Wagner, 2008, 2015; Vollebergh et al., 2009; Stern, 2010;
Anjum et al., 2014).

We subtract the means of all the continuous levels variables (as opposed to growth rates or
dummy variables) prior to estimation. Therefore, the first term on the RHS of the equation, «,
is the growth rate of concentrations when there is no economic growth and all the other
continuous levels variables are at their sample means. This can, therefore, be interpreted as
the average time effect. 8, is an estimate of the income-concentrations elasticity at the
sample mean. The third term tests for the EKC effect. If 3, is statistically significantly
negative and f; is positive, then there is a level of income after which concentrations reduce
with growth. We can find the EKC turning point, z, by estimating the regression without
demeaning G; prior to computing G;,G; and then computing u = exp(—p;/f,) using the
estimated coefficients. If this turning point is within the sample range of income then there is
an environmental Kuznets curve. If 8, is negative, but the turning point is out of sample, we
can still say that there is an EKC effect so that growth has a reduced effect on concentrations

at higher income levels.

The fourth term tests whether concentrations change at a different rate in richer countries in
the absence of growth and the fifth term is intended to model convergence by allowing us to
test for convergence in concentrations using the beta convergence approach. If 5, < 0, t[1[1[]
concentrations converge across countries so that concentrations growth is slower in countries

that commence the period with higher pollution concentrations and vice versa.

A wide variety of “control variables” have been considered in the EKC literature. Some of
these are genuinely exogenous or predetermined, whereas others are variables that typically
change in the course of economic development and might be seen as factors through which
the development process drives concentrations changes. Examples of the latter are
democracy, free press, good governance, lack of corruption, or industrial structure. We are
interested in testing the overall effect of income and economic growth on pollution growth
and so we only include variables that are pre-determined or exogenous to the development

process and found in previous research to be potentially relevant.

Stern (2005) first noted that English speaking OECD countries seemed to abate sulfur

emissions less and Germanic and Scandinavian countries more. Stern (2012) related this to



differences in legal origins (La Porta et al., 2008) and found that energy intensity was lower
in non-English legal origin countries, ceteris paribus. Fredriksson and Wollscheid (2015)
present evidence that legal origin has a significant effect on environmental policy. Here, we
include dummies for French and German legal origin. We also control for whether a country
was a formerly centrally planned country using a dummy variable. We expect that market

reform would reduce the level of pollution, ceteris paribus.

We also control for the effect of climate, by using historical country averages of temperatures
over the three summer months and the three winter months, annual precipitation, and average
elevation above sea level. The latter two variables are converted to logarithms. We also
control for landlocked status, as landlocked countries are less likely to have the higher wind
speeds seen in coastal regions. Indonesia, Singapore and Malaysia experienced very high
levels of pollution in 1990 associated with the periodic haze episodes due to forest fires in the
region (Osterman and Brauer, 2001). We add a dummy for these three countries. Finally, we
include the average of the log of population density, which might be expected to increase the
concentration of pollution, ceferis paribus. Also, the higher population is, the more people
will be exposed to pollution and the more likely that action might be taken (Ordas Criado et
al.,2011).

When observations on variables are aggregated into regions — here countries - of different
sizes, it is likely that much of the local variation across individual locations is cancelled out
in the larger regions while more idiosyncratic variation remains in smaller regions. This
means that the error terms in a regression using such aggregated data are likely to be
heteroskedastic with the error variance proportional to the district size (Maddala, 1977; Stern,
1994). As our data consists of population-weighted concentrations by country, the
appropriate measure of region size is population. To address this grouping heteroskedasticity
we estimate the models using weighted least squares, where the weights are the square root of
population, and heteroskedasticity-robust standard errors. Using weighted least squares
(WLS) can result in large efficiency gains over using ordinary least squares (OLS) even when
the model for reweighting the data is misspecified. But in case there is misspecification,
heteroskedasticity robust standard errors should be used to ensure correct inference (Romano
and Wolf, 2014). We measure goodness of fit using Buse’s (1973) R-squared, weighting the

squared deviations by population.



We assume that the explanatory variables in our regressions are exogenous. Clearly, there can
be no reverse causality from growth rates to initial values. There may potentially be apparent
feedback from the growth rate of concentrations to the growth rate of income. This is because
pollution growth may be correlated with the growth of energy use and energy use contributes
to economic growth. Csereklyei and Stern (2015) argue that this bias will be fairly small even
when the dependent variable is energy use and so the estimated energy-income elasticity will
not be far from the causal effect size of an exogenous change in income. Here, the potential
bias should be smaller still. Omitted variables bias is an important issue as there are many
variables that may be correlated with the level of GDP or GDP growth, and which may help
explain concentrations growth. Our differenced approach should help reduce this bias
(Angrist and Pischke, 2010). Finally, measurement error is a significant issue in the
estimation of GDP and pollution concentrations. Obviously there are significant uncertainties
in the concentrations data, which are modeled based on satellite and ground-based
measurements. Measurement error is likely greater for some of the smaller economies.
Weighted least squares can, therefore, help reduce the effects of this measurement error. A
common approach to dealing with reverse causality, omitted variables bias, and measurement
error is to use instrumental variables. However, it is hard to find plausible instrumental

variables in the macro-economic context (Bazzi and Clemens, 2013).
4. Data

Details of the data sources are presented in the Appendix.

Table 1 presents some descriptive statistics for our variables. These are the variables sourced
from the World Bank Development Indicators used in the main analysis. The PMa;s
concentration exposure level in 1990 is mostly above the WHO guideline of 10 ug/m?® with a
mean and median of 18-19 pg/m>. The range of observations is quite large, from below 1 pg/m?
to over 76 ng/m’ in Mauritania. In 1990, Singapore had the second highest level of PM, s at
49.8 pug/m>. But this was anomalously high as discussed above. As of 2005, 89% of the world’s
population was exposed to annual mean PM» s concentration levels higher than the WHO
concentration guideline of 10 pg/m*, while approximately two thirds of countries were in this
category (Brauer ef al., 2012). This difference is due to the large populations in East and South
Asia, which have high PM2 s concentration levels. In the base year of the study, 1990, 67% of

countries in the sample had exposure levels higher than the WHO recommendation.



The level of initial per capita GDP has a wide range from $365 to $114,519 in constant 2011
PPP Dollars. While mean income per capita is $11,895, the median value is only half the
mean, at $6,440. The descriptive statistics for the continuous control variables exhibit the

wide range that would be expected in a globally representative sample.

Table 1 also presents the annual growth rates of income per capita and pollution. GDP per
capita grows at an average rate of 1.76% p.a. over the period 1990 to 2010. The median is
only 0.13 percentage points lower. The income growth rates are mostly positive, however 24
countries had negative growth over the period. There are two outliers with GDP per capita
growth rates larger than 9% p.a. — China and Equatorial Guinea. Compared to GDP growth
rates, the growth rates of pollution exposure are mostly modest. The mean rate of decline was
-0.35% p.a., and the median 0.17% p.a. 78 countries had positive growth in PM 5 exposure
over the period. The highest growth was in Micronesia, averaging 6.5% p.a., while the most
rapid decrease was observed in Singapore averaging -6.9% p.a. But in both these countries
there was a large change in one decade but not the other. In fact, while the mean annual rate
of decline of PM> 5 in the 1990s was 0.88%, PM> s concentrations on average increased in the

following decade with an average annual growth rate of 0.18%.

Figure 1 presents the data in growth rates form. There would not be much point in presenting
the actual concentrations of pollution as the mean levels are swept out when growth rates are
computed and much of the variation in levels reflects idiosyncrasies of geography. The size of
the bubbles is proportional to population in 1990, which is used to weight the observations in
the regression analysis. The large circle to the right is, of course, China, with India to its left.
The USA is the largest circle among the countries with negative pollution growth rates.
Indonesia is to its lower right. As we can see, both pollution and GDP per capita rose quite
strongly in the World’s two most populous countries. This and the negative pollution growth
rates in many of the countries with moderate growth suggest that economic growth should have
significant effects on pollution growth. OLS estimates are likely to be influenced by some of
the small outlier countries such as Equatorial Guinea on the far right of the Figure, which is

mitigated by using WLS to estimate our main models.
5. Results

Table 2 presents the main results, which use World Bank pollution and GDP data. The simple
EKC model has a turning point at $3,336, which is statistically significantly different from zero.



The concentrations-GDP elasticity at the sample mean is -0.18, though not very precisely
estimated. It is negative because the income turning point is below the mean income in the
sample. The time effect is small and not statistically significant. These results would seem to
strongly support the environmental Kuznets curve story and the hypothesis that the income
turning point is lower for concentrations of local pollutants than it is for emissions of pollutants
such as sulfur dioxide. The second column adds the two initial levels terms. The EKC turning
point is now much higher, but very imprecisely estimated. In addition, the concentrations-GDP
elasticity at the sample mean is now positive. As expected, the coefficient of initial pollution
is negative indicating beta convergence. The coefficient of initial income is also negative and

very significant. This implies that concentrations fall faster in richer countries, ceteris paribus.

When we add the control variables, the concentrations-income elasticity rises to 0.21 at the
sample mean and is highly significant and the interaction term, which tests the EKC hypothesis,
is significant at the 10% level. However the EKC turning point rises further to $66,728 so that
the EKC is effectively monotonic. The effects of the initial levels are reduced in strength and
statistical significance. Of the control variables, concentrations rise faster (or fall slower) in
countries with higher summer, lower winter temperatures, and higher precipitation and rise
slower (or fall faster) in formerly centrally planned countries as we would expect. Of these, the
effect of precipitation is unexpected, as higher precipitation would be expected to clear the air.
Many of the countries where concentrations fell strongly are in Europe and have moderate
levels of rainfall around 500-1000mm, while many of the countries where concentrations rose
most strongly happen to be in areas of heavy rainfall in the tropics. This effect might be related,
therefore, to deforestation. The Malaysia, Singapore, and Indonesia dummy has a highly

significant and negative effect on concentrations growth.

Results are, therefore, similar to those found by Anjum et al. (2014) for sulfur and carbon
emissions, but the effect of economic growth is far smaller and even smaller than that for non-
industrial greenhouse gas emissions (Sanchez and Stern, 2016). The convergence effect is also
weaker than for industry related emissions. When we control for other relevant variables there

is not even an environmental Kuznets curve for particulate concentrations.

We also present results for the following variations, to test robustness to different data sources,

time periods, and estimation methods:

1. Use OLS instead of WLS.
2. Split the data used in Table 2 into two time periods — 1990-2000 and 2000-2010.



3. Use income from the Penn World Table instead of the World Bank.
4. Use pollution data from EPI instead of the World Bank.

We report these results for the full model in Table 3. Looking first at the OLS results, the main
differences are that both income terms are much smaller and not significant, the convergence
effect is highly significant, the effects of elevation and legal origin are larger and much more
significant, and the effects of centrally planned status are smaller. On the other hand, these
results are not dramatically different from the WLS results. One of the advantages of the latter
are that they are much more robust to changes in the sample of countries, as we go to the

remaining analyses.

The results from splitting the sample into 1990-2000 and 2000-2010 periods in the Columns 2
and 3 differ in somewhat expected ways from the 1990-2010 estimates in Table 2. Again the
EKC is effectively monotonic but in one case there is an out of sample turning point and in the
other a minimum near zero. The income elasticity at the sample mean is higher in the second
period. One reason for this is that income increases from the first to second period. The effects
of central planning and the Malaysia, Singapore, and Indonesia dummy decrease in the second
period, as we would expect. Unexpected results are that elevation has a positive effect in the
first period and precipitation only in the second period. Though these results show a stronger
effect of growth in the second period, the effect of growth on concentrations is still relatively
small compared to estimates for emissions of other pollutants related to industrial activity but
about the same as for non-industrial greenhouse gas emissions, which are primarily from land-

use change (Sanchez and Stern, 2016).

Results using income data from the Penn World Table in Column 4 are very similar to those
for the World Bank income data in Table 2 but there are more statistically significant
coefficients including for elevation, landlockedness, and French legal origin. However, central

planning is not statistically significant here.

The results in the final column using EPI data for 2000-2010 and World Bank income data are
similar in some respects to the 2000-2010 World Bank pollution data estimates in Column 3.
The concentrations-income elasticity is 0.38 and very statistically significant. In contrast to the
World Bank pollution data, the convergence effect is quite large and statistically significant.
Also, landlockedness and French legal origin now have significant negative effects and

population density a significant positive effect.



6. Conclusions

The evidence presented in this article shows that economic growth has positive though
relatively small effects on the growth in PM2s concentrations. For our models that include
convergence terms and control variables there is no sign of in-sample income turning point.
However, when we estimate a model analogous to the classic EKC model we find a turning
point of around $3,000 per capita. Our results suggest that prior studies that find a relatively
low income turning point for the environmental Kuznets curve for particulate concentrations
(e.g. Grossman and Krueger, 1991; Shafik, 1994; Brajer et al., 2011; Hao and Liu, 2016) suffer
from omitted variables bias. Our results are more similar to Keene and Deller (2015) who found

a much higher, but still in-sample, turning point for U.S. counties.

On the other hand, the negative time effect is stronger in richer countries, but this is unrelated
to increases in income. What is clear is that this behavior is very different from emissions of
sulfur or industrial greenhouse gases where typically a strong positive effect of economic
growth is found at the sample mean income (Anjum et al., 2014; Sanchez and Stern, 2016).
That there is not even an EKC for particulate pollution, which is a classic example of a mostly
local pollutant that impacts human health, casts further doubt on the general usefulness of the

EKC model.
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Appendix

The pollution datasets used in this paper have slightly different methodologies and data
sources. Both datasets used provide population-weighted mean annual exposure to PM; 5 in

micrograms per m? for all countries across the globe.

The Environmental Performance Index (EPI) dataset derives estimates from the studies of
van Donkelaar et al. (2015) and Boys et al. (2014). Both these studies used the GEOS-Chem
chemical transport model (CTM) to relate satellite observations of Aerosol Optical Depth
(AOD) to ground-level PM; 5 concentration levels. The two papers used the satellite
instruments named MISR and SeaWiFS, while van Donkelaar et al. additionally utilized
MODIS. The spatial resolution of the concentration data differed from grids of 10x10km in
van Donkelaar et al. and 1x1 degree in Boys et al. While the latter reported concentration
values for each grid, the former additionally calculated national population-weighted
exposure levels, as the EPI reported, using population data from the Global Rural Urban
Mapping Project database. van Donkelaar ef al. additionally compared the estimates with
ground-based observations from trusted established networks in North America and Europe
and 210 other global sites from other publications. The satellite observations of North
America closely matched the ground-based findings, with a regression slope of 0.96 where
the ground-based data are the dependent variable. Globally, however, their estimates had a

poorer fit, with a regression slope of 0.68.

The World Bank Development Indicators dataset is based on the study of Brauer et al. (2016).
As with van Donkelaar et al. and Boys et al., this study used AOD data obtained from the
MODIS, MISR and SeaWiFS satellite instruments, with the additional use of the CALIOP
instrument. As above, Brauer ef al. utilized the GEOS-Chem CTM to relate the satellite AOD
observations to ground-level PM» s concentrations. This study, however, additionally used the
TMS5-FASST model to provide estimates of PM» 5 concentrations from pollutant emissions
and meteorological data. The mean of the satellite and TMS5 values for each grid were then
regressed on the available ground-based observations, and the resulting coefficients used to
produce ‘calibrated’ PMa s estimates across the globe based on the means of the satellite and
TMS5 data. The spatial resolution used by Brauer et al. is 0.1x0.1 degree. To calculate
national population-weighted exposure levels, population data was used from the Gridded

Population of the World (GPW) v3.



These data were downloaded as follows:

EPI (Environmental Performance Index) (2015), 2014 EPI Downloads, Yale University,
viewed 11/2015, at <http://www.epi.yale.edu/downloads>.

World Bank (2015), PM2.5 air pollution, mean annual exposure (micrograms per cubic
meter), viewed 12/2015, at <http://data.worldbank.org/indicator/EN.ATM.PM25.MC.M3>.

GDP, population, and area data are from the World Bank Development Indicators. We also
used income and population data from the Penn World Table (Feenstra et al., 2015) as a
robustness check. The dummy variables for legal origin came from LaPorta et al. (2008). The
dummy variables for whether or not a country is landlocked and for centrally planned

economies came from the NYU Development Research Institute (2009):

NYU Development Research Institute 2009, Global Development Network Growth Database,
viewed 07/2015  <http://www.nyudri.org/resources/global-development-network-
growth-database /%3E

The climate variables used in this study come from the Climate Research Unit of the University
of East Anglia (Harris et al. 2014). The temperatures are provided as monthly means for each
country, which is then averaged for each season used (winter and summer) and over the time
period of the study. The temperatures are given in degrees Celsius. Precipitation is given as
total annual precipitation level in millimeters for each country and is then averaged over 1990-
2010. Amante and Eakins (2009) provided the observations of each nation’s mean elevation

above sea level in meters.


http://www.nyudri.org/resources/global-development-network-growth-database/%3e
http://www.nyudri.org/resources/global-development-network-growth-database/%3e

Table 1: Descriptive Statistics

Variable Mean Median Min Max
PMs exposure 1990 19.35 18.06 1.16 76.51
(hg/m’)
GDP per capita 1990
(2011 $PPP) 11,895 6,440 375 114,519
Growth rate of PMj 5
concentrations 1990- -0.35% -0.17% -6.92% 6.50%
2010 (% p.a.)
Growth rate of GDP
per capita 1990-2010 1.76% 1.63% -3.77% 17.80%
(% p.a.)
Mean Summer
Mepesiiue (OC) 24.0 25.3 8.5 36.9
Mean Winter
Mesmypesin (O0) 14.1 18.6 -22.6 28.6
Annual Precipitation 1221 1,054 41 3,653
(mm)
B i e 625 442 9 3,186
elevation (masl)
Population Density 357 62 1 19,890

(people/km?)




Table 2. Main Results: World Bank Pollution and GDP 1990-2010

Variable EKC EKC & Convergence Full Model
Constant -0.0009 -0.0021 -0.0030
(0.0040) (0.0028) (0.0022)
G, -0.1760 0.0637 0.2089***
(0.1479) (0.1487) (0.0694)
G, X Ggy; -0.2880%** -0.0892 -0.0876*
(0.0861) (0.1102) (0.0482)
Go; -0.0069%** -0.0043**
(0.0024) (0.0018)
Coi -0.0078* -0.0048
(0.0044) (0.0032)
Mean Summer Temperature 0.0020%**
(0.0004)
Mean Winter Temperature -0.0005**
(0.0002)
Log Annual Precipitation 0.0063***
(0.0024)
Log Mean Elevation 0.0018
(0.0016)
Landlocked -0.0003
(0.0027)
French Legal Origin -0.0004
(0.0028)
German Legal Origin -0.0033
(0.0033)
Centrally planned -0.0085**
(0.0036)
Malaysia, Singapore, and -0.0346%***
Indonesia (0.0046)
Log Population Density -0.0022
(0.0015)
EKC income per capita turning 3,336%** 12,557 66,728
point ($PPP) (1,172) (31,442) (125,076)
n 158 158 132
Adjusted Buse R? 0.5296 0.6318 0.8575

Notes: All variables demeaned (except LR growth rates and dummies). Heteroskedasticity-robust standard

error in parentheses. Significance Levels: * 10%, ** 5%, *** 1%



Table 3. Robustness Checks

Variable OLS WB Data WLS WB Data WLS WB WLS PWT WLS EPI
1990-2010 1990-2000 Data Income Pollution
2000-2010 1990-2010 2000-2010
Constant 0.0004 -0.0054*** -0.0033 -0.0025 0.0073
(0.0021) (0.0018) (0.0037) (0.0026) (0.0047)
G, 0.0307 0.1838*** 0.4309%** 0.2343%** 0.3729%**
(0.0540) (0.0510) (0.1398) (0.0702) (0.1101)
G, X Gy; -0.0247 -0.0292 0.1006 0.1453%%* 0.0265
(0.0412) (0.0509) (0.0740) (0.0651) (0.0971)
Goi -0.0021* -0.0056*** -0.0052* -0.0106*** -0.0118***
(0.0011) (0.0019) (0.0028) (0.0021) (0.0030)
Coi -0.0056*** -0.0039 -0.0028 -0.0051 -0.0140%***
(0.0018) (0.0031) (0.0050) (0.0031) (0.0029)
Mean Summer 0.0013*** 0.0021*** 0.0019%*** 0.0023*** 0.0030%**
Temperature (0.0004) (0.0005) (0.0007) (0.0004) (0.0007)
Mean Winter -0.0002 -0.0004* -0.0003 -0.0008*** -0.0013***
Temperature (0.0002) (0.0003) (0.0004) (0.0003) (0.0003)
Log Annual 0.0016 0.0048 0.0083*** 0.0096*** 0.0034
Precipitation (0.0018) (0.0031) (0.0032) (0.0031) (0.0030)
Log Mean Elevation 0.0040*** 0.0069*** 0.0006 0.0049%*** 0.0028
(0.0008) (0.0021) (0.0022) (0.0016) (0.0020)
Landlocked 0.0011 -0.0037 -0.0030 -0.0081%*** -0.0117**
(0.0023) (0.0028) (0.0037) (0.0024) (0.0052)
French Legal Origin -0.0034* -0.0012 -0.0020 -0.0046* -0.0194***
(0.0019) (0.0021) (0.0043) (0.0026) (0.0046)
German Legal Origin -0.0097*** -0.0054 0.0013 -0.0042 -0.0049
(0.0034) (0.0053) (0.0055) (0.0040) (0.0053)
Centrally planned -0.0047 -0.0087* -0.0072 0.0028 -0.0013
(0.0032) (0.0053) (0.0057) (0.0040) (0.0060)
Malaysia, Singapore, -0.0237*%** -0.0556%*** -0.0193** -0.0331%** 0.0044
and Indonesia (0.0029) (0.0030) (0.0095) (0.0043) (0.0053)
Log Population 0.0004 0.0021 -0.0019 0.0016 0.0068***
Density (0.0007) (0.0025) (0.0029) (0.0016) (0.0017)
EKC income per 21,386 3,352,581 97 963 0.01
capita turning point (74,564) (40,156,293) (249) (549) (0.26)
($PPP)
n 132 132 149 142 150
Adjusted Buse R? 0.5071 0.8777 0.8730 0.8258 0.8630

Notes: All variables demeaned (except LR growth rates and dummies). Heteroskedasticity-robust standard
error in parentheses. Significance Levels: * 10%, ** 5%, *** 1%



Figure 1. Growth Rates of PM 2.5 Pollution and GDP per Capita 1990-2010
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Notes: Size of bubbles is proportional to population in 1990. Data source is World Bank
Development Indicators.
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