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A Methodological Note on the Estimation of Programming Models 
 
Abstract 
The paper introduces a general methodological approach for the estimation of constrained optimisation 
models in agricultural supply analysis. It is based on optimality conditions of the desired programming 
model and shows a conceptual advantage compared to Positive Mathematical Programming in the 
context of well posed estimation problems. Moreover, it closes the empirical and methodological gap 
between programming models and duality based functional models with explicit allocation of fixed 
factors. Monte Carlo simulations are performed with a maximum entropy estimator to evaluate the 
functionality of the approach as well as the impact of empirically relevant prior information in small 
sample situations.   
 
Keywords  
Agricultural Supply Analysis, Programming Models, Maximum Entropy Estimation, Prior Information 

1 Introduction 
Quantitative models of multi-output multi-input crop supply behaviour in agriculture typically belong 
to one of two main methodological types: either programming models or dual systems of supply and 
input demand equations. The former determine input allocation to various production activities using 
an explicit optimisation, the latter constitute analytical solutions to economic optimisation models. 
Maintained economic hypotheses and objectives do not necessarily have to differ between these types.2 
However, in empirical reality the structure and specification procedures are clearly distinguished: A 
programming model is chosen when the analyst sees the need to explicitly model complex 
technological or political constraints under which behavioural functions cannot be derived easily or at 
all. This generally comes at the cost of lacking statistical estimation and validation for the whole 
model. Dual equation systems, on the other hand, allow to apply well established econometric 
techniques to base the parametric specification on observed supply and input demand decisions of 
agricultural producers. This choice limits the model’s complexity and potentially oversimplifies for the 
purpose of a differentiated analysis. 
During the last decade both type of methodological approaches seemingly moved a little closer to each 
other. Just and Chambers (1989) developed a dual supply model specification with explicit allocation 
of fixed factors. This allowed to overcome a previous deficiency for modelling agricultural crop 
supply by incorporating land constraints and the observable decision variable ‘land allocated to 
production activities’. It also provided a useful framework to model the European policy instrument 
‘hectare premium’ distinct from product price effects (Guyomard et al., 1996; Moro and Schokai, 
1999). Nevertheless, additional constraints cannot easily be incorporated and the choice of functional 
form is restricted due to analytical limitations. From the programming side, Howitt (1995a) presented 
‘Positive Mathematical Programming’ (PMP) which allows to calibrate models to observed behaviour 
of a base year. PMP established itself as the dominant approach for the specification of programming 
models designed for policy analysis (for example: Howitt and Gardner 1986; House 1987; Kasnakoglu 
and Bauer 1988; Horner et al. 1992; Schmitz 1994; Arfini and Paris 1995; Barkaoui and Butault 1999; 
Cypris 2000; Graindorge et al. 2001; Helming et al. 2001). The incorporation of several observations 
employing an econometric criterion was generally made possible by Paris and Howitt (1998) and put 
to work for a cross sectional data set by Heckelei and Britz (2000). However, the theoretical base of 
this approach is weak or at least veiled. 
This paper aims at further moving the two methodological approaches closer together. We present a 
general approach to estimate parameters of programming models for agricultural supply analysis based 

                                                 
2 Often, programming models are characterised as ‘normative’ in general, because they use an explicit optimisation. This 

neither reflects the original meaning nor is it a very useful distinction. The objective of normative analysis is to say 
‘what should be’ and in this respect farm- or regional planning models qualify for this category. Programming models 
designed to explain or project behaviour do not. An integratable ‘positive’ dual supply system could just as well be used 
as an explicit optimisation model for simulation and yield the exact same results. 
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on optimality conditions of the desired model. The method provides a consistent alternative to PMP 
and allows to estimate models with multiple constraints which do not allow to analytically solve for 
behavioural functions. The paper is organised as follows: the next section explains why PMP is not 
well suited for the estimation of programming models based on multiple observations. Section three 
describes a general alternative. The main section four illustrates the approach for three different 
optimisation models which stem from the programming and econometric literature. It provides Monte 
Carlo simulation results to demonstrate functionality with pure data based estimates. In addition, 
approaches using prior information exploit the potential of maximum entropy techniques in this 
context and address the problem of limited sample sizes often confronted by differentiated modelling 
exercises. Section five concludes and points at promising directions of further research. 

2 Positive Mathematical Programming: Short Review and Critique 
The general idea of PMP is to employ dual values of calibration constraints which force the 
optimisation model to observed outcomes of  endogenous variables (step 1). These dual values are 
used to specify additional non-linear terms in the objective function which allow to reproduce the 
observed outcomes exactly without calibration constraints (step 2). Starting from a typical linear 
program (LP) in agricultural supply analysis step 1 can be illustrated as 

(1) 

[ ] ( ) [ ]o

max Z ' '

subject to

, ,

= −

≤ ≤ + ≥

l
p l c l

Al b λ l l ε ρ l 0

 

where Z is the objective function value, p, l, and c are (N×1) vectors of product prices, non-negative 
activity levels, and variable costs per activity unit, respectively. A represents a (M×N) matrix of 
coefficients, b and λ are (M×1) vectors of resource availability and their corresponding shadow prices. 
The (N×1) vector lo are observed activity levels in a base period, ε is a (N×1) vector of small numbers 
and ρ (N×1) contains the dual variables of the calibration constraints. In the second step of PMP the 
dual values ρ are used to specify a non-linear variable cost function CV(lo), such that the ‘variable’ 
marginal cost MCV(lo) of the activities are equal to the sum of the known cost c and the ‘non-specified 
marginal cost’ ρ. In case of the frequently used quadratic functional form the following condition for 
calibration is implied: 

(2) 
V o

V oC ( )
= = + = +

lMC d Ql c ρ
l

∂
∂

, 

where the (N×1) vector d and the (N×N) symmetric positive definite matrix Q correspond to the linear 
and quadratic terms of CV(lo), respectively. This condition does not include the opportunity cost of 
using fixed resources, because those are still accounted for by the resource constraints in the resulting 
model 

(3) 

[ ]

max Z ' ' 0.5

subject to
,

= − −

≤ ≥

l
p l d l l'Ql

Al b λ l 0
. 

In order to solve the underdetermined system (2) with N+N(N+1)/2 parameters and N equations, the 
literature suggests many approaches which include simple ad-hoc procedures with some parameters set 
a-priori (for example Howitt, 1995a), the use of supply elasticities (Helming et al. 2001), and the 
employment of a maximum entropy criterion (Paris and Howitt 1998). As long as conditions (2) are 
satisfied, the calibration of the resulting optimisation model is guaranteed, but the different 
specification of d and Q imply significant differences with respect to the simulation behaviour (see 
Cypris 2000 or Heckelei and Britz 2000).  
However, in this paper not calibration but estimation of programming models is of major concern. 
Paris and Howitt (1998 and 2001) already point at the possibility that more than one observation on 
production programs could be incorporated, providing a set of N marginal cost conditions (2) for each 
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observation. Heckelei and Britz use this idea for the estimation of regional cost functions based on a 
cross sectional sample.  
Here we want to argue that the PMP-procedure is not well suited to exploit the additional data 
information, because the derived marginal cost conditions do not allow to consistently estimate the 
parameters. For this purpose it is useful to look at PMP from the perspective of an econometrician: 
This implies to have some idea on a ‘true’ model, or at least the assumption, that a specific model is 
capable to sufficiently represent the true data generating process. A multitude of PMP-modellers 
apparently believed this with regard to the resulting non-linear model ultimately used to perform 
economic analysis. If we take, for example, the quadratic model (3) and assume exclusively positive 
activity levels and binding resource constraints at the optimal solution, the Kuhn Tucker conditions 
imply the shadow price values ( ) ( )( )11 1'

−− −= − −λ AQ A AQ p d b .  
In the first step of PMP, however, a different result is obtained: we partition l into two subvectors, a 
((N-M)×1) vector of ‘preferable’ activities, lp, bounded by the calibration constraints and a (M×1) 
vector of marginal activities, lm, bounded by the resource limits. Then the dual values  
(4) (a) ( ) ( )1m m m'

−
= −λ A p c  ,           (b) p p p p= − −ρ p c A 'λ  ,           (c) 0ρ =m  , 

can be derived. We can see that λ is exclusively determined by objective function entries and 
technological coefficients of the marginal activities and are therefore generally different from the 
values of the quadratic model. Since step 1 of PMP sets ρ simultaneously with λ (4b) and step 2 uses ρ  
to specify MCV, the latter are generally biased. Consequently, the set of equations (2) cannot be seen 
as unbiased estimating equations and will generally yield inconsistent parameter estimates if the true 
data generating process is correctly described by the quadratic model.  

3 A General Alternative 
The suggested ‘general alternative’ to PMP relies on a simple principle. It directly employs the 
optimality conditions of the desired programming model. No ‘step 1’ for the determination of dual 
values of calibration constraints is necessary. Instead, the simultaneous estimation of shadow prices 
and parameters avoids methodological inconsistencies. 
The basic principle can be illustrated by writing the programming model as a general Lagrangian form 
with an objective function h(y|α) to be optimised subject to a constraint vector g(y|β) = 0:  

L(y,λ|α,β) = h(y|α) + λ'[g(y|β)],  
where y, λ, α, and β represent column vectors of endogenous variables, unknown dual values, 
parameters of the objective function, and parameters of the constraints, respectively. The appropriate 
first order optimality conditions are the gradients with respect to y and λ set to zero: 

( ) ( )h | a | bL l '
∂ ∂

= + =
∂ ∂
y g y

0
y y y
∂
∂

  

( )L |= =g y 0∂
β

∂λ
. 

For the case of inequality constraints g(y|β) ≤ 0 we need to substitute the gradient with respect to λ by 
the complementary slackness representation3 

( ) ( )L | ; |= ≤ =g y 0 g y 0∂
β λ β

∂λ
 

The unknowns λ, α, and β of these Kuhn Tucker conditions can be estimated with some econometric 
criterion directly applied to these equations. Depending on the parametric specification appropriate 
curvature restrictions (second order conditions) might have to be enforced as well. 

                                                 
3 The symbol ‘ ‘ represents the Hadamard or element-wise product of two matrices. If aij and bij are the elements of two 

matrices with equal dimension, A and B, then A B = C, where C is of the same dimension as A, B and each element 
of C is defined as cij = aijbij.  
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The direct use of optimality conditions for estimation is certainly not new by itself. In the context of 
investment models, for example, the dynamic equivalents of Kuhn Tucker conditions, the Euler 
equations, have been frequently used as estimating equations to overcome analytical and empirical 
problems for more complex models (Chirinko 1993:1893f.). However, their employment as an 
alternative to PMP or to the estimation of behavioural functions in the context of multi-output 
agricultural supply models has not been considered.  One of the examples in the subsequent section 
will show that this approach is not only useful for the estimation of typical agricultural programming 
models but also provides a flexible alternative for estimating parameters of duality based behavioural 
functions with explicit allocation of fixed factors. In this context, the only difference left between 
programming and econometric models is the model form used for simulation purposes.  
It is perhaps not surprising that the most innovative PMP proponents Paris and Howitt (2001) already 
used this principle for the calibration of an agricultural supply model. Their ‘Symmetric Positive 
Equilibrium Problem’ calibrates a multi-input multi-output profit maximisation model on the basis of 
the corresponding marginal cost conditions. However, the authors did not realise that their 'first phase' 
employed to determine dual values of calibration constraints is irrelevant for the approach. In addition, 
our examples in the next section differ from Paris and Howitt such that the presented models all imply 
the existence of at least one fixed factor. They are supposed to illustrate the suggested principle for the 
estimation of programming models. Monte Carlo simulations with (Generalised) Maximum Entropy 
estimates shall indicate the consistency of the approach and allow to assess the influence of prior 
information on estimation results in situations with limited data information. The featured 
programming models are not necessarily the most useful models for agricultural supply analysis, but 
are rather chosen to span the literature on programming models and econometric models with explicit 
allocation of fixed factors. 

4 Examples and Monte Carlo Evidence 
4.1 Land Allocation with Quadratic Cost Function  
This subsection deals with estimating the parameters of the optimisation model employing a quadratic 
cost function often used in the PMP context and already described above. For the sake of simplicity we 
consider just the resource land as fixed rendering a quadratic programming model (QP-model) with a 
scalar shadow price. In addition, we replace the vector of prices p by a vector of gross margins gm4 to 
obtain 

(5) 

[ ]

max Z ' ' 0.5

subject to
' b λ ,

= − −

≤ ≥

l
gm l d l l'Ql

u l l 0
,  

with the (N×1) summation vector u, i.e. a vector of ones.  
If we assume that the optimal land allocations satisfy the land constraint in equality form for every 
observation t = 1,...,T, and that observed land allocations, o

tl , are obtained from optimal values by 
adding an (N×1) vector of stochastic errors et with mean zero and standard deviation σi, we can write 
the first order conditions as5  

(6) 
( )

( )

o o
t t t t

o o
t t t

0

' b

−λ − − − =

− =

gm u d Q l e

u l e
. 

                                                 
4 The quadratic cost function represents ‘some’ unknown non-linear cost, which are independent of the variable inputs per 

activity unit. This lack of rationalisation in the model is analogous to many PMP applications. The illustration based on 
the model shall by no means indicate the preferability of this model.  

5 Here and subsequently we employ the notational convention that equations are valid for all elements in the respective 
indices, i.e. in this specific case for all t = 1,...,T.  
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As an estimation technique, we employ the Generalised Maximum Entropy GME approach based on 
Golan et al. (1996), which allows a flexible incorporation of out of sample information.6 We 
reparameterise the error vectors as expected values of a discrete probability distribution. The 
(N×(N⋅2)) Matrix V with S=2 support points for each error term bounds the support to +/-5 standard 
deviations.7 For the simulation experiments below we have N=3 crops so that the error terms can be 
represented as the multiplication of V with a ((N⋅S)×1)-vector of probabilities wt to obtain 

(7) 

11t

12t
1 1

21t
t t 2 2

22t
3 3

31t

32t

w
w

5 5 0 0 0 0
w

0 0 5 5 0 0
w

0 0 0 0 5 5
w
w

 
 
 − σ σ 
  = = − σ σ   
  − σ σ   
 
  

e Vw . 

The complete GME formulation is then8  

(8) ( )
t t

T

t t t, , , t 1
max H 'ln

λ
=

= −∑w Q L
w w w  

subject to 
(9) ( )o o

t t t t 0−λ − − =gm u Q l Vw  

(10) ( )o o
t t t' b− =u l Vw  

(11) ij0Lmit' ij >∀== LLQ  

(12) 
S

its
s 1

w 1
=

=∑  

where H(wt) denotes Entropy, equation (11) guarantees the positive definiteness of Q based on a 
Cholesky factorisation, and (12) ensures that the probabilities add up to one. Note, that we do not need 
any reparameterisation of model parameters, because we only consider ‘well-posed’ problems with 
positive degrees of freedom in our simulations. 
The following Monte Carlo simulation experiment is used to test the estimators precision: Based on 
the output and input differentiation in Howitt (1995b)9 a data set with T observations is generated for T 
different random vectors gmt and bt for given parameters Q. Normally distributed errors are added to 
the optimal land allocations *

1tl  and *
2tl  of the first two crops with a standard deviation of 2% of the 

average land allocation, so that the ‘observed’ allocations are calculated as 1t
*
1t

o
1t ell +=  and 

2t
*
2t

o
2t ell += . To ensure that the land restriction is binding at the observed production activity levels 

we let *
2t

*
1tt

o
3t llbl −−= .  

For every generated data set, the model parameters are estimated with the GME approach and the 
whole procedure is repeated 1000 times for each sample size. The quality of the estimation is 
evaluated using the measures absolute bias (‘ABIAS’ = absolute value of the difference between 
average estimate and true value of the parameter) and root mean square error (‘RMSE’). For a 
representative look at the results the measures are summed over all estimated parameters (here all 

                                                 
6 It shall be mentioned, however, that in this context of ‘well-posed’ estimation problems with more observations than 

parameters to be estimated, classical techniques such as least squares could have been applied as well. 
7 The ‘right’ number of support points as well as the range of the support is an often discussed but not ultimately solved 

question. We chose 2 two support points here mainly to restrict the computational demands in the already complex 
Monte Carlo simulation exercises, despite the fact that 3 or 4 support points promise a limited reduction of the mean 
estimation error (Golan et al. 1996:139-40). With respect to the support range Golan et al. (1996) suggest the ‘3-Sigma’ 
rule. Preckel (2001) advocates a rather large range to approximate the behaviour of the least squares estimator. 

8 For the current case of just one resource constraint the vector d is not identified. Therefore its elements are set to zero.  
9 All data and parameter values for the simulation exercises in this and the following subsections are available from the 

authors upon request.  
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elements of Q). Figure 1 presents the results for different sample sizes. The sum of all RMSE 
decreases with increasing sample size indicating consistency of the estimator.10 The bias quickly 
decreases to irrelevant values already at a sample size of 20 (SABIAS). Recalling that the MSE is the 
sum of the squared bias and the empirical variance, figure 1 shows that the bias reflects a small 
fraction of the RMSE only and the much more important part of the MSE is given by the standard 
errors of the estimates. For small sample sizes - which are often encountered in empirical work for 
differentiated analyses - this could obviously result in very poor estimates. In this case the use of out 
of sample information is a potential remedy. Ideally, the employment of prior information would 
reduce the estimators variance at small sample sizes without introducing a strong additional bias. To 
get a better feel for the required precision of the prior information and the general interplay between 
prior and data in our modelling context we further extended the simulations: 
Figure 1 QP-model – SRMSE and SABIAS without prior information 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: Own calculations. 
An empirically relevant possibility for incorporating out of sample information is the use of priors on 
elasticities. Other studies with comparable objectives frequently provide at least a general idea on their 
range. A reparameterisation of these elasticites analogous to the one for the error terms allows the 
technical representation. For the current model, we can employ the following analytical expression for 
the (N×1) vector of land allocation elasticities with respect to own gross margins ε: 

(13)  

( )( )

'

o

'
11 1 1 1

o

diag

diag ' '
−− − − −

  
 =     
  
 = −     

l gmε
gm l

gmQ Q u u Q u u Q
l

∂
∂

 

where [ ]l gm∂ ∂ represents the (N×N) Jacobian matrix of the land demand functions and the i,j-th 

element of the (N×N) matrix o  gm l is defined as the sample mean of gross margin i, igm , divided 

by the sample mean of observed land allocation to crop j, 
o
jl . Combined with the elasticity 

reparameterisation we have to add the constraint  

(14) ( )( )
'

11 1 1 1
odiag ' '

−ε ε − − − −
  
 = −     

gmV w Q Q u u Q u u Q
l

 

                                                 
10 Mittelhammer and Cardell (2000) prove consistency of the GME approach for the general linear model under mild 

regularity conditions. No such general theoretical result is known to us for non-linear models except for one special 
case (multinomial model, see Golan et al. 1997). 
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to the previous (9)-(12), where i1vε  and i2vε  are the lower and upper support points of the i-th elasticity, 
respectively, and i1w ε  and i2w ε  the corresponding probabilities. The objective function has to be 
modified to  

(15) ( )
t t

T

t t t
, , , , t 1

max H 'ln ' ln
ε

ε ε

λ =

= − −∑
w w Q L

w w w w w . 

The intuition behind the objective function is as follows: the entropy criterion generally pulls towards 
the centre of the elasticity supports in trade-off with the error terms of the data constraints. The smaller 
the range of the elasticity support the higher is the penalty for deviating from the support centre. 
Consequently, the variation of the support range allows to express the precision of the a-priori 
information. A necessary condition for consistency, however, is that the true elasticity remains within 
the support range. Only then it is possible that the increasing weight of the error probabilities in the 
objective function draws the parameter estimates to their true values as more observations become 
available.  
The approach is analogous to the typical procedure in the framework of GME, but standard theoretical 
exposition (Golan et al. 1996) and agricultural economics applications (e.g. Lence and Miller 1998a 
and 1998b; Léon et al. 1999, Oude Lansink 1999; Zhang and Fan 2001) so far only employed direct 
restrictions on the parameter space to make the approach suitable for ill-posed and ill-conditioned 
problems. The restrictions on functions of parameters used here, however, are often more appropriate 
to incorporate available out of sample information. 
After these technical remarks we come to the specific formulation of priors in our simulation 
experiments: The support point range for the elasticities is set to 4, so that a rather substantial variation 
of the estimated elasticities without strong penalties is possible. Two different support centres are 
considered. In one case they are equal to the true elasticities, in the other case they are shifted upwards 
by 0.3.  
Table 1 QP-Model - RMSE of one estimated gross margin elasticity with different priors 

 Sample size (T) 
Prior information 5 10 20 30 50 

"without" 0.187 0.110 0.071 0.055 0.045 
"true" 0.158 0.105 0.063 0.055 0.045 
"false" 0.163 0.105 0.063 0.055 0.045 

Source: Own calculations. The value of the true gross margin elasticity is 1.03. 
Table 1 presents the RMSE of the gross margin elasticity of one output at different sample sizes. First 
we see, that the high variance of parameter estimates displayed in figure 1 is accompanied by a rather 
stable estimate of elasticities even with little data information. Nevertheless one can infer the general 
advantage of incorporating the prior information: The estimation error decreases for small sample 
sizes for both formulations of the priors, although the ‘true’ prior shows some advantage at the sample 
size of 5. Beyond a sample size of 20 no differences between the three variants exist and they all 
approach the true parameters with increasing sample sizes. 
The impact and usefulness of prior information is certainly also related to the noise in the data 
generation process. Figure 2 shows sums of root mean square errors across all three gross margin 
elasticities for two different standard deviations of the error terms (measured in percent of the mean 
land allocation). It becomes clear that the relative advantage of using priors at small sample sizes 
increases with the noise in the data generation process. However, for both versions, a sample size of 50 
is enough to render the priors almost irrelevant for the quality of the estimates.  
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Figure 2 QP-model - SRMSE of estimated gross margin elasticities with different priors 
and noise components 

Source: Own calculations. 
Note, that the inclusion of prior information at small sample sizes can be seen as an intermediate 
approach between the calibration of the model to exogenous elasticities at some base year value and 
the estimation of model parameters with sufficient data information. Consequently, it allows to use at 
least the little data information available without jeopardising the ‘plausibility’ of the estimation 
results. 

4.2 Input Allocation With Crop Specific Production Functions 
In this section we want to look at a programming model which allocates variable and fixed inputs to 
different production activities with a functional representation of crop-specific production technology. 
The general form of the desired profit maximisation model is given by  

(16) 

( )
ik ij

N N K

i i ik ij i k ikx ,b i 1 i 1 k 1

N

ij j j
i 1

max Z p f x ,b | q x

subject to

b b

= = =

=

= −

 = λ 

∑ ∑∑

∑

θ

 

where i, j , k are indices of outputs as well as fixed and variable inputs, respectively and θi is a vector 
of technological parameters. Prices and allocated variable inputs are denoted as qk and xik, bij and bj 
represent allocated and available total quantities of the fixed inputs. The transformation of input to 
output quantities is given by  
(17) ( )i i ik ij iy f x ,b |= θ  . 
The first order conditions comprise the resource constraints, the marginal value product conditions of 
variable inputs, and the shadow price equations of fixed factors: 

(18) j

N

1i
ij bb =∑

=

,   
( )i ik ij i

i k
ik ik

f x , b |Z p q 0
x x

∂∂
= − =

∂ ∂

θ
,    

( )i ik ij i
i j

ij ij

f x , b |Z p λ 0
b b

∂∂
= − =

∂ ∂

θ
.  

To solve this system of first order conditions for the input demand and output supply functions is very 
cumbersome if not impossible. Instead, we can use equations (17) and (18) directly as data constraints 
for estimating the unknowns θi and λj. This implies a considerable advantage with respect to the choice 
of functional form as well as model complexity.  
Again, we assume that the data generation process is disturbed by random errors around the 
endogenous model variables, here not only land allocations, but all input allocations xik and bij as well 
as supply quantities yi. The corresponding errors x

ikte , b
ijte , and y

ite  for each observation are 
reparameterised as  
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(19) x x x b b b y y y
ikt ik ikt ijt ij ijt it i ite , e , and e= = =v w v w v w ,  

with the (1×2) vectors x
ikv , b

ijv  , and y
iv  representing lower and upper support point and the (2×1) x

iktw , 
b
ijtw , and y

itw  their corresponding probabilities for each observation. Adding indices for observations t 
= 1,...,T we obtain the complete GME program as  

(20) ( )yx b
ikt ijt i jtit

N T K T M T
x b y x x b b y y
ikt ijt it ikt ikt ijt ijt it it

, , , , i 1 t 1 k 1 t 1 j 1 t 1
max H , , ' ln ' ln ' ln

λ = = = = = =

 
= − − − 

 
∑ ∑∑ ∑∑ ∑

w w w θ
w w w w w w w w w  

subject to 

(21) 
( ) ( )( )o x x o b b

i ikt ik ikt ijt ij ijt i
it kt

ik

f x , b |
p q 0

x

∂ − −
− =

∂

v w v w θ
, 

(22) 
( ) ( )( )o x x o b b

i ikt ik ikt ijt ij ijt i
it jt

ij ij

f x , b |Z p λ 0
b b

∂ − −∂
= − =

∂ ∂

v w v w θ
.  

(23) ( ) ( ) ( )( )o y y o x x o b b
it i it it ikt ik ikt jt ij ijt iy f x , b |− = − −v w v w v w θ  . 

(24) ( )
N

o b b
ijt ij ijt jt

i 1
b b

=

− =∑ v w , 

(25) 
S S S

x b y
ikts ijts its

s 1 s 1 s 1

w 1; w 1; w 1
= = =

= = =∑ ∑ ∑  

Again, the data constraints have to be satisfied at estimated values of the endogenous variables 
calculated as the observed values minus the estimated errors.11  
Before going to the set up and results of Monte Carlo simulations for this model we want to introduce 
some prior information also for this model to test its impact on the estimators accuracy. For this 
purpose we assume – as a variation from the previous model – that we have some information on the 
mean value of shadow prices of the fixed factors.12 The GME approach needs to be modified by adding 
a constraint with the reparameterised mean shadow prices for – here two - fixed factors 

(26) 

T
11

1t
t 111 12 12
T

21 22 21
2t

t 122

w 1
v v 0 0 w T
0 0 v v w 1

Tw

λ

λ λ λ
=λ λ

λ λ λ

λ
=

   λ        = =       λ   
    

∑

∑
V w . 

Also, the objective function is extended by the additional probabilities to read  

(27) 

( )yx b
ikt ijt i jtit

x b y
ikt ijt it

, , , , ,

N T K T M T T
x x b b y y
ikt ikt ijt ijt it it

i 1 t 1 k 1 t 1 j 1 t 1 t 1

max H , , ,

' ln ' ln ' ln ' ln

λ

λ

λ

λ λ

= = = = = = =

=

 
− − − − 

 
∑ ∑∑ ∑∑ ∑ ∑

w w w w θ
w w w w

w w w w w w w w
. 

The functional form for the production technology chosen for the Monte Carlo simulations is the 
‘Constant Elasticity of Substitution’ (CES) function, which distinguishes between two variable 
(chemicals and capital) and two fixed inputs (land and water). This model structure is analogous to the 
PMP-CES approach by Howitt (1995b). However, the current model does not contain any additional 
non-linear cost terms in the objective function (and the estimation approach certainly does not require 

                                                 
11  The introduction of error terms around the endogenous variables xikt and bijt, allow an estimation of input allocations 

consistent with the economic model. The presumed quality of ‘observed’ input allocations can be taken into account by 
varying the size of the support range. 

12  The employment of prior information on elasticities for this model is also possible despite the fact that an analytical 
expression for the elasticities might not be available. One can use discrete approximations based on additional 
‘artificial’ constraints which are simply copies of the data constraints, but with systematically varied exogenous prices 
and variable ‘simulated’ output and input quantities. Although conceptually simple, the mathematical representation of 
this approach is considered too cumbersome for this paper. 
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any determination of dual values of calibration constraints from the 'step 1' of PMP). An additional 
difference is the requirement of decreasing returns to scale in order to allow for positive production 
levels of all crops.13  
The data generation process adds normally distributed error terms to the optimal output and input 
quantities (with a standard deviation of 10% and 2% from the mean quantities) to obtain ‘observed’ 
allocations, where again the ‘incorrectly measured’ allocated quantities of the fixed inputs add up 
exactly to the available and known total quantities. For the simulation we distinguish again between a 
‘true’ and a ‘false’ prior. The former defines supports for the shadow prices of land and water around 
the true values at the mean of the observations. The latter is defined by a support centre which is 10% 
below the true values. The size of supports is chosen to be 40% of the true mean shadow price. This is 
well above 5 standard deviations of the mean shadow prices across samples so that the support 
contains the true mean shadow price for both types of priors with almost certainty. 
Figure 3 shows the absolute bias and the root mean square error as sums over the parameters of all 
three production functions (SABIAS and SRMSE). The decreasing SRMSE with increasing sample 
size hints at a consistent estimation approach. The employment of both types of prior information 
again reduces the SRMSE compared with the pure data case. The reduction is relatively modest 
compared to the priors on elasticities for the QP-model, but it is still relevant even for T=100. 
However, the difference between the ‘true’ and the ‘false’ prior is negligible from T=30 upwards. It is 
interesting to note, that the bias of the ‘true’ prior lies above the one for the ‘false’ prior. This can 
certainly happen in the case of a biased estimator and should be seen as a lucky ‘accident’. In fact, it 
can be shown that the result is reversed if we formulate the ‘false’ prior such that the centre of the 
supports lies above the true values. 
Figure 3 SRMSE and SABIAS of parameter estimated with different prior information on 

shadow prices of fixed resources in the CES model 

Source: Own calculations. 
Generally, the prior information for the shadow prices could also be formulated for every observation t 
instead of the mean of the shadow price, which might better reflect the type of data available (e.g. 
leasing rates for each observation). In this case, however, the number of associated probabilities in the 
objective function also increases with increasing observations. This may harm the convergence of the 
estimates to the true parameter values if the empirically unavoidable case occurs that the centres of the 

                                                 
13  Constant returns to scale (as in Howitt 1995b) would result in specialisation, since the maximum profit per unit of land 

in each activity would be independent of the land allocation. Consequently, the number of positive activity levels at the 
optimum could not be larger than the number of fixed factors as in a linear programming model. 
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shadow price supports are not the true values. Additional simulations not reported here confirmed this 
hypothesis. This effect, however, could be compensated by including a factor in the objective function 
which continuously decreases the weight of the prior related probabilities with increasing sample size. 

4.3 Allocation of Fixed Inputs with Crop Specific Profit Functions 
The last example of a programming model keeps the general model structure of the last subsection 
with respect to assumptions on producer behaviour and crop specific technologies with allocable 
inputs, but employs duality concepts for the determination of variable output and input quantities. 
Going back to the case with only one fixed factor, the specification is equivalent to Guyomard et al. 
(1996) and Moro and Schokai (1999), who base their analysis on econometrically estimated systems of 
supply and explicit land allocation functions. On the one hand, we want to point out the full 
equivalence of our approach with respect to parameter estimation. On the other hand, we want to 
illustrate the advantages with respect to flexibility in the choice of functional form as well as the 
accommodated complexity of the model structure. The desired programming model is given by: 

(28) 
( )

[ ]

N

i i i i
i 1

N

i
i 1

max Z p , , l |

subject to l b

=

=

= π

= λ

∑

∑

l
q θ

  

where 

(29) ( ) ( )
i i

K

i i i i i i k ik i i ik iy , k 1

p , , l | max p y q x subject to y f x , l
=

 π = − =  
∑x

q θ  

is a restricted profit function of crop i for a given land allocation li and θi is now a vector of profit 
function parameters for product i. Model (28) distributes the available land b to the different 
production activities to maximise overall profit Z, where the profit of the single crops is determined by 
πi(pi,q,li|θi). Consequently, the optimal land allocation is obtained if the marginal profits of land in 
each use are equal, i.e. if the first order conditions  

(30) ( )i i i i

i

p , , l |
0

l
∂π

−λ =
∂
q θ

  

are satisfied. For some functional forms of πi(.) a solution of system (30) under additional 
consideration of the land constraint is possible and results in explicit land allocation equations 
depending on exogenous model parameters. Guyomard et al. describe the derivation based on 
normalised quadratic profit functions and estimate a system of land allocation equations and supply 
functions  

(31) ( ) ( )i i i i
i i i i

i

p , , l |
y p , , l |

p
∂π

=
∂

q θ
q θ . 

The resulting system is linear, but the regression coefficients have to satisfy non-linear constraints 
across equations. With our approach, no derivation of land allocation equations is necessary. Instead, 
the optimality conditions (30) are directly used in combination with (31) as data constraints of a GME 
approach analogous to the two cases in the previous subsections. As long as the same statistical model 
and econometric criterion is employed, the parameter estimates of this approach must be equal to the 
ones stemming from the estimation of the behavioural function, because of the mathematical 
equivalence of the data constraints. This could be confirmed on the basis of a GME and a non-linear 
least squares approach. 
Why would we then want to estimate the model using the optimality conditions and subsequently 
employ a programming model for simulation purposes? The following points are to be mentioned: 1) 
The flexibility in choosing the functional form for πi(pi,q,li) is greatly enhanced, because no closed 
form solution for land allocation functions is necessary. 2) For the same reason, a more complex 
model structure with more than one fixed factor or general constraints on land allocation (e.g. quotas, 
base areas...) is not a principal impediment anymore for the econometric estimation of the parameters. 
3) The formulation of the resulting simulation model as an explicit optimisation model allows the 
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flexible incorporation of additional relevant constraints on allocation for the simulation horizon 
without necessarily obstructing the structural validity of the estimation results. 
Also for this model we performed simulation experiments based on an appropriate GME estimator. 
We mirror the approach by Guyomard et al. in the sense that we only employ data on supply quantities 
and land allocations, disregarding possible observations on allocated input quantities and the related 
input demand functions as data constraints. Reparameterising the errors of these endogenous variables 
of the programming model in the same way as for the CES production function model we can 
formulate the GME program for the estimation of the profit function parameters as 

(32) ( )yl
it i tit

N T M T
l y l l y y
it it it it it it

, , , i 1 t 1 j 1 t 1
max H , 'ln ' ln

λ = = = =

 
= − − 

 
∑ ∑∑ ∑

w w θ
w w w w w w  

subject to 

(33) 
( )( )o l l

i it t it i it i

i

p , , l |
0

l

∂π −
−λ =

∂

q v w θ
, 

(34) 
( )( ) ( )

o l l
i i it i it i o y y

it i it
i

p , , l |
y

p

∂π −
= −

∂

q v w θ
v w   

(35) ( )
N

o l l
it i it t

i 1
b b

=

− =∑ v w  

(36) 
S S

l y
its its

s 1 s 1
w 1; w 1

= =

= =∑ ∑  

Again, for different sample sizes, generated optimal supply quantities and land allocations were 
disturbed by normally distributed errors (with standard deviation of 10% and 2% of the mean variable 
values) and subsequent estimations without the use of prior information on parameters or functions 
thereof were executed. The results of the 1000 repetitions are given in table 2. The change of the 
different estimation errors (summed over all estimated parameters of the profit functions) indicates a 
consistent behaviour of the estimator.  
Table 2 Profit function model – Monte Carlo results without prior information 

 Sample size (T) 
Measures 4 5 10 20 30 50 100 
SRMSE 2965 2888 1212 570 462 346 253 
SABIAS 914 900 417 222 159 102 57 
SSTD 2715 2672 1102 516 426 325 242 
Source: Own calculations. 
The high variance part of the mean squared error one more time suggests a large potential of plausible 
prior information – for example on elasticities – to improve the estimator's precision for small sample 
sizes. However, we refrain from a demonstration and focus instead on another issue of empirical 
relevance: Constraints on allocation such as the land constraint are frequently of the inequality type 
and across different observations those might be sometimes binding and sometimes not. As long as the 
data directly tell us whether a constraint is binding or not for each observation, this is 
straightforwardly handled by setting the shadow prices, a-priori, to zero for observations with non-
binding constraints. But because of the noise in the data generation process, it is conceivable that the 
measured variable quantities give us the wrong impression. Apparently binding constraints might in 
fact be not binding for the true quantities and vice versa. In this case, we must allow the estimated or 
‘fitted’ variable values to satisfy the constraints either in equality or inequality form. In principle, this 
can be easily accommodated by changing the land constraint (35) to the inequality type  

(37) ( )
N

o l l
it i it t

i 1

b b
=

− ≤∑ v w , 

and adding the appropriate complementary slackness condition 

(38) ( )( )
N

o l l
t it i it t

i 1

b b 0
=

− − λ =∑ v w , 
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 to the GME approach. However, the numerical stability might be hampered with solvers based on 
gradient methods given the discontinuous nature of λt. In order to test this for the relatively simple 
example above we changed the data generation process for the simulation approach as follows: 
First, the available mean level of land was increased in such a way that, on average, about 25% of the 
optimal solutions of the data generating programming model did not use all the land. Second, we did 
not enforce that the errors added to optimal land allocations sum to 0 which generally implies a non-
zero difference between the sum of ‘observed’ land allocations and the available total quantity of land. 
Third, we use equations (37) and (38) instead of (35) in the GME approach. All other specifications of 
the simulation remained the same. The results are rather promising: As in the above experiments the 
SRMSE and SABIAS of θi indicate a consistent behaviour of the estimation technique. However, to 
get a better insight of the technique's reflection of the mixed data generation process with non-binding 
and binding resources, in figure 4 we focus on the finite sample properties of the estimated dual values 
and on the ability of the approach to correctly identify the status of the constraint.  
Figure 4 Bias and RMSE of the dual values and percentage of correctly identified status of 

the constraints as binding and non-binding 
 
 
 
 
 

 

 

 
 

 
 
 
Source: Own calculations. 
The RMSE of the dual values is calculated as the square of the difference between the means of the 
estimated shadow prices across all observations and the means of the true shadow prices for each 
repetition. Both the SABIAS and the RMSE diminish with increasing sample sizes. To provide further 
information we include - on the right axis - the percentage of correctly estimated observations 
concerning binding or non-binding status of the land constraint. It can be concluded that already for 
small sample sizes the estimation procedure is able to correctly identify binding and non-binding 
constraints at rates above 85% which is significantly higher than the cut-off value of 75%, i.e. the 
value obtained by assuming always binding constraints. With increasing sample size the rate almost 
approaches 100% indicating that the estimates converge to the true data generation process as the 
amount of data information increases. 

5 Conclusions 
The paper introduces a general approach for the estimation of programming models based on 
optimality conditions and shows the conceptual advantage compared to approaches based on PMP. 
The method simultaneously allows the specification of more complex models and a more flexible 
choice of functional form compared to previous estimation approaches of duality based behavioural 
functions with explicit allocation of fixed factors. The principle procedure and its functionality is 
demonstrated for three different examples of programming models. Monte Carlo simulations with a 
maximum entropy criterion indicate consistent behaviour of the estimator. In this context, the potential 
benefit from prior information on elasticities and shadow prices in situations with small sample sizes 
as well as the technical implementation could be shown. Last but not least, the approach proved its 
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capability of estimating model parameters across binding and non-binding constraints in the data 
generation process. 
Apart from different applications to large, ‘real world’ profit maximising programming models, many 
other directions for future research can be identified: extensions of the approach to multi-output 
production technologies with non-allocable variable factors or to expected utility models with risk 
might increase the empirical potential of these types of models by allowing for a higher level of 
differentiation. From an econometric methodology point of view, the GME approach leaves ample 
opportunities to improve upon current knowledge although its application is not a necessary 
requirement for the estimation of programming models in well posed situations: asymptotic properties 
of the estimator for non-linear models and easily applicable and valid test procedures are still missing. 
A more systematic investigation with respect to the formulation of prior information and their impact 
on estimation quality in small sample situations is also desirable.  
 
References 
Arfini, F. and Quirino, P. (1995). A positive mathematical programming model for regional analysis of 

agricultural policies. In Sotte, E. (ed), The Regional Dimension in Agricultural Economics and 
Policies, EAAE, Proceedings of the 40th Seminar, 26.-28. Juni 1995, Ancona, 17-35. 

Barkaoui, A. and Butault, J.-P. (1999). Positive Mathematical Programming and Cereals and Oilseeds 
Supply within EU under Agenda 2000. Paper presented at the 9th European Congress of 
Agricultural Economists, Warsaw, August 1999. 

Chambers, R.G. and Just, R.E. (1991). Estimating Multioutput Technologies, American Journal of 
Agricultural-Economics 71(4): 980-95. 

Chirinko, R.S. (1993). Business Fixed Investment Spending: Modeling Strategies, Empirical Results, 
and Policy Implications, Journal of Economic Literature 31: 1875-1911. 

Cypris, C. (2000). Positiv Mathematische Programmierung (PMP) im Agrarsektormodell RAUMIS. 
Dissertation, University of Bonn. 

Golan, A., Judge, G. and Miller, D. (1996). Maximum Entropy Econometrics, Chichester UK: Wiley. 
Golan, A., Judge, G. and Perloff, M. (1996). A Maximum Entropy Approach to Recovering 

Information from Multinomial Response Data, Journal of the American Statistical Association 
91(434): 841-853. 

Graindorge, C., de Frahan, B.H. and Howitt, R.E. (2001). Analysing the effects of Agenda 2000 Using 
a CES Calibrated Model of Belgian Agriculture. In Heckelei, T., Witzke, H.P. and Henrichsmeyer, 
W. (eds.): Agricultural Sector Modelling and Policy Information Systems. Proceedings of the 65th 
EAAE Seminar, March 29-31, 2000 at Bonn University, Vauk Verlag Kiel, 177-186. 

Guyomard, H., Baudry, M. and Carpentier, A. (1996). Estimating crop supply response in the presence 
of farm programmes: application to the CAP. European Review of Agricultural Economics 23: 401-
420. 

Heckelei, T. and Britz, W. (2000). Positive Mathematical Programming with Multiple Data Points: A 
Cross-Sectional Estimation Procedure. Cahiers d'Economie et Sociologie Rurales 57: 28-50. 

Helming, J.F.M., Peeters, L. and Veendendaal, P.J.J. (2001). Assessing the Consequences of 
Environmental Policy Scenarios in Flemish Agriculture. In Heckelei, T., Witzke, H.P. and 
Henrichsmeyer, W. (eds.): Agricultural Sector Modelling and Policy Information Systems. 
Proceedings of the 65th EAAE Seminar, March 29-31, 2000 at Bonn University, Vauk Verlag Kiel, 
237-245. 

Horner, G.L., Corman, J., Howitt, R.E., Carter, C.A. and MacGregor, R.J. (1992). The Canadian 
Regional Agriculture Model: Structure, Operation and Development. Agriculture Canada, 
Technical Report 1/92, Ottawa. 

House, R.M. (1987). USMP Regional Agricultural Model. Washington DC: USDA. National 
Economics Division Report, ERS, 30. 

Howitt, R.E. (1995a). Positive Mathematical Programming. American Journal of Agricultural 
Economics 77(2): 329-342. 

Howitt, R.E. (1995b). A Calibration Method for Agricultural Economic Production Models. Journal of 
Agricultural Economics 46: 147-159. 



 15

Howitt, R.E., Gardner, B.D. (1986). Cropping Production and Resource Interrelationships among 
California Crops in Response to the 1985 Food Security Act. In Impacts of Farm Policy and 
Technical Change on US and Californian Agriculture, Davis (USA), 271-290. 

Kasnakoglu, H. and Bauer, S. (1988). Concept and Application of an Agricultural Sector Model for 
Policy Analysis in Turkey. In S. Bauer and Henrichsmeyer, W. (eds.), Agricultural Sector 
Modelling. Kiel: Wissenschaftsverlag Vauck. 

Lence, H.L. and Miller, D. (1998a). Estimation of Multioutput Production Functions with Incomplete 
Data: A Generalized Maximum Entropy Approach. European Review of Agricultural Economics 
25: 188-209. 

Lence, H.L. and Miller, D. (1998b). Recovering Output Specific Inputs from Aggregate Input Data: A 
Generalized Cross-Entropy Approach. American Journal of Agricultural Economics 80(4): 852-
867. 

LÉON Y., PEETERS, L., QUINQU, M. and SURRY, Y. (1999): The use of maximum entropy to estimate 
input-output coefficients from regional farm accounting data. Journal of Agricultural Economics 
50: 425-439. 

Mittelhammer, R.C. and Cardell, S. (2000). The Data-Constrained GME-Estimator of the GLM: 
Asymptotic Theory and Inference. Working Paper of the Department of Statistics, Washington 
State University, Pullman. 

Mittelhammer, R.C., Judge, G.G. and Miller, D.J. (2000). Econometric Foundations. Cambridge 
University Press.  

Moro, D. and Schokai, P. (1999). Modelling the CAP Arable Crop Regime in Italy: Degree of 
Decoupling and Impact of Agenda 2000. Cahiers d'Economie et Sociologie Rurales 53: 50-73. 

Oude Lansink, A. (1999). Generalized Maximum Entropy and heterogeneous technologies. European 
Review of Agricultural Economics 26: 101-115. 

Paris, Q. and Howitt, R.E. (1998). An Analysis of Ill-Posed Production Problems Using Maximum 
Entropy. American Journal of Agricultural Economics 80(1): 124-138. 

Paris, Q. and Howitt, R.E. (2001). The Multi-Input Multi-Output Symmetric Positive Equilibrium 
Problem. In Heckelei, T., Witzke, H.P. and Henrichsmeyer, W. (eds.): Agricultural Sector 
Modelling and Policy Information Systems. Proceedings of the 65th EAAE Seminar, March 29-31, 
2000 at Bonn University, Vauk Verlag Kiel, 88-100. 

Preckel, P.V. (2001). Least Squares and Entropy: A Penalty Function Perspective. American Journal 
of Agricultural Economics 83(2): 366-377. 

Schmitz, H.-J.(1994). Entwicklungsperspektiven der Landwirtschaft in den neuen Bundesländern - 
Regionaldifferenzierte Simulationsanalysen Alternativer Agrarpolitischer Szenarien. Studien zur 
Wirtschafts- und Agrarpolitik, Witterschlick/Bonn: M. Wehle. 

Zhang, X. and Fan, S. (2001). Estimating Crop-Specific Production Technologies in Chinese 
Agriculture: A Generalized Maximum Entropy Approach. American Journal of Agricultural 
Economics 83(2): 378-388. 


