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1 
Real Options and Competition: 
The Impact of Depreciation and Reinvestment 
1. Introduction 
One of the most important developments in economics during the last decades was the 
recognition 
that the Net Present Value (NPV) criterion in investment theory can be misleading under 
certain conditions. These conditions are: the returns of an investment are subject to an 
ongoing uncertainty, the investment is (at least partly) irreversible (i.e. the investment causes 
sunk costs), and the investor can suspend the investment decision for some time. If all these 
conditions are fulfilled, even in case of risk neutrality, it is not necessarily optimal to invest if 
the expected present value of the future returns covers the investment outlays. Rather, one 
should assign a positive value to the preservation of the flexibility whether to invest or not; in 
other words, waiting for new information has a value. 
This insight led to the development of the real options approach to investment (Henry, 1974a, 
McDonald and Siegel, 1986, Pindyck, 1991).1 It exploits the analogy between a financial option 
and a real investment. The opportunity to conduct an investment can be compared with a 
call option on financial markets: like the owner of a call, the investor has the right but not the 
obligation to pay a fixed sum I and to receive a stochastic cash flow with an expected discounted 
value V. While classical investment theory tells us this investment opportunity is 
worth V-I, i.e. the NPV, it is well known from the theory of financial derivatives that V-I 
measures only one part of the value of the option to invest, namely the intrinsic value. In 
addition, 
the opportunity to invest has a continuation value, which is the discounted value of the 
expected appreciation of the option. The option should only be exercised if the intrinsic value 
exceeds the continuation value (cf. e.g. Dixit and Pindyck 1994). 
Unfortunately, the practical application of the real options approach is not that easy. Analytical 
solutions of optimal investment triggers only exist for rather restricted situations, for example, 
if the expected returns of the investment follow a geometric Brownian motion (GBM) 
and the investment option never expires. Thus, for practical applications of the real options 
approach one either has to find evidence that the assumptions of a GBM and of an infinite 
lifetime of the option are fulfilled. Alternatively, one has to resort to approximation techniques 
to price them. Hull (2000), for instance, provides an overview of various methods. 
A look at the literature reveals that very often the first strategy is chosen: Authors take time 
series data on prices or returns for a given branch or market and apply unit root tests to find 
evidence for a random walk. Then the volatility of the returns is estimated and taken to compute 
the optimal investment trigger (e.g. Pietola and Wang, 2001; Bessen, 1999). However, 
for competitive industries this “standard procedure” seems to be problematic, because the 
evolution of the returns is hardly purely exogenous, as implicitly stated by the GBM assumption. 
Rather the evolution depends to some extent on the behavior of competitors. Accordingly, 
one could argue that deferring an investment until prices or returns are at least equal to 
1 The idea that the preservation of unique environmental goods and of historical buildings has an option value 
was first proposed by Arrow and Fischer (1974) and Henry (1974b). 
2 
the investment trigger may be inferior because competitors could enter the market at lower 
prices and prevent prices to rise. Dixit and Pindyck (1994), however, find that this argument 
does not hold. They show for certain settings that the optimal investment trigger P* is not affected 



by competition, i.e. the investment trigger is the same for exclusive investment options 
and for investment options under competition. Nevertheless, Dixit and Pindyck find that the 
price dynamics is somewhat different: The investment trigger forms a kind of reflecting barrier. 
As long as prices are lower than the trigger price, prices follow a geometric Brownian 
motion. If market conditions prosper, prices rise up to the trigger price and additional firms 
enter the market and prevent prices to rise above the trigger. If thereafter market conditions 
worsen, then those firms that have invested continue production and prices decline proportional 
to the market conditions. Figure 1 shows the dynamics for a price Pt , a demand 
parameter αt , output Xt , with Pt = αt /Xt and αt follows GBM.2 

Figure 1: Exemplary dynamics in competitive markets* 
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* Prices just above the trigger arise because of a time lag in production response. 
During the last years several authors have taken the finding of Dixit and Pindyck (1994) as an 
argument to ignore competition and to apply the already mentioned “ 
the remainder of this paper, we will demonstrate that for many investment decisions this 
procedure 
is not appropriate. The reason behind is a central assumption in the Dixit and Pindyck 
2 A particular implication of this price dynamics is that in average competition does not allow for profits. Investment 
at the trigger price P* just fulfils the zero profit assumption which is a central equilibrium condition 
for competitive markets. Lower investment triggers imply losses and are consequently inferior. Higher triggers 
do not allow for profits because they do not allow to exercise the investment option. 
3 
framework: the assumption that assets have an infinite lifetime. Consequently, the aggregate 



output on the market may increase over time but it cannot decline as it is shown in figure 1, 
i.e. if assets do not need to be replaced and if prices cannot become negative (which is implicit 
for GBM) then the asset will be used for an infinite time. However, if one assumes that 
assets are subject to decay or that they have a limited lifetime, the price dynamics changes: 
There still is a certain trigger price that forms a reflecting barrier for an increasing demand 
parameter αt. However - and in contrast to the Dixit and Pindyck model - a decrease of αt can 
at least partly be compensated by a subsequent output decrease if there are some “depreciated” 
3 production facilities that will not be replaced because expected prices are lower than 
the trigger price. Hence, downward price reactions are dampened as it is shown in figure 1. 
Consequently, under competition the equilibrium investment trigger for assets with finite lifetime 
is lower than for identical investment opportunities that are exclusive. 
In principal, one could argue that the damping effect of depreciation causes a lower price 
volatility. Consequently, the application of the “standard procedure” may lead to lower 
investment 
triggers anyway, i.e. the “standard procedure” may be appropriate. Our analysis 
does not support this conclusion. On the contrary: We find that the estimated price volatility 
does not significantly differ from the volatility of the demand parameter αt. Moreover, under 
certain conditions unit root tests fail as well. Thus - as already mentioned - we conclude that 
the “standard procedure” is not appropriate! 
Our results are obtained by a discrete time agent-based approach in which N agents represent 
N identical farms (or more generally: firms) which compete on a certain market. Each of these 
firms possesses its individual investment trigger which is derived by linking the agent-based 
model with a genetic algorithm (cf. Arifovic, 1994). In section 2 the firms’ investment problems, 
their interaction, as well as the link to the genetic algorithm (GA) are presented in detail. 
In section 3 results are presented and analyzed. Moreover, we identify a direct rule of 
determining the price dynamics in competitive markets with depreciable assets. This rule allows 
us to validate our findings as well as to compute investment triggers for different parameter 
settings with less computational effort than the agent-based approach. In section 4 the 
approach and our findings are summarized and discussed. 
2. The Model 
2.1. The investment problem 
Consider a number of N = 50 firms, each having repeatedly the opportunity to invest in identical 
assets or a fraction thereof, i.e. the assets are divisible. Initially no firm has invested. The 
asset has a maximum size of 1 and can be used by firm n to produce up to 1 , = n t x unit of output 
per production period. Size, investment outlay and production are proportional. If a firm 
invests for the first time, its maximum initial investment outlay max 

,n t M is I. The investment 
outlay Mt,n is considered to be totally sunk after the investment is carried out. For every period, 
we consider a geometrical decay of the asset. The asset's productivity declines to (1-l) 
3 Note, we understand depreciation as the deterioration of assets with increasing age. 
4 
of the previous period's output, i.e. we consider a depreciation rate l such that 
n t n t t x x , , ) 1 ( ⋅ − = ∆ + l .4 However, in every period, each firm can invest or reinvest in order to 
increase production or to regain a production capacity of up to one unit of output. The outlay 
Mt,n then has a maximum amount max 

,n t M depending on the missing production capacity, i.e. 
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with Pt as the output price in period t and ∇t , - n denoting a certain market operator that captures 
demand developments which are assumed to be stochastic as well as to be dependent on 
the behavior of the other firms.5 Accordingly, we consider that the firms compete and interact 
on a market. To capture the competition, the firms and their interaction are represented in an 
agent-based setting in which the firms are represented as agents that perceive their environment 
and respond to it. 
In our model, the environment consists of two parts. The one is the behavior of the other 
firms. The other is the demand for outputs, which is modeled in terms of a demand function. 
The environment can be described as follows: 
Total supply in period t is 
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Consider now that the demand parameter αt follows geometric Brownian motion (GBM). 
Assuming 
discrete time and assuming the absence of a drift rate this can be modeled as 
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with a volatility σ, a normally distributed random number εt and a time step length ∆t. Note 
that αt is the expected future demand parameter t t ∆ + aˆ for GBM. 
Firm n invests in period t if the expected price * ˆ 
n t t P P ≥ ∆ + with 
4 The use of the decay parameter l is analogous to the probabilistic approach presented in Dixit and Pindyck 
(1994, pp 200). To understand this, simply consider that any firm n actually considers of an infinite number of 
identical infinitely small firms. 
5 Note, that equation (15) implicitly assumes risk neutrality. 
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The questions now are: Which firms invest? And how much do they invest? Therefore, let us 
assume that firms with lower trigger prices * 

n P have a stronger tendency to invest. Consequently, 



all firms can be sorted according to their trigger prices, starting with the lowest investment 
trigger, i.e. * 
1 
* 

+ ≤ n n P P . The following propositions are straightforward: 
Proposition 1: If firm n does not invest in t then firm n+1 will also not invest in t, i.e. 
0 0 1 , , = ⇒ = + M M n t n t 

Proposition 2: If firm n does invest in t then firm n-1 will invest max 

1 , − n t M in t, i.e. 
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Now, o 

t n can be identified by iteratively testing all firms for o 
o 
t 
n 

t t n P P ∆ + ≤ ˆ * . The last firm that 
fulfils the investment condition (10) is o 

t n . 
According to proposition 3 and the subsequent considerations, we only consider firms which 
either invest max 

,n t M or 0. However, we may find the situation that o 
o 
n 

t t n P P ∆ + + ≤ ˆ * 

1 . In this case we 
can consider that firm 1 + o n can invest 1 , + o n t M , with max 

1 , 1 , 0 + + < < o o n t n t M M and without violating 
the condition that the trigger price is less or equal to the expected price. Based on equa- 
tions (7), (8), and (10) we can derive the condition 
6 Notice, no 
t is zero if there is no investor in period t. 
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Equation (12) is an equilibrium condition: All firms which fully invest and hence produce at 
maximum capacity have trigger prices which are less or equal to the trigger price of firm 
1 + o n which is also equal to the expected price for t+∆t. All firms which do not invest have 
trigger prices which are higher than or equal to the expected price for t+∆t. 
For a given set of trigger prices P* and arbitrary initializations for α0, the expected profitability 
of each strategy 
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can be determined simultaneously by a sufficiently high number of repeated stochastic 
simulations 
of the market. For our analysis, we consider 5000 repetitions to be sufficient. The remaining 
question is, how to determine appropriate sets of trigger prices * 

n P ? For this, the Nfirms 
market model is combined with a genetic algorithm (GA). 
2.2. The Genetic Algorithm and its implementation7 

GA are a heuristic optimization technique which has been developed in analogy to the concepts 
of natural evolution and the terminology used reflects this. Even though there is no 
“standard GA” but many variations of GA, there are some basic elements which are common 
to all GA (cf. Holland, 1975, Goldberg, 1989, Forrest, 1993, Mitchell, 1996).8 The first task 
of an application of GA is to specify a way of representing each possible solution or strategy 
as a string of genes which is located on one ore more chromosomes. Usually this is achieved 
by representing solutions (e.g. strategies, numbers, etc.) as binary bits, i.e. zeroes or ones, 
which form the genes. Since our problem is relatively simple, i.e. we just search for a single 
value (i.e. every strategy just consists of a certain trigger price), we take the investment trigger 
as a real value and apply the GA operators to the trigger price itself. The second task is to 
define a population of N genomes to which the genetic operators, i.e. selection, crossover and 
mutation, can be applied. The population size here is 50 genomes. This allows us to directly 
map the set of genomes to the firms' strategies, i.e. every firm’s trigger price in our model is 
represented by one genome of the genome population. Vice versa every genome can be 
understood 
as the strategy of a certain firm. 
Each application of the genetic operators to the population of genomes creates a new, modified 
generation of genomes. The number of generations depends on the problem to be solved. 
It can range from some 50 to a couple of thousand. In most GA applications the first genera- 
7 The following representation of GA draws on Balmann and Happe (2001). 
8 For other GA-applications to real options cf. Balmann, Mußhoff and Odening (2001) and Diaz (2000). 
7 
tion of genomes is initialized by random values or it is set arbitrarily. During the following 
generations, the genome population passes through the following steps: 
a) Fitness Evaluation 
Each time before the GA operators b) to d) are applied, the goodness of every genome is 
evaluated by applying a fitness function. This function assigns a score to each genome in the 
current population according to the capability of the genome strategy to solve the problem at 
hand. The better the strategy performs, the higher its fitness value. For our applications, the 
fitness value is directly derived from the strategy's average profitability Pn(Pn*) or payoff in 
5000 stochastic simulations of the market model. 
b) Selection and Replication 
Selection determines the genetic material to be reproduced in the next generation. The fitter 
the genome (i.e. the better adapted it is to the problem) the more likely it is to be selected for 
reproduction. Selection can be implemented in many different ways. In this model the 20 
most successful genomes always survive. The next 15 genomes are replaced with a certain 
likelihood by the 15 most successful genomes of the last simulation series. The next 10 genomes 
are replaced by the 10 fittest genomes with a higher likelihood. And the least 5 successful 
genomes are always replaced by the 5 most successful genomes. Summarizing, the 5 
most successful genomes can quadruplicate, the next 5 can triplicate, and the next 5 most 



successful 
strategies can double. 
c) Crossover 
Figure 2 shows the simplest case of a 1-point-crossover, where the coded strings of two parent 
genomes are split at a randomly chosen locus and the sub-strings before and after the locus 
are exchanged between the two parent genomes resulting in two offspring. This technique is 
also used for our GA implementation. With a certain likelihood, for every genome a a partner 
b is randomly chosen from the selected genomes. The values are cut at a randomly chosen 
digit. If e.g., the numbers are cut after the third digit, offspring a' gets the first three digits of 
parent a and all further digits of parent b and vice versa. Thus the triggers a=1.2345678 and 
b=1.1111111 become a'=1.2311111 and b'=1.1145678. 
Figure 2: Example of a 1-point-crossover after the 3rd digit 
parent genomes offspring genomes 
a … 1 2 3 4 5 6 7 8 … a' … 1 2 3 1 1 1 1 1 … 
b … 1 1 1 1 1 1 1 1 … 

→ 
b' … 1 1 1 4 5 6 7 8 … 
d) Mutation 
Mutation also brings new genetic varieties into the population of genomes. Furthermore, 
mutation 
serves as a reminder or insurance operator because it is able to recover genetic material 
into the population which was lost in previous generations (Mitchell 1996). This insures the 
population against an early and permanent fixation on an inferior genotype. Mutation is 
implemented 
here by multiplying every solution with a certain, but small likelihood with a random 
number between 0.95 and 1.05. The mutation likelihood as well as the range of the ran- 
8 
dom number may be chosen according to experience as well as according to the already obtained 
results. A flow diagram can be found in the appendix. 
In one particular point our GA application deviates from conventional applications. Here, the 
GA is not just used to solve a more or less complex optimization problem in which the goodness 
of the solution and the problem at hand are directly related. In our case, the goodness of a 
solution rather depends on the alternative solutions generated by the GA. In other words: in 
conventional GA applications the fitness of a genome can be obtained directly from a comparison 
of payoffs of the different solutions because the payoffs are independent of the competing 
solutions. Here, a solution’s payoff depends on the other solutions. Thus, we are applying 
the GA to a game theoretic setting and we are not searching for an optimal solution, but 
for an equilibrium solution, i.e. the Nash-equilibrium strategy.9 

2.3. The scenarios 
The model as it is presented above can be used for many different scenarios. However, our 
motivation is to demonstrate that the “standard procedure” of the real options approach (cf. 
section 1) leads to wrong results for reasonable assumptions, i.e. we argue that the standard 
approach overestimates the investment trigger. Hence, in order to falsify this approach, it is 
sufficient to demonstrate the principal impact of depreciation for one specific scenario. This 
specific scenario is based on an interest rate of r = 6%, Il=5% = 8.36364, and no further production 
costs. This implies total production costs of 1 per unit of output. The volatility σ is 



assumed to be 0.2. For the case without depreciation, i.e. λ = 0, and average production costs 
of 1 the investment costs are adjusted to Il=0% = 16.66667. In order to consider that our model 
is based on discrete time steps while the theoretical literature usually is based on continuous 
time, we vary the time step length ∆t from 1 to 0.1 and we will show that smaller time steps 
do not offer any evidence against our basic message.10 The total time span T simulated in 
every stochastic simulation is determined as 100 years. For later periods the expected returns 
are set equal to the returns in year 100. The possible error can be assumed to be negligible 
since later returns are discounted by more than 99.7%. 
As a reference system for our market model, we determine the investment triggers also for the 
case that output prices directly follow GBM. Investment triggers for this problem are determined 
in two alternative ways. Firstly, we also apply GA in combination with stochastic 
simulations. Secondly, we apply stochastic simulations to alternative, arbitrary trigger prices 
and search for the solution with the highest average profit. Though this is double work, the 
latter approach offers additional evidence that the GA-technique is appropriate. 
9 A number of publications during the past 10 years show that this approach functions quite well. Examples and 
discussions are given for instance in Arifovic (1994), Axelrod (1997), Balmann and Happe (2000), Dawid 
(1996), Dawid and Kopel (1998) and Chattoe (1998). 
10 For ∆t < 1, the parameters λ, r, and σ are adjusted, i.e. (1-λ∆t) = (1-λ)∆t, (1-r∆t) = (1- r)∆t, σ∆t = σ ∆t0,5. 
9 
3. Results 
Table 1 shows the results of the presented procedure and allows to compare results with the 
analytical solution. Accordingly, the trigger prices in the case of exclusive options (i.e. without 
considering market effects) generated by the GA approach are quite similar to the arbitrary 
simulation results. For the scenarios with and without depreciation, these values differ 
by about 1%. We have carried out the procedures repeatedly with varying random number 
seeds and we have obtained very similar results. The differences could be reduced further by 
increasing the number of repetitions of the stochastic simulations. Unfortunately, this would 
increase the computational efforts substantially and 1% is an insignificant error regarding the 
purpose to show the effects of competition and depreciation simulations. 
Table 1: Trigger prices depending on depreciation and competition (s = 0.2) 
Monopoly / exclusive option Competition 
∆t Infinite lifetime 
(λ=0) 
Depreciation 
(λ=5%) 
Infinite lifetime 
(λ=0) 
Depreciation 
(λ=5%) 
GA** arbitrary GA** arbitrary GA** GA** 
0 1.7676* 1.5194* 1.7676* n.a. 
0.1 1.715 1.713 1.484 1.478 1.710 1.263 
0.25 1.675 1.677 1.436 1.432 1.680 1.237 
0.5 1.643 1.645 1.404 1.400 1.638 1.211 
1 1.587 1.590 1.367 1.360 1.584 1.180 
* Analytical solution (cf. Dixit and Pindyck, 1994). 
** Average trigger prices of the genome population. 



Reducing the time step length ∆t leads to a convergence of trigger prices towards the analytical 
solution computed for continuous time, i.e. 0 Ä → t .11 This effect is not surprising, because 
reducing the time step length implies more frequent investment opportunities, i.e. one 
does not need to wait as long before one can decide again and can respond more quickly to 
revealed new information. In summary these results demonstrate that the GA approach leads 
to plausible results for the scenarios without competition. 
Let us now consider competition. According to table 1, the GA model with competition leads 
for the scenarios with infinite lifetime of the assets (λ = 0) to trigger prices which do not differ 
significantly from those of the scenarios without competition. Thus, these simulations are 
in accordance with the finding presented in Dixit and Pindyck (1994) according to which 
investment 
triggers are not affected by competition. However, if we compare the investment 
triggers with depreciation, then competition leads to investment triggers which are some 13% 
to 15% lower than without competition. Hence, competition reduces the difference between 
trigger price and production costs by some 50%. Since the absolute as well as the relative 
differences 
increase with reducing ∆t, one can conclude that this phenomenon has also to be expected 
for a continuous time scenario. Accordingly, one has to state that competition matters 
if assets are depreciated and are subject to a reinvestment option! 
11 According to Dixit and Pindyck (1994), trigger prices for continuous time can be calculated as 
I r P ) ( 
1 ' 
1 
' 
1 * l 
b 
b 
+ 
− 
= with ' 

1 b is the positive root of ( ) ( ) 0 1 2 
1 2 = + − − l b b s r . 
10 
As already mentioned in the introduction, there is a simple explanation for this result: 
Depreciation 
allows for a certain market response to declining demand, i.e. to a declining α. Consider 
that from period t to t+1 α decreases by 5%. Accordingly, in t+1 prices are 5% lower 
than expected in t, i.e. if the price starts at the trigger price P*, in t+1 the price is 5% lower 
than the trigger price P*. Without depreciation the expected price for t+2 would be equal to 
the actual price in t+1. However, if one considers 5% depreciation per period, i.e. a 5% reduction 
of the production capacities, then this reduction compensates the market deterioration and 
the expected price for t+2 is equal to P*. Consequently, as it is also shown in figure 1, 
depreciation 
reduces the downside market risk and dampens price fluctuations. Hence, one can invest 
at lower trigger prices than in a scenario without depreciation. Figure 3 shows that the 
firms obtain profits which are not significantly different from zero. Hence, in accordance with 
Dixit and Pindyck (1994) the zero-profit assumption is fulfilled for all our market simulations, 
i.e. the results satisfy an essential equilibrium condition for competitive markets. 



Figure 3: NPV of the strategies of the genomes (50 generations, 5 000 simulations)* 
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* The slight losses of the first 15 genomes are caused by too low trigger prices which arise through the GA. 
These reflections on the impact of depreciation on the market dynamics provoke further 
interesting 
questions. We will concentrate on two. Firstly: Which insights gives the model regarding 
the price dynamics in relation to the dynamics of the demand parameter α? Second: Can 
the competitive price dynamics probably be simulated directly? 
Let us start with the first question. Consider an equilibrium trigger P* and assume that in period 
t-1 firms have invested according to * ˆ P Pt = . From equations (5) and (6) we know that 
after the investment decisions are made, Pt purely depends on the relation of αt and αt-Dt. 
Hence, the price in t will be 
 
 
 
 
 
 
∆ ⋅ ⋅ + ∆ ⋅ − ⋅ = t t P P t t e s 
s 
2 
exp 
2 

* (14) 
Consider now that the actual price in period t is * P Pt ≥ . Then the firms will respond and invest 
such that * ˆ P P t t = ∆ + . Now consider t P P ≥ * . Then, two cases have to be differentiated. If 
* * ) 1 ( P P P t ⋅ − ≥ ≥ l then some firms will reinvest, such that * ˆ P P t t = +D Otherwise, if 
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* ) 1 ( P Pt ⋅ − ≤ l no firm will reinvest and ) 1 /( ˆ l D − = + t t t P P . With this knowledge and in 
accordance 
with equations (1) to (12) the price dynamics can be described as 
 
 
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 
 
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(15) 
With equation (15) price dynamics can be simulated directly, i.e. without the explicit 
representation 
of firms. Moreover, (15) can be used to determine the equilibrium investment trigger 
P*. Repeated stochastic simulations of equation (15) for various values of P* should reveal 
that the zero-profit condition will only be fulfilled if P* is equal to the equilibrium investment 



trigger. If P* is higher, the dynamics should allow for profits. If P* is smaller, this should imply 
losses. Accordingly, the equilibrium trigger price P* can be determined by minimizing the 
square of the expected profits, i.e. 
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t l 
n t l n t l t l n t l r P x M P x E P E 
P 
D 
D D D D P (16) 
with * 

0 P P = and Pt follows equation (15). 12 

Figure 4 shows that for identical trigger prices and identical at, the agent-based model and the 
direct price simulation lead to an identical price path. Moreover, as table 2 shows, the direct 
price simulations practically lead to identical trigger prices. Hence direct price simulation 
allows to validate the results of the agent-based approach. Moreover, it offers an alternative 
technique to compute equilibrium trigger prices, which is actually less computing intensive. 
Unfortunately, this approach is not applicable as generally as the agent-based approach. If, for 
instance, firms are heterogeneous or if depreciation is non-geometrical, aggregation problems 
arise. 
Figure 4: Price dynamics in the agent-based model and in the direct price simulation 
(Dt = 0.5, identical trigger prices for all genomes) 
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12 This optimization problem can be solved by combining the required stochastic simulations with a GA. 
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Table 2: Equilibrium Trigger and Volatility* 
∆t P* sˆ (annualized) 
GA simulation αt+Dt, αt  Pt+Dt, Pt  αt+4Dt, αt Pt+4Dt, Pt αt+10Dt, αt Pt+10Dt, Pt 

0.1 1.263 1.261 0.2000 0.2066 0.1996 0.1945 0.1989 0.1850 
0.25 1.237 1.237 0.1998 0.2100 0.1987 0.1912 0.1967 0.1760 
0.5 1.211 1.210 0.1995 0.2137 0.1975 0.1876 0.1934 0.1665 
1 1.180 1.180 0.1993 0.2189 0.1950 0.1826 0.1865 0.1536 
* For λ = 5%, ó = 0.2, r = 6%. The estimated volatility is based on 5 000 repeated stochastic simulations. 
As mentioned in the introduction, one could raise the question whether the price volatility 
measured in the market is significantly lower than the volatility of α. If this proved to be true, 
competition could probably be ignored, because the smoothing effect of depreciation is already 
implicit in the price volatility. However, this argument does not hold in general. According 
to table 2 the determined volatilities of αt and Pt are very similar and do not lead to 
meaningful differences in the short run. Only for longer periods (i.e. a multiple of ∆t), the 
price volatility is lower. This can be explained by the fact that to some extent demand reductions 
are always compensated over the next periods. Nevertheless, these slightly lower volatilities 
do not explain the reduction of the trigger price of considering competition.13 

A second critical question is whether competitive prices can be considered as a random walk. 
Usually, the random walk hypothesis is tested by unit root tests, like a Dickey-Fuller (DF) and 
Augmented Dickey-Fuller (ADF) tests (cf. Pietola and Wang 2001). Table 3 shows the test 
results for our simulations. Accordingly, for many simulations the hypothesis that prices follow 
a random walk is rejected. However, in most cases the hypothesis is not rejected - this 
particularly holds for the ADF tests. Transferring this result to real markets means that unit 
root tests give no reliable justification to ignore competition to determine investment triggers. 
Table 3: Percentile rejection of the random walk hypothesis for demand parameter 
and price (Dickey-Fuller (DF) and Augmented Dickey-Fuller (ADF) test)* 
DF-test ADF-test 
(first difference) 
ADF-test 
(first three differences) 
∆t 
αt Pt αt Pt αt Pt 

0.1 3.1 43.9 0.5 23.9 0.0 6.3 
0.25 3.5 42.8 0.4 21.7 0.0 5.6 
0.5 3.2 42.0 0.8 17.1 0.0 3.2 
1 3.7 39.3 0.6 14.6 0.0 1.3 
* ë = 5%, ó = 0.2, r = 6%. The DF and ADF test are based on 1 000 repeated stochastic simulations. The null 
hypothesis of a unit root is tested at a 5% level. 
Summarizing, one can conclude that the "standard procedure" of applying the real options 
approach to investments in competitive markets is highly problematic. The procedure of (i) 
testing market prices for a random walk, then (ii) estimating price volatilities, and finally (iii) 
calculating investment triggers by treating the investment as an exclusive option leads to an 
overestimation of the investment trigger. Instead, one should explicitly consider competition. 
In order to give an idea about the differences, tables 4 and 5 illustrate the impact of several 
parameter settings. The finding is that the depreciation rate has a decisive impact. As figure 5 



13 Considering ∆t=1, ( ) ( ) 171 . 1 1950 0 ˆ * 4 = = + . P t a s and ( ) ( ) 150 . 1 1826 0 ˆ * 4 = = + . P P t s . Hence 
the error is relatively 
small compared to neglecting competition which implies P*(σ = 0.2) = 1.36. 
13 
shows, the impact of depreciation on the relation of investment triggers with and without 
competition is most relevant for a depreciation rate between 5% and 50%, i.e. an asset's average 
lifetime of 2 to 20 years. This range covers most real investments. 
Table 4: Trigger prices for a monopolistic producer (italic) and under competition (fat) 
for various constellations of l and s (Dt = 0.25, r = 6%) 
σ   l  0% 5% 10% 20% 25% 50% 66% 
0.1 1.315 
1.323 
1.197 
1.058 
1.158 
1.022 
1.108 
1.002 
1.100 
1.000 
1.055 
1.000 
1.040 
1.000 
0.2 1.677 
1.680 
1.432 
1.237 
1.333 
1.110 
1.228 
1.038 
1.200 
1.023 
1.110 
1.002 
1.081 
1.000 
0.3 2.148 
2.175 
1.730 
1.443 
1.526 
1.240 
1.358 
1.100 
1.314 



1.070 
1.174 
1.015 
1.116 
1.003 
Table 5: Trigger prices for a monopolistic producer (italic) and under competition 
(fat) for various constellations of l and r (Dt = 0.25, s = 0.2) 
r    λ 0% 5% 10% 20% 25% 50% 66% 
4% 1.917 
1.909 
1.491 
1.258 
1.366 
1.118 
1.246 
1.040 
1.209 
1.025 
1.115 
1.002 
1.084 
1.000 
6% 1.677 
1.680 
1.432 
1.237 
1.333 
1.110 
1.228 
1.038 
1.200 
1.023 
1.110 
1.002 
1.081 
1.000 
8% 1.548 
1.556 
1.385 
1.186 
1.320 
1.110 
1.220 
1.038 
1.200 
1.023 
1.109 



1.000 
1.078 
1.000 
Figure 5: Trigger prices for monopolistic producer vs. competition dependent on the 
depreciation rate (Dt = 0.25, s   = 0.2, r = 6%) 
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Moreover, tables 4 and 5 show that the trigger prices differ only slightly from the production 
costs if the depreciation rate is larger than the volatility. This can be explained by the fact that 
with high depreciation rates almost every demand reduction can be compensated by a supply 
reduction within one period. In these cases the real options approach is practically irrelevant. 
Practically every market signal has a value for one period only. The resulting test statistics are 
quite interesting. For λ = 0.2 and σ = 0.2 the annualized average volatilities sˆ (αt+4Dt)  and 
sˆ (Pt+4Dt) are 0.1987 and 0.1695, respective. The hypothesis of a unit root is rejected by a 
Dickey-Fuller test at a 5% level for αt in 3.6% and for Pt in 98.9% of 1000 simulations. The 
14 
ADF test (first three differences) rejects the hypothesis for αt in 0.1% and for Pt in 92.4% of 
the simulations. A depreciation of 20% allows to compensate almost every demand shock in 
the following period. This has an interesting consequence. If on a certain market the assets are 
depreciated at a rate higher than the price volatility, prices cannot follow GBM even if demand 
is driven by GBM. If unit root tests suggest that they would, then further effects influence 
prices which have to be analyzed carefully. 
4. Summary and conclusions 
This paper explicitly includes competition into a real options framework by using an agentbased 
approach of competing firms. The firms derive their investment triggers from a genetic 
algorithm which exploits the results of repeated stochastic simulations of the market. The results 
contradict the widespread opinion that optimal investment triggers are not affected by 
competition. The investment triggers under competition are substantially lower than those 
which we find and expected for exclusive options. Finally, our search for an explanation directed 
us to the impact of depreciation, i.e. to the fact that the lifetime of assets used for production 
is limited. The presence of depreciation, i.e. the necessity of reinvestments in order to 
maintain a certain production level, reduces the downside market risk of demand shocks. 
Our main findings can be summarized as follows: 
� The real options approach leads to investment triggers which are substantially higher than 



the classical NPV criterion. However, if one considers depreciation and competition, the 
increase of the investment trigger is substantially reduced. If the depreciation rate is 
higher than the demand volatility, the real options approach is even practically irrelevant. 
� The "standard approach" to determine investment triggers by ignoring competition is not 
healed by deriving the volatility from market prices. In general, the volatility of market 
prices and the demand parameter do not differ significantly. Moreover, unit root tests are 
no reliable instrument for testing the hypothesis that prices follow a random walk. 
Accordingly, the application of the real options approach to investments in competitive 
markets should explicitly consider the effects of competition. 
� The results obtained by the agent-based model can be validated by an alternative model 
which has been identified by analyzing the simulation results. Instead of an agent-based 
approach, this second model is based on direct repeated stochastic simulations of the price 
dynamics. These price dynamics consider that the investment trigger delivers a kind of attractor 
for the prices. If a demand shock causes prices to be slightly higher or lower than 
the trigger price, the expected future price is the investment trigger. If prices are much 
lower, the movement towards the equilibrium depends on the demand volatility and the 
depreciation rate. For identical investment triggers and identical random numbers, the 
price dynamics of both modeling types are identical. 
These results show several directions for further research. For instance, the experiments in 
this paper are based on geometric Brownian motion, geometric depreciation of assets, and 
isoelastic 
demand functions only. However, at least the agent-based approach allows to modify 
these and many other assumptions in a straightforward way. 
15 
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Appendix: Flow diagram of the agent-based simulation approach. 
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