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Abstract

Though the environmental Kuznets curve (EKC) was originally developed to model the
ambient concentrations of pollutants, most subsequent applications have focused on
pollution emissions. Yet, it seems more likely that economic growth could eventually
reduce the concentrations of local pollutants than emissions. We examine the role of
income, convergence, and time related factors in explaining recent changes in PM 2.5
and PM 10 particulate pollution in 50 Chinese cities using new measures of ambient air
guality that the Chinese government has published only since the beginning of 2013. We
use a recently developed model that relates the rate of change of pollution to the growth
of the economy and other factors as well as the traditional environmental Kuznets curve
model. Pollution fell sharply from 2013 to 2014. We show that economic growth,
convergence, and time effects all served to lower the level of pollution. The results also
demonstrate the relationship between the two modeling approaches.
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Economic Growth and Particulate Pollution
Concentrations in China

1. Introduction

There has been much recent concern about hazardous levels of particulate pollution in some
Chinese cities (e.g. Wong, 2015), which the Chinese government has been attempting to
reduce (Victor et al., 2015). In this paper, we examine the role of income, convergence, and
time related factors in explaining recent changes in PM 2.5 and PM 10 particulate pollution
in 50 Chinese cities. We use a recently developed model that relates the rate of change of
pollution to the growth of the economy and other factors, as well as the traditional
environmental Kuznets curve model. We also use new measures of ambient air quality that
the Chinese government has published only since the beginning of2013. Particulate pollution
fell sharply from 2013 to 2014. We show that economic growth, convergence, and time

effects all served to lower the level of pollution.

The environmental Kuznets curve (EKC) has been the dominant approach among economists
to modeling ambient pollution concentrations and aggregate emissions since Grossman and
Krueger (1991) introduced it a quarter of a century ago. The EKC is characterized by an
income turning point — the level of GDP per capita after which economic growth reduces
rather than increases environmental impacts. Though the environmental Kuznets curve
(EKC) was originally developed to model the ambient concentrations of pollutants, most
subsequent applications have focused on pollution emissions and in particular carbon dioxide
and sulfur dioxide (Carson, 2010). Recent studies using global data sets find that, in fact,
income has a monotonic positive effect on the emissions of both these pollutants (Wagner,

2008; Vollebergh et al., 2009; Stern, 2010; Anjum et al., 2014).

Both Selden and Song (1994) and Stern et al. (1996) already noted that ambient
concentrations of pollutants were likely to fall before emissions did. Stern (2004) suggests
that this may be due to both the decline in urban population densities and the decentralization
of industry that tend to accompany economic growth. Furthermore, actions through which
governments can try to reduce local air pollution include moving industry outside of
populated areas and building taller smokestacks. The latter reduced urban air pollution in
developed countries in the 20" Century at the expense of increasing acid rain in neighboring
countries and the formation of sulfate aerosols (Wigley and Raper, 1992). Additionally,

pollutants with severe and obvious human health impacts such as particulates are more likely



to be controlled earlier than pollutants with less obvious impacts such as carbon dioxide
(Shafik, 1994). Despite this, relatively little recent research has attempted to apply the EKC

to concentrations rather than emissions.

More recently, it has become popular to model the evolution of emissions using convergence
approaches. Pettersson et al. (2013) provide a review of the literature on convergence of
carbon emissions. There are three main approaches to testing for convergence: sigma
convergence, which tests whether the dispersion of the variable in question declines over
time using either just its variance or its full distribution (e.g Ezcurra, 2007); stochastic
convergence, which tests whether the time series for different countries cointegrate; and beta
convergence, which tests whether the growth rate of a variable is negatively correlated to the
initial level. We are not aware of attempts to test for convergence in pollution concentrations
rather than emissions. Yet, it seems reasonable that high concentrations of pollution would

encourage defensive action to reduce that pollution (Ordés Criado et al.’s, 2011).

Anjum et al. (2014) propose a model that nests both the EKC and beta convergence models.
It can be seen as an extension of Ordas Criado et al.’s (2011) model to also include the EKC
effect. The model allows us to test the contributions of economic growth, convergence, and
time effects to the evolution ofpollution. In this paper, we apply this model to recent data on
concentrations of particulate pollution in Chinese cities. We also estimate the traditional EKC
model The results show that there is a very close relationship between the two approaches in

the two period panel we have here.

The next section of the paper reviews previous research on modeling particulate pollution
concentrations, with particular reference to China. The third section presents our modeling

approach and the fourth our results. The fifth section presents our conclusions.
2. Previous Research

Grossman and Krueger (1991) estimated the first EKC models as part of a study of the
potential environmental impacts of NAFTA. They estimated EKCs for SO,, dark matter (fine
smoke), and suspended particles (SPM) using the GEMS dataset. This dataset is a panel of
ambient measurements from a number of locations in cities around the world. Each
regression involved a cubic function in levels (not logarithms) of PPP (Purchasing Power
Parity adjusted) per capita GDP, various site-related variables, a time trend, and a trade

intensity variable. The turning points for SO, and dark matter were at around $4,000-5,000



while the concentration of suspended particles appeared to decline even at low income levels.
However, Harbaugh et al. (2002) re-examined an updated version of Grossman and
Krueger’s data. They found that the locations of the turning points for the various pollutants,
as well as even their existence, were sensitive both to variations in the data sampled and to

reasonable changes in the econometric specification.

Shafik’s (1994) study was particularly influential, as its results were used in the 1992 World
Development Report. Shafik estimated EKCs for ten different indicators using three different
functional forms. She found that local air pollutant concentrations conformed to the EKC
hypothesis with turning points between $3,000 and $4,000. Selden and Song (1994)
estimated EKCs for four emissions series: SO,, NO,, SPM, and CO. The estimated turning
points were all very high compared to the two earlier studies. For the fixed effects version of
their model they are (in 1990 US dollars): SO,, $10,391; NO,, $13,383; SPM, $12,275; and
CO, $7,114. This showed that the turning points for emissions were likely to be higher than

for ambient concentrations.

While there has been little recent EKC research on particulate pollution, there are a couple of
recent studies for China, which are discussed below. Additionally, Keene and Deller (2015)
recently published an EKC analysis of PM 2.5 for a cross-section of U.S. counties. The
model includes state dummies and various control variables and they use OLS and spatial
econometric estimators. They find that the peak of the EKC occurs at between US$24,000
and US$25,500, depending on the estimator used, which is very similar to their estimate for
PM 2.5 emissions. This is not so surprising given that they use modeled concentrations that
cover all counties in the country rather than the small number of urban locations covered by

most concentrations EKC studies.

Van Donkelaar (2010) showed from satellite data that the highest concentrations of PM 2.5 in
the World were in Eastern China. Only 24 0f350 Chinese prefectures had annual average PM
2.5 concentrations below the World Health Organization guideline of 10 ug/m? between 2001
and 2006 (Han et al., 2014). Zhao et al. (2013) review developments in air pollution and
policy in China between 2005 and 2010. They found that total PM emissions fell by 13%
over that period due to significant efforts at pollution control particularly in the power
generation, cement production, and iron and steel sectors over the 5-year period. PM 10 and
PM 2.5 emissions declined by 10% and 6%, respectively. They also noted that:



“China’s air pollution challenges have been expanding from developed urban areas to
nearby regions... China’s rapid urbanization of relatively small cities and
development policies targeting interior regions have spread economic growth to less
developed areas, resulting in increased industrial production and energy consumption.
Meanwhile, tightened emission controls in the most highly developed, heavily
polluted urban areas has lead to relocation of major emission sources from urban to
rural regions.” (p. 504).

Most research on the relationship between economic growth and air pollution in China also
examines emissions rather than concentrations (e.g. Poon et al., 2006; Song et al., 2008; He,
2009; Cole et al., 2011; Lee and Oh, 2015). However, there are a few studies using

concentrations data.

Brajer et al. (2011) investigate ambient concentrations of SOz, NO2, and total suspended
particulates and also construct indices of total air pollution using the Nemerow approach and
an alternative proposed by Khanna (2000). Their data cover the period 1990-2006 for 139
Chinese cities. They use a logarithmic EKC model with city random effects and a linear time
trend with the addition of population density variable. Using the quadratic EKC model, they
estimate the turning point for TSP at RMB 3,794, not controlling for population density, and
at RMB 6,253, controlling for population density. However, the regression coefficient of the
cube of log income in a cubic EKC model is statistically significantly greater than zero. This

second turning pomt occurs around RMB 125k.

Hao and Yu (2016) estimate EKC models for PM2.5 concentrations and the official Air
Quality Index in a cross-section of 73 Chinese cities in 2013. They find an inverted U shape

curve with highly significant parameter estimates for OLS and SEM estimates, with turning

points of RMB 9k to 40k and PM 2.5, respectively.

3. Models

Based on Anjum et al. (2014), the growth rates model of the relationship between pollution

concentrations and income per capita is:

O =t + eV + o Fi¥y + ¥ o ln + 5 (1)

Where the growth rate of pollution concentrations is given by C; = I:f.'.r - {.'L-_,,j,."T and of
income per capita by ¥; = I:}’,-_-_.- — }'}_Uj IT. C is the log of concentrations and Y is the log of
GDP per capita. 7+/ is the time dimension of the data, the initial year is normalized to 0 so

that 7" indicates the final year, and i indexes the N cities. We deduct the sample mean from



both the levels variables prior to estimation. @, is, therefore, an estimate of the mean of C; for
a city with zero economic growth and with the levels variables at their sample means. This is
equivalent to the average change in the time effect in traditional panel data EKC models. If
ity = 0 then in the absence of economic growth (and when the other variables are at their
mean values) there is on average a reduction in emissions over time, and vice versa. Similarly,
itr; is an estimate of the emissions-income elasticity at the sample mean of log income when

the levels variables are at their sample means.

The third term on the RHS, ¥:¥: ¢, is the interaction between the rate of economic growth and
the initial level of log income. This term is intended to test the EKC hypothesis that there is a
level of income above which economic growth is associated with a decline in concentrations,
ceteris paribus. For the EKC hypothesis to hold, &; must be significantly less than zero. If
we estimate (1) without demeaning ¥j,, then, assuming that &, = {} (where the tilde indicates
the parameter estimate without demeaning) and &, < 0, we can compute the EKC turning
point using ¢ = expl—d. /o, ). We use the delta method to compute the standard error of this
turning point. If i, is significantly less than zero but the EKC turning point is at a very high
level we can conclude that while the emissions-income elasticity is lower for countries with
higher GDP per capita, it does not become negative as would be required for an EKC
downturn. Of course, if &f; =< {} and @, > 0 there will be an income turning point where

pollution is at a mmnimum level mnstead.

The fourth and fifth terms are the initial logs of income and pollution concentrations, which
are intended to test for beta-convergence. If &r; = 0 then there is beta-convergence in the
level of concentrations. The log of income allows the time effect to vary across cities at

different income levels.
We also estimate an “EKC” model where we exclude the two levels variables:

O = oy + a. ¥+ @ FiYy + £ )
and a simple linear model:

O = ety + o F + ¢ 3)

We also estimate the traditional EKC model:



I:1|:.|. =¥ =+ ¥u + .81 :rrl_.l + ﬂ! :rrii + iy (4)

Here all the variables are in log levels and ¥; and ¥, are city and time effects, respectively.
We use the fixed effects estimator to estimate the model. We demean the log of income per
capita prior to computing its square and estimating the model The EKC turning point can be
computed as i = E:-rpli—U.Sﬂlfﬁij where 5 is the parameter estimated without demeaning

the variables. We also estimate the restricted linear model:
I:1|:.|. =¥ -+ ¥u + ﬁl :rrl_.l + L (5)

When T = 2, as is the case for our data set, fixed effects and first differences estimators
produce identical estimates (Wooldridge, 2015, p439). Therefore, in Equations (3) and (5)
i, = [, as the growth rates model is a model in first differences. There is also, therefore, no

concern about spurious regression regarding the fixed effects estimates.

4. Data

We collected annual average PM2.5 and PM10 data in pg/m3 from the 2014 and 2015 China
Statistical Yearbooks. This data is available for 51 key environmental protection cities, whose
data are estimated according to the new Ambient Air Quality Standard (GB3095-2012)
implemented on 1%t January 2013. Therefore, data collected since that date are not
comparable to data from previous years and, so, we only use 2013 and 2014 annual data.
Similarly, Stoerk (2015) shows that misreporting of air quality data for Beijing likely ended
in 2012. Population is based on the sixth China population census in 2010 (Province Report
of Population Census), which we then project to 2013 and 2014 using the growth rates
implied by the city populations in the China City Statistic Yearbook. The latter only included
the population with registration (hukou) in those cities and exclude migrant workers. Gibson
and Li (2015) note that most studies of the Chinese economy use hukou registrations to
measure the population. However, this ignores migrant workers and so can distort estimated
GDP per capital severely. Our combination of census numbers and hukou population growth

should largely alleviate this problem.

We dropped data for Hefei (Capital of Anhui province) because of anomalous population
data. In 2011, the neighboring city of Chaohu was dissolved and parts of its territory merged
mto Hefei and other cities (Zhang, 2011) resulting in a steep jump in Hefei’s population.

The remaining fifty cities are:



Beijing, Changchun, Changsha, Chengdu, Chongqing, Dongguan, Foshan, Fuzhou,
Guangzhou, Guiyang, Haikou, Hangzhou, Harbin, Hohhot, Huizhou, Huzhou, Jiangmen,
Jiaxing, Jinan, Jinhua, Kunming, Lanzhou, Lhasa, Lishui, Nanchang, Nanjing, Nanning,
Ningbo, Qingdao, Quzhou, Shanghai, Shaoxing, Shenyang, Shenzhen, Shijiazhuang, Taiyuan,
Taizhou, Tianjin, Urumqi, Wenzhou, Wuhan, Xian, Xiamen, Xining, Yinchuan, Zhaoging,
Zhengzhou, Zhongshan, Zhoushan, and Zhuhai.

Total GDP in 2013 RMB is from the China City Statistic Yearbook. We divided this data by our
population estimate to obtain GDP per capita.

Table 1 presents summary statistics for our variables. We present the statistics for natural
levels of the variables, as demeaned logs are not very intuitive. Income per capita shows a
more than threefold range across the 50 Chinese cities from the poorest city (Nanning) to the
richest (Beijing). Per capita income rose in all cities from 2013 to 2014 at an average rate of
6.9%, but here too there is a wide range of growth rates from 1.5% in Shenzhen to 9.9% in
Wuhan. Pollution levels vary much more widely with a six-fold difference between the least
polluted cities (Lhasa in 2013 for PM 2.5 and Haikou (Hainan province) in 2014 for PM 2.5
and for both years for PM 10) to the most polluted city — Shijiazhuang, There was a large
average decline in pollution from 2013 to 2014 of 15.5% for PM 2.5 and 14.3% for PM 10.
Again, there was much variation across cities. The largest declines were in Xian and
Shijiazhuang for PM 2.5 and PM 10, respectively, and the largest increases in Zhaoqing
(Guangdong province, PM 2.5) and Beijing (PM 10).

Figures 1 and 2 present the data in levels. The graphs use the 2013-14 mean for each variable.
The patterns for the two sizes of particles are similar with a decreasing variance of pollution
levels with increasing income. Note that the data in the graph are the city means that are first
deducted fromthe data to estimate the fixed effects model and are implicitly eliminated in the
growth rates model. Figures 3 and 4 present the data in growth rates form. There is some
indication of a negative correlation between the growth rates of pollution and income. The

correlation for PM 2.5 is -0.17, while for PM 10 it is only -0.04.

5. Results

Table 2 presents the econometric results for the growth rates models. There is a strong
negative and highly significant time effect of from 10 to 15%. It is impossible to know how
much of this effect represents permanent improvements and how much year-to-year
fluctuations, given our two year sample. Renewed alarm about pollution levels in 2015 (e.g

Wong, 2015) suggests that it may not all be permanent.



The effect of growth at the sample mean is not statistically significant in any of the
specifications but care is needed in interpreting these results. For PM 2.5, none of the growth
related parameters are statistically significant, but there is a highly significant turning point
for the full specification at RMB 86k. The regression parameters are not significant because
mean income per capita is at RMB 76k. However, the EKC is U-shaped rather than an
inverted U. But, when we remove the levels variables, the turning point is at RMB 418k,

though this is not precisely estimated.

For PM 10 there is a turning point at RMB 58k for the full specification, but it is not
precisely estimated. Note that the parameters of both growth variables are positive (though
not statistically significant) yet the EKC has a U-shape. This is because the turning point is
below mean income per capita and so the effect of growth is positive at the mean income
level. Removing the two levels variables results in a U shape EKC with a highly significant
turning point at RMB 82k and a significant coefficient for the interaction term. In conclusion,
there is some evidence of a U-shape EKC for both these variables, but while this is only
revealed for PM 2.5 when the convergence terms are added, this apparent effect disappears

for PM 10 when the convergence terms are added.

The level of concentrations has a highly significant negative effect on both pollutants. Given
that we only have two years of data this could simply represent regression to the mean in
cities where pollution was particularly high or low in 2013 rather than an actual economic

process.

Table 3 presents the econometric results for the traditional EKC models. As expected, results
for the linear specification are identical to those for the growth rates model. But the quadratic
specification also is very similar to the growth rates specification with & = &; and
& = L3&,. The turning points are also only a little higher than the corresponding turning

points for the growth rates models.
6. Conclusions

The evidence presented in this article shows that there were large negative time effects in
particulate pollution concentrations between 2013 and 2014 for a sample of 50 large Chinese
cities. There is also clear evidence of convergence with concentrations falling faster in more
highly polluted cities. Given only two years of data it is hard to know how permanent these

changes are. The effect of economic growth is much more ambiguous. When controlling for



initial concentrations, there is some evidence of a positive effect of growth on concentrations
at high income levels and a negative effect at low income levels though this is completely
statistically insignificant for PM 10 unless the levels variables are excluded from the equation.
What is clear, is that this behavior is very different from emissions of sulfur or greenhouse
gases where typically a strong positive effect of economic growth is found at the sample
mean income (Anjum et al., 2014; Sanchez and Stern, 2015). The global sample mean

income is close to that n China.

The most directly comparable previous study is Hao and Lu (2016), who found an inverted U
shape EKC for 2013 PM 2.5 concentrations in 73 Chinese cities. Using our data for 2013
alone, we also obtain an inverted U-shape EKC. But none of the regression coefficients are
statistically significant and the turning point is at RMB 117k. Hao and Lu used data provided
by a private company called Fresh Ideas Studio, while we use the official statistics. This
difference in source and the number of cities covered might explain the differences between
our estimates. But it also shows that a single year of data is not very informative. Obviously,
we need more years of good quality Chinese data to better understand the factors driving
pollution concentrations in the country. The results suggest that it is worthwhile to investigate
further pollution concentration variables around the world using recent data and methods as

the results may be quite different than those for pollution emissions.
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Table 1: Summary Statistics
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Mean Standard Minimum Maximum
Deviation
2013 Levels
GDP per Capita | 70,747 24,439 41,095 142,580
PM2.5 65.86 24.45 26.00 154.00
PM 10 108.38 46.45 47.00 305.00
2014 Levels
GDP per Capita | 75,765 26,016 44,237 150,688
PM 2.5 56.02 19.32 22.30 118.43
PM 10 92.82 34.82 40.27 206.71
Growth Rates
GDP per Capita | 6.9% 1.6% 1.5% 9.9%
PM 2.5 -15.5% 7.5% -33.2% 0.6%
PM 10 -14.3% 9.5% -38.9% 7.7%
Table 2: Growth Rates Regression Results
PM2.5 PM 10
Eq (3) Eq (2) Eq (1) Eq (3) Eq (2) Eq (1)
Constant -0.1003** -0.0987%** -0.1167*** -0.1274%* -0.1218*** -0.1486%* * *
(0.0409) (0.0417) (0.0407) (0.0520) (0.0455) (0.0431)
]?I- -0.7981 -0.8216 -0.5571 -0.2300 -0.3089 0.0795
(0.5965) (0.6083) (0.6087) (0.7428) (0.6669) (0.6497)
:r'l-u E 0.4486 2.2625 1.5073*** 0.6107
(0.4219) (1.7230) (0.5463) (1.5194)
Fia -0.1159 0.0654
(0.1114) (0.1058)
[‘.u -0.0696* * * -0.0942% **
: (0.0261) (0.0308)
EKC n.a 417,633 85,569* ** n.a. 82,109** 58,734
income per (780,279) (22,795) (35,409) (72,151)
capita
turning
point
(RMB)

Notes: Figures in parentheses are heteroskedasticity robust standard errors. Significance
levels of regression coefficients: * 10%, ** 5%, *** 1%.




Table 3: Environmental Kuznets Curve Regression Results

PM 2.5 PM 10

Eq (5) Eq (4) Eq (5) Eq (4)
T",-,_ -0.7981 -0.8343 -0.2300 -0.3529

(0.5965) (0.6129) (0.7428) (0.6694)
}ﬁ 0.2220 0.7538***

(0.2107) (0.2726)

EKC n.a. 453,454 n.a. 87,493***
income per (861,463) (37,677)
capita
turning
point

Notes: Figures in parentheses are robust clustered standard errors. Significance levels of

regression coefficients: * 10%, ** 5%, *** 1%.
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Figure 1. Levels of PM 2.5 and GDP per Capita
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Figure 2. Levels of PM 10 and GDP per Capita
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Figure 3. Growth Rates of PM2.5 and GDP per Capita
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Figure 4. Growth Rates of PM 10 and GDP per Capita
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