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There has been extensive analysis of the drivers of carbon dioxide emissions from fossil
fuel combustion and cement production, which constituted only 55% of global greenhouse
gas (GHG) emissions in 1970 and 65% in 2010. But there has been much less analysis of
the drivers of greenhouse gases in general and especially of emissions of greenhouse
gases from agriculture, forestry, and other land uses, which we call non-industrial
emissions in this paper, that constituted 24% of total emissions in 2010. We statistically
analyse the relationship between both industrial and non-industrial greenhouse gas
emissions and economic growth and other potential drivers for 129 countries over the
period from 1971 to 2010. Our analysis combines the three main approaches in the
literature to investigating the evolution of emissions and income. We find that economic
growth is a driver of both industrial and non-industrial emissions, though growth has twice
the effect on industrial emissions. Both sources of emissions decline over time though this
effect is larger for non-industrial emissions. There is also convergence in emissions
intensity for both types of emissions but given these other effects there is no evidence for
an environmental Kuznets curve.
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Abstract

There has been extensive analysis of the drivers of carbon dioxide emissions from fossil fuel
combustion and cement production, which constituted only 55% of global greenhouse gas
(GHG) emissions in 1970 and 65% in 2010. But there has been much less analysis of the
drivers of greenhouse gases in general and especially of emissions of greenhouse gases from
agriculture, forestry, and other land uses, which we call non-industrial emissions in this
paper, that constituted 24% of total emissions in 2010. We statistically analyse the
relationship between both industrial and non-industrial greenhouse gas emissions and
economic growth and other potential drivers for 129 countries over the period from 1971 to
2010. Our analysis combines the three main approaches in the literature to investigating the
evolution of emissions and income. We find that economic growth is a driver of both
industrial and non-industrial emissions, though growth has twice the effect on industrial
emissions. Both sources of emissions decline over time though this effect is larger for non-
industrial emissions. There is also convergence in emissions intensity for both types of
emissions but given these other effects there is no evidence for an environmental Kuznets

curve.
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Introduction

There has been extensive analysis of the drivers of carbon dioxide emissions from fossil fuel
combustion and cement production (e.g. Raupach et al., 2007; Jotzo et al., 2012; Steinberger
et al.,2012; Jorgenson, 2014, Blanco et al., 2014), which constituted only 55% of global
greenhouse gas (GHG) emissions weighted by global warming potential in 1970 and 65% in
2010 (IPCC, 2014). But there has been much less analysis of the drivers of greenhouse gases
in general and especially of emissions of greenhouse gases from agriculture, forestry, and
other land uses constituting 24% of total emissions in 2010, which we call non-industrial
emissions in this paper. We statistically analyse the relationship between both industrial and
non-industrial greenhouse gas emissions and economic growth and other potential drivers for
129 countries over the period from 1971 to 2010. We find that economic growth is a driver of
both industrial and non-industrial emissions, though growth has twice the effect on industrial
emissions. Both sources of emissions are declining over time in the absence of economic

growth with this effect larger for non-industrial emissions.

Figure 1 shows that there is a positive correlation between the long-run average growth rate
of per capita GHG emissions and the long-run growth rate of gross domestic product (GDP)
per capita. Fast-growing economies typically see increases in GHG emissions while slow-
growing or declining economies tend to have declining emissions. The remaining variation
around this main relationship reflects differences in the rate of change in emissions per dollar
of GDP or emissions intensity. The 45-degree line in each panel of the Figure indicates the
locus of zero change in emissions intensity. Emissions intensity was declining in the majority
of countries. Some fast-growing economies such as China — the large circle to the right in
each panel - saw significant declines in emissions intensity, in many cases at a faster rate than
in most developed countries. It is also apparent that there is a stronger relationship between
industrial emissions growth and economic growth than between non-industrial emissions

growth and economic growth.

Three main approaches have dominated the literature on the drivers of pollution emissions
and other environmental impacts (Anjum et al., 2014; Blanco et al., 2014). The analysis in
this paper allows us to test all three in a single equation framework. The first approach is the
IPAT model proposed by Ehrlich and Holdren (1971) and the related Kaya Identity and
derived structural decomposition approaches (e.g. Raupach et al., 2007). IPAT is an identity
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Figure 1: Growth Rates of Per Capita Income and Per Capita Greenhouse Gas
Emissions: a. Total Emissions. b. Industrial Emissions. c¢. Non-Industrial Emissions. The
figure shows the relation between the average annual growth rates of per capita income and
per capita emissions from non-industrial sources from 1971 to 2010. The size of the circles is
proportional to countries’ total emissions from the respective sources in 2010 and are scaled
in panels b. and c. so that they the magnitudes are comparable to the quantities in panel a.
Points along the 45-degree lines have constant emissions intensity.

given by impact = population X affluence X technology. If affluence is taken to be income

per capita, then the technology term is impact or emissions per dollar of income.'

The second main approach to modelling the income-emissions relationship — the
environmental Kuznets curve (EKC) — proposes that environmental impacts first increase and
then decrease over the course of economic development. Most research, however has found
that carbon dioxide emissions do not follow such a pattern and other research has challenged
the existence of such a relationship for emissions of other pollutants too (Stern, 2004; Carson,

2010; Pasten and Figueroa, 2012; Kaika and Zervas, 2013a, 2013b).

L STIRPAT is another popular modelling approach, which uses the basic logic of IPAT, but
allows for the effects of right-hand side variables to be empirically estimated rather than
assumed to have a unit elasticity (York et al., 2003) and implicitly considers the relationship
to be causal rather than an identity.



The third main approach to the evolution of emissions over time is to hypothesize that they
are converging to a common level with emissions growing more slowly in emissions
intensive countries than in less emissions intensive countries. Existing evidence is mixed and
seems to depend on the methods used (Petterson ef al., 2014). Sigma and stochastic
convergence methods tend to find convergence only among the developed economies (e.g.
Strazicich and List, 2003; Westerlund and Basher, 2008) or club convergence (Herrerias,
2013). On the other hand, the beta convergence method is more likely to find global
convergence (e.g. Brock and Taylor, 2010; Briannlund et al., 2014).

In this paper, we find that there is a significant effect of economic growth on long-run growth
in both industrial and non-industrial emissions, although we find no support for the EKC
hypothesis for either type of emissions. Instead, time and convergence effects and the effects
of some specific control variables are significant. On the other hand, there is a reduction in
emissions intensity with growth, particularly for non-industrial emissions. This rules out a

simple IPAT style model too.
Methods

Our model combines the three main approaches in the literature and includes other possible
drivers of emissions growth by nesting these existing specifications in a single regression
equation. We estimate the following regression model for each of total, industrial, and non-
industrial emissions:

E=a+BG+p,GG +YG. +(S(Ei0 —Gi0)+2ijﬁ +€,

J

where i indexes countries and ¢, is a random error term. E.is the long-run growth rate of per
capita emission and G, of income per capita. G; is the log of income per capita averaged over

time in each country and E, -G is the log of emissions intensity in 1971. X is a vector of

additional explanatory or “control” variables listed in Table 2. The first term on the RHS of
the equation is the average time effect — the rate of change in emissions when there is no
economic growth and all the other variables are at their sample means. The second is the
effect of economic growth at the sample mean and the third — the interaction term — tests for
the EKC effect. If its coefficient is statistically significantly negative, then there is a level of

income after which emissions start to reduce with growth. The fourth term tests whether



emissions change at a different rate in richer countries in the absence of growth and the fifth
term is intended to model convergence. If its coefficient is negative, then emissions grow

more slowly in emissions intensive countries and vice versa.

Long-run growth rates are computed using: X = (X =X 0)/ T , where, X is the logarithm of

per capita emissions or income, 7 is the final year of the time series in levels, O indicates the
initial year, and i indexes countries. By formulating our model in long-term growth rates we
avoid most of the econometric problems troubling the existing literature, which are discussed
in several recent contributions to the literature on the environmental Kuznets curve (Wagner,

2008, in press; Vollebergh et al., 2009; Stern, 2010; Anjum et al., 2014).

We subtract the means of all variables apart from El_ and the dummy variable for non-English

legal origin prior to estimation. « is, therefore, an estimate of the mean of Ei for countries

with zero economic growth and average values of all the other variables and thus is
equivalent to the time effect in traditional EKC models in levels. B is an estimate of the
income-emissions elasticity at the sample mean. We can find the EKC turning point, u, by

estimating the regression without demeaning log income and computing u = exp(—/31 / /32) .

Including the initial level of emissions intensity per dollar of GDP, allows us to test for
convergence in emissions intensity using the beta convergence approach (Barro and Sala-i-
Martin, 1992; Brock and Taylor, 2010). If 6 < 0, then emissions intensity converges across
countries so that emissions growth is slower in countries that commence the period with

higher emissions intensity and vice versa.

A wide variety of “control variables” have been considered in the EKC literature. Some of
these are genuinely exogenous or predetermined, whereas others are variables that typically
change in the course of economic development and might be seen as factors through which
the development process drives emissions changes. Examples of the latter are democracy,
free press, good governance, and lack of corruption, or industrial structure, all of which are
clearly driven by income growth or develop alongside GDP as part of the development
process. We are interested in testing the overall effect of income and economic growth on
emissions growth and so our main analysis only includes variables that are pre-determined or
exogenous to the development process and found in previous research to be potentially

relevant (Anjum et al., 2014).



Stern (2005) first noted that English speaking OECD countries seemed to abate sulphur
emissions less and Germanic and Scandinavian countries more. Stern (2012) related this to
differences in legal origins (La Porta et al., 2008) and found that energy intensity was lower
in non-English legal origin countries, ceteris paribus. Here, we include a dummy for non-
English legal origin. Briannlund ef al. (2014) find that institutional quality has a negative
direct effect on growth in per capita emissions but has a positive effect on economic growth
and, therefore, a net positive effect on emissions growth. Due to the high growth rates in
China and South Korea, German legal origin countries grow significantly faster than English
legal origin countries in our sample. The effect we measure though is the effect of legal
origin controlling for the rate of economic growth. And even this effect turns out to be

positive.

Initially, we also included a dummy for centrally planned economies on the expectation that
reform in the formerly centrally planned countries spurred reductions in industrial emissions.
But this variable was not statistically significant in any of our regressions and so we dropped

it.

We control for the effect of climate, which obviously has important effects on energy use by
using historical country averages of temperatures over the three summer months and the three
winter months. Because these are climatic averages for 1960-1990 and the emissions of
individual countries do not significantly affect their own climate, temperature can be taken as

€xogenous.

Burke (2012,2013) and Stern (2012) argue that resource endowments are likely to have
important effects on emissions and energy use. To account for fossil fuel resources, we
include the log of estimated per capita fossil fuel endowments in 1971 (Norman, 2009). We
take into account the potential for hydroelectric power by controlling for the log of
freshwater resources per capita in 1972. Forest resources might be important for the
availability of biomass as an energy source but also as the most important contributor to non-
industrial emissions is land-use change we should control for the initial forest cover. We
control for forest resources using the log of forest area per person in 1971. Finally, we
include the average of the log of population density, which might be expected to increase the
rate of deforestation. Furthermore, higher density should be associated with lower energy use
in transport and smaller living- and work- spaces. Also, higher densities should encourage

governments to limit toxic emissions more, which may also result in lower associated



emissions of greenhouse gases (Stern, 2005). However, the effect of density on the growth
rate of industrial emissions is less clear and density might have an effect simply because it is

correlated with other omitted variables.

When observations on variables are aggregated into regions — here countries - of different
sizes it is likely that much of the local variation across individual locations is cancelled out in
the larger regions while more idiosyncratic variation remains in smaller regions. This means
that the error terms in a regression using such aggregated data are likely to be heteroskedastic
with the error variance proportional to the district size (Maddala, 1977; Stern, 1994). As our
data consists of per capita measures, the appropriate measure of region size is population. In
our sample, populations range from 67,000 in Antigua and Barbuda in 1971 to 1.3 billion in
China in 2010. To address this grouping heteroskedasticity we estimate the models using
population weighted least squares and heteroskedasticity-robust standard errors. Using
weighted least squares (WLS) can result in large efficiency gains over using ordinary least
squares (OLS) even when the model for reweighting the data is misspecified. But in case
there is misspecification, heteroskedasticity robust standard errors should be used to ensure
correct inference (Romano and Wolf, 2014). We measure goodness of fit using Buse’s (1973)

R-squared, weighting the squared deviations by population.

We assume that the explanatory variables in our regressions are exogenous. Clearly, there can
be no reverse causality from growth rates to initial values. There is potentially feedback from
the growth rate of emissions, especially of carbon dioxide, to either the growth rate of income
or the average level of GDP. This feedback is not actually causal but assuming that emissions
are correlated with the growth of energy use and energy use contributes to economic growth
then it would appear that emissions cause growth. Omitted variables bias is an important
issue as there are many variables that may be correlated with GDP or GDP growth, and
which may help explain emissions growth. Our differenced approach should help reduce this
bias (Angrist and Pischke, 2010). Finally, measurement error is a significant issue in the
estimation of GDP and emissions. Obviously there are significant uncertainties in the
emissions data, especially for non-industrial emissions, which are discussed in the Appendix.
Measurement error is likely greater for some of the smaller economies. Weighted least

squares can, therefore, help reduce the effects of this measurement error.

The usual approach to dealing with reverse causality, omitted variables bias, and

measurement error is to use instrumental variables. However, it is hard to find plausible



instrumental variables in the macro-economic context (Bazzi and Clemens, 2013), especially

for long-run growth rates or levels of the variables.
Results

The Appendix describes the data sources in detail. Table 1 presents descriptive statistics for
the growth rates of income and emissions per capita and the level of income per capita. There
is a large variation in income levels across countries and the distribution is skewed with a
smaller number of large (in total income) wealthy economies and many small (in total
income) poor economies. The population weighted mean income growth rate is higher than
the global aggregate or the mean of countries due to rapid growth in India and China, in

particular.

Total per capita GHG emissions rose very slowly in the average country but the population
weighted mean grew much more rapidly due to rapid growth in China, in particular, but grew
slower than industrial emissions because emissions grew slowly in India, which had negative
growth in non-industrial emissions that significantly offset its growth in industrial emissions.
The global aggregate grew at only 0.3% p.a. because many of the largest economies in terms
of total emissions are slower growing developed countries such as the United States. These
offset rapid growth in China. The variance of per capita emissions growth rates across

countries is similar to that of economic growth rates.

Industrial emissions rose at 0.7% p.a. in the median country. The population weighted mean
grew much more rapidly because China and India, the two most populous countries also have
rapid rates of industrial emissions growth of 4.2% p.a. and 2.6% p.a., respectively. Again, the
global aggregate grew more slowly than the population weighted mean (0.6% p.a. vs. 2.1%
p-a.). Non-industrial emissions fell at 0.8% p.a. in the median country. Indonesian emission
grew by 2.8% p.a. off an already substantial base — Indonesia is the largest circle in Figure 1c
- and contributed to raising the growth rates of the global aggregate and the population

weighted mean above that of the median country.



Table 1. Descriptive Statistics

10

Country Global Population
Aggregate | Weighted
Mean
Mean Standard | Min Median | Max
Deviatio
n

G.R. Total 0.002 0.018 -0.065 | 0.001 0.076 0.003 0.011

Emissions

per Capita

G.R. 0.009 0.017 -0.028 | 0.007 0.078 0.006 0.021

Industrial

Emissions

per Capita

G.R. Non- -0.007 0.019 -0.094 | -0.008 | 0.053 -0.005 -0.006

Industrial

Emissions

per Capita

G.R.GDP 0.016 0.018 -0.031 | 0.017 0.077 0.025 0.036

per Capita

GDP per $6,385 $9.,873 $389 |[$2,728 |[$76354 | $4,502 $4.,047

Capita 1971

GDP per $11,696 | $12,090 |[$253 |$7,081 | $56236 | $11,981 $13,080

Capita 2010

Note: Growth rates are presented in fractions rather than percentages as that is the way the
data are used in our regression analysis. The first five columns present unweighted statistics
for our sample when computing the statistics for each country separately first. In the sixth
column (global) we first compute the total emissions, GDP, and population for our sample of
countries and we then compute the mean annual growth rate and mean per capita level of this
global aggregate. In the final column we compute the growth rates using population-weighted
regressions of the country-level growth rates on a constant.




Table 2. Regression Results

Data set Total Industrial Non-Industrial
Emissions Emissions Emissions
Constant -0.0170%** -0.0096% *5 ~0.0154% %
(0.0019) (0.0014) (0.0033)
é. 0.7832%** 0.8533%** 0.4540%**
! (0.0696) (0.0484) (0.1266)
Gl_ -0.0048** -0.0035%** -0.0029
(0.0018) 0.0011) (0.0023
G.G. 0.1979%** 0.1275%** 0.0497
i (0.0592) (0.0414) (0.0703)
E,-G, -0.0080%* 20.0121%%% -0.0060%**
(0.0017) (0.0016) (0.0018)
Non-English Legal Origin 0.0058%:* 0.0043 %3 0.0030
(0.0016) (0.0012) (0.0032)
Summer Temperature 0.0007** 0.0012%** -0.0013%%*
(0.0003) (0.0002) (0.0005)
Winter Temperature 0.0001 -0.0001 0.0010%*
(0.0002) (0.0001) (0.0004)
Log Fossil Fuel per Capita 1971 0.0004 0.0007* 0.0002
(0.0004) (0.0004) (0.0006)
Log Freshwater per Capita 1971 0.0004 0.0013 -0.0008
0.0011) (0.0009) (0.0016)
Log Forest per Capita 1971 -0.0004 -0.0009* 0.0001
(0.0007) (0.0005) 0.0011)
Log Population Density -0.0018%** -0.0009* -0.0039%**
(0.0009) (0.0005) (0.0013)
El%use 0.8741 0.9453 0.2884

11

Notes: Figures in parentheses are standard errors for the regression coefficients. Significance
levels of regression coefficients: * 10%, ** 5%, *** 1%. The sample mean is subtracted from
all levels variables except the non-English legal origin dummy variable so that the intercept
can be interpreted as the time effect for a country with English legal origin, a sample-mean
level of log income and emissions. See main text and Appendix for further information on
variable definitions.

Table 2 presents the regression results for the three datasets. There are some commonalities
in the drivers of emissions growth across the emissions sources and some differences. First,
the average time effects (intercept terms) are negative and highly statistically significant for
all three datasets. Industrial emissions declined at 0.96% p.a. in the absence of growth and
average levels of the other effects in a country with English legal origin. As seemed likely
from Figure 1c, non-industrial emissions declined more rapidly at 1.54% p.a. A bit
surprisingly, the intercept for total emissions is even more negative (-0.017) than that of

either of the separate sources of emissions.
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The effect of GDP growth is highly statistically significant but the effect of growth is only
about half as much for non-industrial emissions at the sample mean as for industrial
emissions. The elasticity of industrial emissions with respect to growth at the sample mean is
near to but statistically significantly lower than unity. The coefficient of the interaction term
between the economic growth rate and the level of income is positive for all three regressions
but is larger and statistically significant for industrial and total emissions but not for non-
industrial emissions. Therefore, there is no environmental Kuznets curve effect, not even for
non-industrial emissions. On the other hand, the level of income has a negative effect on
emissions growth, but this too is statistically significant only for industrial and total

emissions.

The initial level of emissions intensity has a statistically significant negative effect for both
industrial and non-industrial emissions, though a larger effect for industrial emissions. The
size of the convergence effect is smaller than those found for industrial carbon dioxide and

sulphur dioxide by Anjum et al. (2014).

Non-English legal origin has a positive effect but again this is not statistically significant for
non-industrial emissions. The latter is surprising because property rights might be thought to
be more important in the realm of deforestation than in limiting emissions of carbon dioxide
from industry. Population density has a statistically significant negative effect on both
industrial and non-industrial emissions, though the effect is greater in absolute value for non-
industrial emissions. This finding is surprising as usually we would assume that higher
population density increases the rate of deforestation. But it seems that it reduces the rate of
increase of this type of emissions. This is not because countries with high density already
have few trees, as we control for the area of forest per capita in 1971. It is also not because
non-industrial emissions were already high in 1971, as we control for emissions intensity too.
Population density also has a negative effect on the growth rate of industrial emissions, which

might be for the reasons we suggested in the previous section of the paper.

The coefficients of the remaining variables are very different for the different emissions
sources. Summer temperature has a positive effect on the industrial emissions growth rate
perhaps because of growing use of air conditioning in hot countries. But higher summer
temperatures have a negative effect on non-industrial emissions. This can be explained as we
control for winter temperatures. Tropical countries have high summer and winter

temperatures. But the countries with the highest summer temperatures are mostly in the
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Middle East where there is little potential for non-industrial emissions as well as in the Sahel.
Higher winter temperatures have a positive effect on non-industrial emissions growth, ceteris
paribus. Countries with the highest winter temperatures are in the equatorial region, where

deforestation potential is highest.

The resource endowment variables have relatively insignificant effects on emissions growth
rates. A larger fossil fuel endowment increases the rate of growth of industrial emissions, as
we would expect (Burke 2012, 2013; Stern, 2012). Freshwater endowments have statistically
insignificant effects, though the effect on industrial emissions is positive. One explanation for
this is that SF is the most potent known greenhouse gas and is emitted in aluminium and
magnesium production. Iceland, which has the largest per capita freshwater resources also
has one of the most rapid growth rates of industrial emissions because of the use of
hydropower for aluminium smelting. This generates a spurious correlation between
freshwater resources and the growth rate of industrial emissions. In fact, in an unweighted
regression, freshwater resources have a highly statistically significant effect on industrial
emissions growth for this reason. Per capita forest resources have a negative effect that is
statistically significant at the 10% level on industrial emissions but surprisingly no effect on
non-industrial emissions. Perhaps this reflects the trade-off between fossil fuel and biomass

use.

Though the R-squared statistics cannot be exactly compared to each other, they do indicate
that the model explains less of the growth in non-industrial emissions than in industrial
emissions. The fit of the models for total and industrial emissions are very good when

deviations are weighted for population size using the Buse R-squared.
Discussion

We find that there is a significant effect of economic growth on long-run growth in both
industrial and non-industrial emissions. We find no support for the environmental Kuznets
curve hypothesis. Instead, time and convergence effects and the effects of some specific
control variables are significant. On the other hand, there is a reduction in emissions intensity
with growth, particularly for non-industrial emissions. This rules out a simple IPAT style
model too. Though we find that convergence is statistically significant, our analysis does not
explain why emissions intensity is converging across countries. Convergence could be due to

globalization leading to economic structures and the technologies used across countries
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becoming more similar over time or due to countries with high emissions intensities taking
policy action to improve their environments and/or reduce their dependence on imported
energy. Our results also show that though per capita emissions are declining over time in the
absence of growth, using Tables 1 and 2 we see that the positive effect of growth in aggregate
global income on industrial emissions is more than twice as large as the negative time effect.
The picture for non-industrial emissions is more positive — the growth effect is smaller than
the time effect. However, to this must be added the effect of growing population, which we
assume has a 1 to 1 effect on emissions. As shown in the Appendix, the main regression
results are similar when estimated using data from 1991-2010 instead of 1970-2010. Thus
emissions are likely to continue to increase in the future unless stronger mitigation action is

taken.
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Appendix
Data

Greenhouse Gas Emissions

Data for greenhouse gas (GHG) emissions is sourced from the Emission Database for Global
Atmospheric Research (EDGAR) version 4.2. This database provides information of
calculated emissions for 232 countries and territories, and international transportation for
years between 1970 and 2010. The data on emissions include direct GHGs, ozone precursor
gases, acidifying gases, primary particulates, and stratospheric ozone depleting substances.

This data can be freely downloaded from:

http://edgar.jrc.ec.europa.cu/overview.php?v=42FT2010

The 100 years global warming potential factors (GWP100) used for the GHGs included in the
dataset are sourced from Forster et al. (2007), Oram et al. (2012), and Ivy et al. (2012) and
are shown below. We used these to aggregate the various gases into carbon dioxide
equivalent emissions. We aggregated the various sources of emissions into industrial
emissions, covering sectors 1,2, 3,6, and 7, (energy, industrial processes, product use, waste,
and other anthropogenic sources) and non-industrial emissions covering sectors 4 and 5

(Agriculture and land-use change and forestry).

GHG GWP100 Factor
Carbon Dioxide (CO,) 1
Methane (CH,) 25
Nitrous oxide (N,0) 298
Nitrogen trifluoride (NF;) 17,200
Sulphur hexafluoride (SF) 22,800
Hydrofluorocarbons (HCFs):

HCF23 14,800
HCF32 675
HCF43 1,640
HCF125 3,500
HCF134 1,430
HCF143 4470

HCF152 124



HCF227
HCF236
HCF245
HCF365
Perfluorocarbons (PCFs):
C,F,
C,F,
C,/F,
CF,
CF.,
C.F
cC,F;
CF,

GDP and Population
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3,220
9,810
1,030
794

12,200
8,830
8,860
9,160
9,300
7,930
10,300
7,390

The GDP and population data are sourced from the Penn World Table (PWT) version 8.0

(Feenstra et al.,2013). PWT 8.0 provides GDP data adjusted for purchasing power parity for

167 countries between 1950-2011, though not all countries have a complete time series. For

the period we are interested in, there are complete series for 143 countries. Following the

advice of Feenstra et al. we compute the growth rates of GDP using the series RGDPNA,

which uses the growth rate of real GDP from each country’s national accounts to extrapolate

GDP from 2005 to other years. RGDPNA is set equal to the variables CGDPO and RGDPO

in 2005. The latter variables are output side measures of real GDP that take into account the

effect of changes in the terms of trade in order to better represent the real production capacity

of the economy.

Also following the recommendations of Feenstra ef al., to measure the level of GDP we use

the variable CGDPO, which is measured at constant 2005 millions of purchasing power

parity adjusted dollars. This variable measures output-side GDP across countries using the

reference price vector for each year and then adjusting for US inflation over time.

These data can be downloaded from www.gedc.net/pwt.
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Centrally Planned Economies

We identify centrally planned economies using a dummy variable equal to one for those
countries on the list of transition economies in Table 3.1 in IMF (2000). In our sample, these
countries are: Albania, Bulgaria, Cambodia, China, Hungary, Laos, Poland, Romania, and

Vietnam.

Legal Origin

We treat English legal origin as the default and assign zero-one dummies for German,
French, and Scandinavian legal origin using the classification of La Porta et al. (2008). The

data are available from:

http://scholar.harvard.edu/shleifer/publications/economic-consequences-legal-origins

Temperature

Average temperature in degrees Celsius for 1960-1990 by country and month are available

from Mitchell et al. (2002). The data are available from:

http://www .cru.uea.ac.uk/~timm/climate/index .html

We average the temperature of the three summer months — June to August in the Northern
Hemisphere and December to February in the Southern Hemisphere — to obtain a summer
temperature variable. We average the temperature of the three winter months to obtain a
winter temperature variable. This should give a better idea of the demand for cooling and

heating than simply using the temperature of the hottest and coldest months.

Resource Endowments

We multiply Norman’s (2009) ratio of the value of fossil fuel stocks to GDP in 1971 by GDP
per capita at market exchange rates in 1971 (World Bank) to derive the value of per capita
fossil fuel endowments in 1971. Data on per capita freshwater resources are from the World

Development Indicators.

Forest cover data and land area in 1971 were sourced from Persson (1974) who estimated the
area of different forest types for most countries in the world in 1973 or a close year preceding
that. We summed the areas of various forest types as both closed and open forests and

brushlands can provide biomass fuel and be subject to land clearing.
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As there are zero values for the level of these resources in many countries, we add one dollar
to this value before taking logs. King (1988) noted that small changes in the constant used in
this situation can drastically affect results. As the median value for countries with non-zero
resources is $359 this does not change the data for countries with significant resources by
very much. We tested reducing this constant to 0.01. This did not change the significance
levels of the coefficients of the resource stock variables and did not change the values of the

coefficients of the other variables in the model in any important way.

Sample of Countries

In total we found 129 countries that have data on all these variables. The list of countries is:

Albania, Angola, Antigua and Barbuda, Argentina, Australia, Austria, Bahamas, Bahrain,
Bangladesh, Barbados, Belgium, Belize, Benin, Bhutan, Bolivia, Botswana, Brazil, Brunei
Darussalam, Bulgaria, Burkina Faso, Burundi, Cambodia, Cameroon, Canada, Cape Verde,
Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo, Costa Rica, Cote
d'Ivoire, Cyprus, Denmark, Djibouti, Dominican Republic, DR Congo, Ecuador, Egypt, El
Salvador, Equatorial Guinea, Fiji, Finland, France, Gabon, Gambia, Ghana, Greece,
Guatemala, Guinea, Guinea-Bissau, Honduras, Hungary, Iceland, India, Indonesia, Iran,
Islamic Republic of, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kenya, Korea,
Kuwait, Laos, Lebanon, Liberia, Luxembourg, Madagascar, Malawi, Malaysia, Mali, Malta,
Mauritania, Mauritius, Mexico, Mongolia, Morocco, Mozambique, Namibia, Nepal,
Netherlands, New Zealand, Niger, Nigeria, Norway, Oman, Pakistan, Panama, Paraguay,
Peru, Philippines, Poland, Portugal, Qatar, Romania, Rwanda, Saudi Arabia, Senegal, Sierra
Leone, Singapore, South Africa, Spain, Sri Lanka, Sudan, Suriname, Swaziland, Sweden,
Switzerland, Syria, Tanzania, Thailand, Togo, Trinidad and Tobago, Tunisia, Turkey,

Uganda, United Kingdom, United States, Uruguay, Venezuela, Vietnam, Zambia, Zimbabwe.

Uncertainties in the Data

Blanco et al. (2014) discuss the uncertainty in emissions data. For CO, emissions from fossil
fuels and cement production the uncertainties are of the order of +8%. Uncertainties for CH,
and the fluorinated gases are of the order of +20 %, while N,O and CO, from land-use change
are of the order of +60 % and 50-75 %, respectively. The uncertainties in global land-use
change emissions are sufficiently high to make both the direction and magnitude of trends

over recent decades uncertain.
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Results for 1991-2010

We repeated the analysis in the paper for the period 1991 to 2010 to see whether there were
substantial changes in the drivers of GHG emissions over the period. Data on forest cover in
1990 are taken from the World Development Indicators. The main results are very robust to

this change of time period; however, the effects of some of the control variables do change.

Regression Results: 1991-2010

Data set Total Industrial Non-Industrial
Emissions Emissions Emissions
Constant -0.0146%** -0.0098** -0.0162%**
(0.0021) (0.0015) (0.0026)
é_ 0.7241%%% 0.7990%** 0.3962%**
i (0.0605) (0.0418) (0.0823)
G. -0.0044 -0.0032%* -0.0029
' (0.0035) (0.0017) (0.0023
G'CA? 0.2178%* 0.0984* 0.0930
! (0.0867) (0.0515) (0.0703)
E,-G, 20,0092 20,0128 -0.0048%*
(0.0032) (0.0028) (0.0024)
Non-English Legal Origin -0.0004 0.0044%* -0.0025
(0.0028) (0.0019) (0.0030)
Summer Temperature 0.0020%** 0.0016%** 0.0006
(0.0006) (0.0004) (0.0006)
Winter Temperature -0.0005* -0.0001 -0.0000
(0.0003) (0.0002) (0.0003)
Log Fossil Fuel per Capita 1971 -0.0014%* 0.0000 20,0021 %%
(0.0007) (0.0004) (0.0008)
Log Freshwater per Capita 1992 0.0033* 0.0035% 0.0012
(0.0018) (0.0013) (0.0024)
Log Forest per Capita 1990 -0.0042 -0.0035%* -0.0036
(0.0026) (0.0016) (0.0036)
Log Population Density -0.0025%* -0.0019%* -0.0060%***
(0.0010) (0.0007) (0.0016)
Eﬁuse 0.8282 0.9087 0.3694

Notes: Figures in parentheses are standard errors for the regression coefficients. Significance
levels of regression coefficients: * 10%, ** 5%, *** 1%. The sample mean is subtracted from
all levels variables except the non-English legal origin dummy variable so that the intercept
can be interpreted as the time effect for a country with English legal origin, a sample-mean
level of log income and emissions. See main text and Appendix for further information on
variable definitions.
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