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Abstract

The clear definition of property rights is not a sufficient condition to
prevent congestion effects in commons. In this paper we present how in-
teresting can be the coordination among owners in the preservation of a
common good. Our approach takes into account economic dynamics and
incentive mechanisms in a hidden information context. We consider a
natural resource which is being used up for a continuum of producers on
a common property regime. We also consider that each producer has an
individual performance index which is a hidden information for the rest of
players. We introduce coordination in the sense of a global maximization
of the joint profit. If there is no coordination among the producers, their
behavior leads to complete rent dissipation. We focus our model in the
case of the producers convinced to coordinate their actions in order to
preserve their own economic sustainability. Under perfect information we
find that the exclusion of a subset of producers can appear and how it
is endogenously determined. Under asymmetric information we propose
a quantity-transfer contract which lead us to the previous stationary dis-
posal stock of the resource without exclusion.

KEY WORDS: Commons; Natural Resources; Dynamics;
Asymmetric Information; Contracts.



1 Introduction

In the literature on natural resources and environmental policy we find many
approaches concerning the burning problem of managing the commons. In most
of them the key question is the concept of property. When rights of property
are not clearly defined, the final issue of commons is often the complete rent
dissipation (open access regimes). However the clear definition of property rights
is not a sufficient condition to prevent congestion effects (see Ostrom (1990)).

In this paper we want to present how much interesting can be the coordi-
nation among owners in the preservation of a common good. Our approach
takes into account economic dynamics of natural resources (see Shone (1997)
and Chiang (1992)) and incentive mechanisms in a hidden information context
(see Laffont and Tirole (1993) and Salanié (1994)).

We consider a natural resource which is being used up for a continuum of
producers on a common property regime. We also consider that each producer
has an individual performance index which is a hidden information for the rest
of players (for a similar approach see Laffont and Tirole (1986)).

There are two cases in which we focus our model. The first case occurs
when there is no coordination among the producers. In such a context at any
time t each producer maximizes his own profit function following the myopic
rule (Hardin 1968). The long run issue is the complete rent dissipation, as in a
context of open access.

In the second case the producers are convinced to coordinate their actions
in order to preserve their own economic sustainability. We assume a regula-
tion authority who can impose compliance to the producers. The coordination
appears in the sense of a global maximization of the joint profit.

In the first step we consider the perfect information context and the station-
ary equilibrium for which the disposal stock of the resource neither depends on
the total amount of extraction nor on the number of producers extracting the
resource. However the individual share of extraction and the shadow cost of the
resource depend both on a parameter that we called the frontier agent.

The frontier agent is the last producer not allowed to extract nearest the first
agent extracting the resource. We show how the frontier agent is endogenously
determined by the renewability function of the resource and the profit function
of the producers. Two extreme cases are founded. The first one appears when all
producers are going on extracting the resource. In this case all of the producers
extract and used up the resource, there is no exclusion and the disposal stock
of the resource is always positive. The second one emerges when the frontier
agent is "on the top” of the continuum of producers. This case is equivalent to
the sole owner solution.

The key question is that the frontier agent implies exclusion. The problem
happens when the regulator authority can not impose compliance to the pro-
ducers and all of them access to the resource (Samuelson and Nordhaus 1990),
even those who would be not allowed to extract the resource.

In the second step we consider the management in an asymmetric informa-
tion context. The theoretical solution of this kind of problems is well known by



the seminal approach of Baron and Myerson (1982) and many emphatic exten-
sions (see Guesnerie and Laffont (1984) for a general approach; see Bourgeon,
Jayet and Picard (1995) for application to agricultural and natural resources.).
The cost of regulation is obviously greater than the case of coordination un-
der perfect information. However we find the same stationary disposal stock of
the resource and the same stationary global amount of extraction in any case
considered in the paper (excepting the case of complete rent dissipation).

The main difference between the regulation by coordination in perfect in-
formation and the incentive mechanism proposed in asymmetric information is
that the second one does not consider the exclusion of any subset of producers.

In section 2 we present the basic model. In section 3 we expose the case
of coordination under perfect information with the possible appearance of the
frontier agent problem. The case of asymmetric information is considered in
section 4, where we propose the contract. We also compare the stationary
equilibria. In section 5 we give some results assuming specific functions of the
growth rate, the profits and the distribution of the producers’ characteristics.
We also make some particular assumptions about the profit function. Finally
we add some concluding remarks in section 6.

2 The Model

Let us consider a renewable resource which is being extracted and used up for
a continuum of producers. The production process is linked to an individual
characteristics 8, which can be interpreted as a performance index. We assume
that 6 is distributed according to the cumulative function I' () and the density
function v (6), positive and defined on the interval [0,1]. The stock of the
resource is noted z(t) as the state variable and q(f,t) denotes the individual
rate of extraction of the resource at time ¢ as the control variable. The growth
function of the resource is noted F(z) and we assume that the initial stock
z(0) = xo is given. The individual profit function is noted 7 (g,f#) with the
properties m, > 0, mj, < 0 and 7y > 6. The two first properties are general
assumptions about the profit function as in many economic models. The last
one means that the marginal productivity increases with the performance 6.
We also consider a public regulator searching for the maximization of the
joint profit in the long run. The discount rate is noted 6. The regulator has
to take account of the limited availability of the resource at any time. The
maximization program of the regulation authority is the following one’.

“+o0 1
max / 7 (q(6,1),6) v(0)do e~%dt
q(0,t) Jo 0

subject to

i=F(x)- / 4(0,1)4(0)do (1)

IThe dotted symbol & denotes the time derivative %




VO € [0,1] 5 V¢ ; q(6,t) >0 (C2)

Vi ; /0 9(0,8)¥(0)d0 < a(t) (C3)

In the renewability constraint (C1), F' () denotes the growth function of the
resource and fol q(0,t)v(0)df denotes the total amount of consumption of the
resource at any time t. We also introduce the constraint C2 in order to have non
negative individual shares of extraction. Finally, the C3 constraint means that
the disposal stock of the resource has to be at least equal to the total amount
of consumption at any time t.

3 Coordination under Perfect Information

Let us recall that we focus on the case in which the resource is managed in a
common property regime. In this section we also consider that the producers
coordinate their actions to maintain the renewability of the resource. In such a
context the disposal stock of the resource is not extracted at each time t. Conse-
quently the constraint C3 is not binding and its associated Lagrange multiplier
is nul.

Otherwise the producers are in the case of complete rent dissipation: at any
time ¢ each producer maximizes his own profit function following the myopic
rule and damaging the renewability of the resource. That means

7 (q" (0,1),60) =0 V0 ¥t <= & = F (x) — /1 a0, 6)y(0)dd <0 (1)
0

where ¢*(t, ) denotes the optimal extraction rate for the agent 6. The stationary
issue of this situation is a nul stock x = 0 and the whole cut of the production
system.

Furthermore we suppose that the regulation authority can impose coordina-
tion to the agents in order to maximize the joint profit in the long run. In this
way it is possible that only the more performer producers are allowed to extract
the resource. Therefore the C2 constraint is binding for those # who have no
access to the resource. The Lagrange multiplier associated to the C2 constraint
is noted £(0). The costate variable associated to x(t) is noted pu(t).

In the case % > 0 (see proof in appendix A), we know that if there exists a
6 producer for who q(é,t) =0 and W;(q(é,t), é) = 4 then from this 6 agent to
top (¢ = 1) all the producers extract; otherwise they are not allowed to use up
the resource. We call € the frontier agent. That means

q(0,t) = Oande(8)>0; Vo e [o,é} 2)
q0,t) > Oande(8)=0; Ve (é, 1} (3)

An interesting issue of the program described in section 2 is the stationary
equilibrium dfl@ =0, dqgg’ﬂ =0, d‘:liﬂ = 0. The program of the regulator in

this context of coordination leads to the following Hamiltonian function.




max = [ 7 @0.0.6)0ab+ [F )~ [ at0.000)a8) @)

q(0,t)

+Aa@h@ﬂﬂ@%

From the maximization conditions of the program above (see appendix B)

we find the stationary equilibrium as given in the next proposition”.

Proposition 1 The maximization of the program of the requlator authority in
the case of common property under coordination leads to the following stationary
equilibrium characterized by the equations

F'(z)=46 (5)

éq@%mw:F@> (6)

fi = e(0) + mq (@(9),0) (7)
0>0=¢(f)=0;0<0=¢0)>0 (8)

As we can see the stationary disposal stock depends only on the growth
function and on the discount rate. So the total amount of consumption of the
resource and the number of producers extracting it do not have influence on
the long run issue of the disposal resource. All the disposal stock, the individ-
ual extraction rate, the frontier agent and the shadow cost of the resource are
endogenously determined.

The Frontier Agent ~

As shown in section 3, the frontier agent 6 emerges naturally from the growth
function and the profit function. We find two extreme cases.

First, when there is no 6. In such a case all of the producers are allowed
to extract the resource. The coordination (in the sense of maximize the joint
profit) is well accepted by all of the agents because there is no exclusion of any
subset of producers. .

The other extreme case, when 6 = 1, is equivalent to the sole owner solution.
If there will be an only producer it will be the § = 1 producer.

Let us now compare the case in which there is no a frontier agent and the
general case. We note (T,7(6),7) the stationary equilibrium when ¢ (6,t) > 0
for all of the producers (see the appendix F). We find that the stock equilibrium
is equivalent in both cases (z = T). By %3 > 0 and by the equations 6 and 25
we know that g (0) > 7 (). Consequently and by 7y, < 0 and the equations 7

2Note that for writing simplification and for any stationary variable in the paper we are
going to write Z (@) instead . lii_n Z (0,t) in the case of perfect information and 2 (@) instead
—+oo

lim £ (6,t) in the case of asymmetric information.
t—+oo



and 26 we are allowed to compare the shadow cost of the resource in the sense
fi < 7. Furthermore when 6 = 0 we find § = 7 , so the equivalence between the
first extreme case and the general one is done.

In all of the other cases, for any 0 e (0,1) the exclusion of some producers
is required. The problem of coordination with exclusion emerges.

4 Regulation under Asymmetric Information

Let us now think about a context of asymmetric information where the produc-
ers know their own 6 characteristics which is unknown by the regulator. As the
usual application of the revelation principle, we retain a direct revealing mecha-
nism which combines an individual share of extraction §(6,t) and an individual
transfer 7(6,t). This mechanism requires that the principal asks each producer
for his 0 characteristics. The regulator has to design the best mechanism leading
any producer to reveal his own truthful characteristics.
The maximization program of any 6 producer accepting the contract is

max W(cj(@, t),0) + T(@, t)
9

where 6 is the announce of the # characteristics.
Proposition 2 The incentive constraints are
T (G(0,t),0)G+7=0 (IC1)
-y (4(0,),0) >0 (1C2)

See the proof in appendix C.
The participation constraint guarantees positive profits for all the producers
accepting the contract.

F(Q (G,t) 79) +T(9:t) > 7T(q* (G,t) 79) (PC)

Note that each producer has two options: to accept the contract or to refuse
it and choose the extraction rate corresponding to the open access issue (see
equation 1).

The maximization program of the regulation authority is the following one.

max /0+°° /01 (7 (4(0,1),6) — A7(6,1)] v(6)d6 e **dt

q,T
subject to
101,102, PC
dx L
G =F@ - [ e (cr)
0



VO € [0,1] 5Vt ; 4(6,t) > 0 (C2')

Vi ; /0 §(0,£)7(0)d6 < (1) (C3)

As in section 2, we consider that the C1’ constraint is not binding, so its
associated Lagrange multiplier is nul. The constraint IC2 will have to be veri-
fied ex-post, as usually practiced in theory of contracts. We note v and £ the
Lagrange multipliers respectively associated to the PC and IC1 constraints. We
know that the sign of the information rent related to the 6 characteristics is
negative® (% < 0), so the PC constraint is only saturated for 6 =1 (£ = 0 for
0 #1 and £ > 0 for § = 1). The opportunity cost of regulation is noted A. The
Hamiltonian function is writing such that

n- fr (@.0) — M| (0)d6 1 g [F @- 1 mw)do]

+/01 @i+ (m,@.6)i+7)+¢m@0)+7—(q.6)| 1O)d0

which is equivalent (by IC1) to

1 1
H = / (7 (4,6 — pud + < (6) 4] 1(6)d8 — A / 7 (0)4(0)d8 + uF ()
1] 0
+§ [71— ((j: 1) + 7 (1) - 71—(q*7 1)}

We can easily simplify this expression integrating by parts the [ 7ydf term
of the Hamiltonian*. The maximization program becomes

1 -
mac = [ {[7(0.6) ~ i+ 0)15(6) ~ N, 0.0)T ()} do
q 0

We apply the Euler relation in order to find the optimal individual share of
extraction §(6,t). As said above, the participation constraint is saturated for
0 =1, so7(l,t) = m(¢g*(1),1) — 7 (G(1),1). From PC, IC1 and 4& < 0 we
obtain the optimal transfer of the contract.

Proposition 3 The optimal contract proposed to the agents is [§(0,t) ;7 (0,t)]
such that

q(0,t) : ngw;’e (4(6,1),0) = (14 A)mq (4(0,1),0) + e (0) —nu(t)  (9)

?(G,t):T(l,t)—/o (4 (6,1),6) G (6) db (10)

Let us consider the case in which all the producers are allowed to extract
the resource. If G(0) > 0 VO, then the Kuhn-Tucker condition is € (6) = 0 V6.
When the opportunity cost is such as A = 0, we can easily find in equation 9
the Hotelling rule.

3See the proof in appendix D.
1See appendix E.



4.1 The Stationary Equilibrium of the Contract

Our incentive mechanism leads to a long run equilibrium in which the total
disposal stock of the resource is the same that in case of section 3, as well as
the global amount of extraction of the common good.

Proposition 4 The stationary equilibrium in asymmetric information leads to
the stock &, the individual share of extraction §(6) and the shadow cost of the
resource [i such as

F'(2) =6 (11)
/0 §(0)y(6)dd = F (2) (12)
i = (LA, (0.6) + Al (3.6) (13)

The individual share of extraction and the shadow cost of the resource in
the stationary equilibrium under asymmetric information generally differ both
from the case of perfect information.

Kol

0>

0 1 0

Figure 1: Distribution of quantities according to the characteristics 6 (¢* : case
of rent dissipation; g : perfect information without exclusion; § : asymmetric
information).

5 Illustration of the General Results

We show in this section a particular case of the general results of the preceding
sections 3 and 4. Our first assumption concerns the individual profit function.
We consider that there is a production system transforming a renewable resource
into an output. The profit function is such that

7 (q,0) = pln (1 +q(0,t)) — (1 —0)q(0,t)



where p is the exogenous market price of the output and (1 — 6) denotes the
marginal cost of extraction of the natural input (the renewable resource). The
production function In (1 + ¢(6,)) is such that the gross margin verifies 7, > 0,
7rf1’q < 0 and 7r;’9 > 6. We also consider that the € characteristics is distributed
according to the uniform distribution on the interval [0, 1]. Our last assumption
concerns the growth function of the renewable resource. We consider the logistic
law rx (1 — %), where r denotes the instantaneous growth rate at each time ¢
and k the carrying capacity of the resource. As in the general case, the discount
rate is noted 6. All of the other parameters take the same notation as in the
section 2.

5.1 Coordination under Perfect Information

We first consider the case in which there is a frontier agent 0 > 0, so the
equations 2 and 3 hold. The frontier agent verifies the equations ¢(6,t) = 0 and
my(q(0,t),0) = p, so that we find in this case

f=p+1-p (14)

The program of the regulator in equation 4 becomes the following one for
this particular case.

H = A {pln(L +q(6.8)) — (1 0)g(8.1)} +(6)db + (15)
1 1
" [ (1-3)-f q<e,t>v<9>d0} + [ @ato.000)a0
subject to C1, C2 and C3. (16)

The maximization of the program above in the case of common property
under coordination leads to the following stationary equilibrium (see the maxi-
mization conditions in appendix B)

_ (r=0)k

o 2r
_ L_ . -~
q = - 1if6>46

g = 0ife<g
The shadow cost of the resource f is implicitly shown by the equation

_ _ 2 2
[ G )
p p 4pr
Let us now consider the extreme case in which there is no frontier agent. In
this extreme case €(f) = 0 V6 and all of the producers are allowed to extract
the resource. The stationary equilibrium in such a case leads us to
1 p

= — —landg= ————1
1 — o 2[re(1-2)+] 1= 1-0+7

(17)

=



The only difference founded between the stationary equilibrium in the gen-
eral case 6 > 0 and the stationary equilibrium in the extreme case where 6 does
not exist is the value of the shadow cost of the resource. As shown is section
3, the intuitive solution suggests that i < T (and consequently g (6) > 7 (0) if
0>0and 0=g(0) <7(0)if 6 <9).

5.2 Regulation under Asymmetric Information

Let us now consider the particular case in the context of asymmetric information.
From the proposition 3 we obtain the following optimal contract

i p(A+A)
100 == o) 0720 ! (18)

1
A p 2
7(0,t) = 7(1,¢) /0 [1 0.0 (1-0)| gdo (19)

The stationary equilibrium of the particular case in asymmetric information
leads to the stock &, the individual share of extraction §(6) and the shadow cost
of the resource fi, such that

. (r=0)k
b= (20)
1 P2 82
| oo - 2 (21)
ﬂ_(1+M[TI%@SGG)+A9 (22)

The following proposition give us the comparison between the stationary
equilibrium in the case of perfect information without exclusion of any subset of
producers (T,7(0) ,7) and in the case of asymmetric information (&,q (9) , ft).

Proposition 5 From the equations defining the stationary equilibrium in the
cases of perfect information and asymmetric information, we compare the cor-
responding stationary shadow prices in the following way:

i < jvand q(6) > 7(0)
p=pifA=0

Corollary 6 When X\ > 0 and for little values of 6 and the opportunity cost,
we can expect probably G (0) > q ().

See the proof in appendix G.

10
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ﬁ /a

x=K/2(3/-1) KX X=K/2(3r-1) KX
. (a) o )
Figure 2. Stationary equilibrium in perfect information (a)
and in asymmetric information (b).

6 Concluding Remarks

Common property regimes suffer often congestion effects even when rights of
property are clearly defined. In this paper we have considered the case in which
a renewable resource is overexploited in absence of any kind of coordination
among owners. The final issue is the complete rent dissipation.

However when a coordination appears in the management of the common,
we can expect a different issue. In our model we introduce coordination in the
way of there is a regulator maximizing the joint profit of a continuum of owners.

Under perfect information we show how a subset of producers can be ef-
ficiently excluded of the access to the common. The frontier between those
agents who are allowed to used up the resource and those who do not extract
it is endogenously determined. The characteristics of the renewability function
and the profit function determines both where the frontier agent is placed with
respect to the continuum of producers. Nevertheless it is possible that all the
producers are allowed to exploit the resource. This problem of partial exclusion
of producers arises in the perfect information context.

In the case of asymmetric information, we consider that the problem of
commons can be solved by a mechanism design based on contracts. We focus
on change of the stationary equilibrium when information context changes. The
management of the commons in the case of asymmetric information leads to a
higher shadow price of the disposal stock, instead the stationary disposal stock
remains unchanged. Some added results are exhibited when we consider some
particular functions defining the renewability of the resources, the profitability
of producers and the density of the performance characteristics. Individual
extraction quota changes when the information context changes and when the
opportunity cost of public funds is positive. When the opportunity cost of
public funds is positive, we can expect that the less efficient agents are supplied
by increasing quota instead the more efficient are asked for decreasing their

11



extraction rate.

Appendices

A The Variation of the Individual Extraction
Quantity Related to the Variation of 6

Let consider the total derivative of the constraint 7 related to 6. In the case
q(0) >0, s0¢e(6) =0, we obtain

_ . 0q _
:;lq( 70)%—"_71{1/9( 70) =0
which implies that %g = —%7% has a positive sign under ¢ the assumptions
aca
Ty > 0 and my, < 0. So that o
q
— >0
00

B The maximization conditions in the case of
common property under coordination

! (q(6.,t),0) p—e(0);e(@)=0if 6 >0 and (0) >0if § <0

B s e

. 6— F'(x)

i = Fuwiéq@w«mw
0 = lim e %pu(t) z(t)

t——+o0

C The Second Order Incentive Constraint

Let us consider the derivative of the IC1 constraint related to §. The second
order condition is such that

1

0 (3,0) ¢ + 7, (4,0) ¢+ 7 <0 (23)

We proceed now to differentiate the IC1 constraint for any 6. In any case the
optimal announce 6 has to be the truth (6) following the revelation principle.

dIC1 R It R it . s
W:>Tr:]/q((Le)qQ+7T:1/9(q79)q+7r:1(Q70)q+T:0

So that, by the equation 23, we find

1

ﬂ-qq((j70)qA2+7r;(qA70)Q+T:77r:]/9((?70)q<0

12



The IC2 constraint is such that

9 (,0) G > 0

D The Sign of the Information Rent

Let be the information rent
R(O)=7(q,0)—7(q",0)+T
Let compute the total derivative of the information rent related to 6.

dR
db
By the equation 1 and IC1 we obtain

=1y (2,0) 4+ 75 (4,0) — 7, (0", 0)g* — my (¢, 0) + 7
dR R N
% :71-/9 (q70) —7'('/9 (q 70)

which has a negative sign because 7Tg9 > 0 and ¢* > ¢. So that

dR

£<0

E Integration by Parts

Let consider the [ 7vdf term of the Hamiltonian function in section 4.
Let note u = 7 () and dv = v () df. Consequently du = 7df and v =T"(6).
We compute the integration by parts ([ udv =uv — [wvdu) and we find

which is equivalent (by IC1) to

| r@a@as =@+ [ v 0 das
0 0

This last equation can be introduced in the Hamiltonian function.

F The First Extreme Case ¢ (0) > 0;V0

As said in section 3, the constraints C2 and C3 are both not binding so its
associated Lagrange multipliers are nul. The Hamiltonian function is

m- [ ' (4(0,0),0) 100 + g [F @- [ 1 qw,t)w(e)de]

13



The maximization conditions are

7o (q(0,t),0) = p;V0el0,1]
B s B
. 6~ F(x)
o= P [ a0
0 = lim e ®pu(t) z(t)

t—+o0

The stationary equilibrium leads to the stock Z, the individual share of
extraction g(6) and the shadow cost of the resource T such as

F'@) =6 (24)

| qen@w - @) (25)

7= !, (7(6),6) (26)

If we assume 7'(':1/(1 < 0and 7rf1/9 > 0, by equation 26 and appendix A we obtain
G

a0 - (27)

G The Shadow Cost: Comparison between Per-
fect and Asymmetric Information

Let us consider the equations defining the stationary equilibrium in the case of
perfect information (see the proposition 1) and the equations defining the sta-
tionary equilibrium in the case of asymmetric information (see the proposition
4). By 7, >0 and Wg9_> 0, we know that i and T have both positive sign.

If we consider [t < Ti, then by ﬂgq < 0 and the equations 7 and 13 we have

VO ; 7, (q,0) <, (T.9)
which in terms of individual extraction quantities implies that
V6 ;G (0) <7 ()

However this last result is not possible because the total amount of extraction
is equivalent in both cases (see equations 6 and 12). So that we find i > 7.
Furthermore, when A = 0, by the equations 7 and 13 we have fi = T.

When 6 = 0 the equation 13 becomes

(1+N)me(q(6),0) > me(7(6).6)

so that we can expect ¢ (0) > g (6) if X and 6 approach to zero.

14
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