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Abstract 
Empirical evidence suggests that agricultural futures price movements have fat-tailed 
distributions and exhibit sudden and unexpected price jumps. There is also evidence that the 
volatility of futures prices contains a term structure depending on both calendar-time and time to 
maturity. This paper extends Bates (1991) jump-diffusion option pricing model by including both 
seasonal and maturity effects in volatility. An in-sample fit to market option prices on wheat 
futures shows that our model outperforms previous models considered in the literature. A 
numerical example illustrates the economic significance of our results for option valuation. 

Keywords: Option pricing; Futures; Term structure of volatility; Jump-diffusion; Agricultural 
markets    

                                                 
∗ An earlier version of this paper with the same title appeared as Discussion Paper 2001/19 at Norwegian School 
of Economics and Business Administration, Department of Finance and Management Science. We are grateful to 
Petter Bjerksund for helpful comments on an earlier draft. 

 



 2

Term structure of volatility and price jumps in agricultural 
markets - evidence from option data 

Abstract 
Empirical evidence suggests that agricultural futures price movements have fat-tailed 
distributions and exhibit sudden and unexpected price jumps. There is also evidence that the 
volatility of futures prices contains a term structure depending on both calendar-time and time to 
maturity. This paper extends Bates (1991) jump-diffusion option pricing model by including both 
seasonal and maturity effects in volatility. An in-sample fit to market option prices on wheat 
futures shows that our model outperforms previous models considered in the literature. A 
numerical example illustrates the economic significance of our results for option valuation. 

Keywords: Option pricing; Futures; Term structure of volatility; Jump-diffusion; Agricultural 
markets    

1 Introduction 

Black (1976) derives a pricing model for European puts and calls on a commodity futures 
contract, assuming that the futures price follows a geometric Brownian motion (GBM). In the 
literature on agricultural futures markets (as in many other markets) however, several empirical 
regularities have been documented, indicating that the GBM assumption may be too simplistic. 
Research on futures prices has found distributions that are leptokurtic relative to the normal 
distributions (e.g. Hudson et al., 1987; Hall et al., 1989) and the prices often exhibit sudden, 
unexpected and discontinuous changes. Jump behaviour of this sort will typically occur due to 
abrupt changes in supply and demand conditions, and naturally it will affect option pricing.  
Hilliard and Reis (1999) used transactions data on soybean futures and futures options to test 
American versions of Black's (1976) diffusion and Bates' (1991) jump-diffusion option pricing 
models. Their results show that Bates' model performs considerably better than Black's model. 

A number of studies have demonstrated the presence of a term structure of volatility in 
agricultural futures prices. Samuelson (1965) stated that the volatility of futures price changes per 
unit of time increases as the time to maturity decreases. This maturity effect is usually referred to 
as the "Samuelson hypothesis". Another view, the "state variable hypothesis" is that the variance 
of futures prices depends on the distribution of underlying state variables. For crop commodities 
with annual harvest, seasonality in the volatility of futures prices is typically expected. Empirical 
research on the former approach has produced mixed evidence on the maturity effect (Rutledge, 
1976). Milonas (1986) found strong support for the maturity effect after controlling for the year 
effect, seasonality effect and the contract-month effect. Galloway and Kolb (1996) concluded 
that the maturity effect is an important source of volatility in futures prices for commodities that 
experience seasonal demand or supply, but not for commodities where the cost-of-carry model 
works well. Anderson (1985) found support for the maturity effect, but concluded it is secondary 
to the effect of seasonality. Anderson also concluded that the pricing of options on futures 
contracts should be made for the regular pattern to the volatility of futures. Bessembinder et al. 
(1996) have reconciled much of the early evidence on the "Samuelson hypothesis". They have 
shown that in markets where spot price changes include a temporary component so investors 
expect some portion of a typical price change to revert in the future, the "Samuelson hypothesis" 
will hold. Mean reversion is more likely to occur in agricultural commodity markets than in 
markets for precious metals or financial assets (Bessembinder et al., 1995), so we expect to see 
maturity effects in agricultural commodity markets. 
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Any regular pattern in the volatility is inconsistent with the underlying assumptions of the Black's 
(1976) and Bates' (1991) option pricing models. Choi and Longstaff (1985) applied the formula of 
Cox and Ross’ (1976) for constant elasticity of variance option pricing in the presence of seasonal 
volatility. They found this superior to Black's model for pricing options on soybeans futures. 
Myers and Hanson (1993) present option-pricing models when time-varying volatility and excess 
kurtosis in the underlying futures price are modelled as a GARCH process. Empirical results 
suggest that the GARCH option-pricing model outperforms the standard Black model. Fackler 
and Tian (1999) proposed a simple one-factor spot price model with mean reversion (in the log 
price) and seasonal volatility. They show that futures prices consistent with this spot price model 
have a volatility term structure exhibiting both seasonality and maturity effects. Their empirical 
results indicate that both phenomena are present in the soybean futures and option markets. 

In this paper we assume that the futures price follows a jump-diffusion process. The diffusion 
term includes time dependent volatility that captures (possibly) both a seasonal and a maturity 
effect. We derive a futures option pricing model given our specified futures price dynamics, and 
we test our model empirically using eleven years of data on American futures option prices on 
wheat from Chicago Board of Trade (CBOT). We find that our model does a better job in 
explaining the option prices than the models previously suggested in the literature. The maturity 
effect is especially strong in this market. A numerical example illustrates the economic 
significance of our results. This paper is organised as follows: In the next section we present the 
model and derive the option pricing model. Thereafter the data are described and preliminary 
evidence on volatility term structure and jump effects is given, then the empirical results are 
presented. Finally, we illustrate the economic significance of volatility term structure and jump 
parameters and a numerical example is given. The paper ends with a summary and concluding 
comments. 

2 The model 

We shall present a jump-diffusion model for the futures price dynamics and derive an option 
pricing model for a European futures option.  Fundamental to the pricing of contingent claims is 
the derivation from the real world distribution of the asset price, to the equivalent "risk-neutral" 
distribution, or the equivalent martingale measure (EMM) in modern terminology. The value of a 
contingent claim is the expected value under the EMM discounted by the risk free rate. In the 
paper by Merton (1976), jumps are assumed to be symmetric (zero mean) and nonsystematic. In a 
stock market model, this means that jumps are of no concern to an investor with a well-
diversified portfolio, since jumps on average cancel out. Given such assumptions of firm specific 
jump risk, parameters concerning the jump part are equal under both the real world probability 
measure and the EMM. In our setting, focusing on wheat futures prices, the assumption of non-
systematic jump risk may be inappropriate. If, for example, bad weather results in a poor harvest, 
futures prices may jump. However, the occurrence of such an event is likely to move all the 
commodity futures prices in the same direction, and so diversifying the jump risk is impossible. 
In other words, jump risk is systematic. To derive the EMM when jump risk is systematic, we 
have to make assumptions about the price of jump risk. In this paper we follow Bates (1991) 
closely.1 Bates assumed frictionless markets, optimally invested wealth follows a jump-diffusion, 
and a representative consumer with time-separable power utility. He then derived the EMM from 
the real world probability measure. Under the assumptions on preferences and technology, he 
showed that jump parameters under the EMM need to be adjusted according to the preferences 
of the representative consumer. In case of risk neutrality, the jump parameters are equal under 
both measures. The only difference between our model and that of Bates is that we impose time 
                                                 
1 A full derivation of the EMM in an equilibrium setting is given in the appendix in Bates (1991). 
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dependence in the diffusion term of the GBM. It is well known that the diffusion term is 
unchanged, going from one probability measure to an equivalent probability measure. Hence, the 
results in Bates apply to our model as well. We shall set up the model directly under the EMM. 
Denote the price of a futures contract as F(t,T*), where t is today's date and T* is the maturity date 
of the contract. The futures price is assumed to follow the following dynamics under the EMM: 

( )
( ) ( ) ( ) dqtdBTtdt

TtF
TtdF κσλκ ++−= *

*

*

,
,
,  (1) 

where ( )tB  is standard Brownian motion under the EMM and κ  is the random percentage jump 
conditional upon a Poisson distributed event, q, occurring. We assume that ( )κ+1  is a lognormal 
random variable with mean ( )221 v−γ  and variance 2v . Consequently, the expected percentage 
jump size is [ ] 1−=≡ γκκ eE . The frequency of Poisson events is λ  and q is the Poisson 
counter with intensity λ . Note that the jump parameters are independent of time to maturity. 
This means that if a jump occurs, a parallel shift in the term structure of futures prices will occur. 
If we observe several futures contracts with time to maturity spanning several years into the 
future, the jump structure described above may seem inadequate. If, for example, exceptional bad 
weather (such as a hurricane) partly destroys a harvest, then futures prices are likely to jump. But 
we would expect contracts with maturity before the next harvest to experience a greater price 
change than contracts with maturity preceding the next harvest, since the next harvest is likely to 
turn out better than the previous one. This behaviour can easily be incorporated in our model by 
imposing a term structure on the jump amplitude. Such an extension is ignored in this paper 
since the maturity of the futures contracts analysed in this paper never exceed one year. Hence, in 
our data set, imposing parallel jumps may be a satisfactory assumption. The function ( )*,Ttσ  
represents the instantaneous volatility of the futures price conditional on no jumps. We want to 
capture two possible effects in the specification of the volatility function; periodic seasonality and 
maturity effect. We shall concentrate on the following candidate 

( ) ( ) ( )∑
=

−=
l

i
i tTtTt

1

**, σσσ   (2) 

The first term represents the time t dependent seasonal volatility pattern. We model the periodic 
function as a truncated Fourier series 

( ) ( )∑
=

++=
p

j
jj ttt

1
2cos2sin πβπασσ  

The maturity effect is modelled by negative exponentials 

( ) ( )tT
i

ietT −−=−
** δσ  

This model provides a fairly rich volatility term structure, and as we shall see below, a 
straightforward closed-form pricing formula for vanilla European options can be derived.  

2.1 Relation to other models in the commodity literature 

This model nests several models proposed for commodities in the literature. The seminal Black's 
(1976) model is given by 0==== jji βαδλ . The one-factor model of Schwartz (1997), that 
captures the maturity effect, appears if we set 0=== jj βαλ . The jump-diffusion model of 
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Bates (1991) is 0=== jji βαδ . Bates (1991) extended with maturity effect is 0== jj βα , 
and Bates (1991) extended with seasonal effects is given by 0=iδ . 

2.2 Valuation of futures options 

Valuation of both European and American futures options in this model are slight generalisations 
of the formula given in Bates (1991) and Merton (1976). Let n be the number of jumps occurring 
in the interval [ ]Tt, . Then the solution to equation (1) is 

( ) ( ) ( ) ( ) ( ) ( ) ( )∏∫∫
=

+







+−−−=

n

j
j

T

t

T

t

sdBTsdststTTtFTTF
0

2* 1,,21exp,, κσσκλ  (3) 

The value of a European futures call option written on the contract ( )*,TtF  where *TT ≤  with 
strike price K and maturity at time T, is given by  
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T

t

dsTs 2*,σω    

Put options can be calculated explicitly, or they can be found via the futures option put-call 
parity. In the empirical part of this paper, we use data on American futures options, consequently 
some modification of the above model is required. Bates (1991) derives an approximation for an 
American option in the jump-diffusion framework. His approximation follows the work of 
Barone-Adesi and Whaley (1987) in the standard case where the underlying asset follows a GBM. 
We use the same approximation as described by Bates (1991), replacing the constant volatility in 
his setting with the time-dependent volatility given by ω  above (we name this model Bates SM 
later in the paper).  

3 Preliminary analysis and data description 

Weekly data were obtained for call options on wheat futures and for the underlying futures 
contract traded on the CBOT from January 1989 until December 1999. Wheat futures contracts 
are available with expiration in March, May, July, September, and December. We first present a 
simple regression model to illustrate the term structure of volatility present in our eleven years 
sample of futures data. 
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3.1 Term structure effects in futures price volatility 

We ran the following regression for each of the five contracts:  

∑
=

++=
12

2
1

k
tktkt eDV ηη  (4) 

where tV  is estimated standard deviation of the log changes of wheat futures prices for month t 
based on daily data, ktD  are seasonal dummy variables for month t: k=2, February, …, k=12, 
December, and te  is an error term assumed to follow an AR(1) process. The regression model 
was estimated by Hildreth and Lu (1960) grid search method.2  

Table 1 Estimates of seasonality and maturity coefficients, March, May, July, September and 
December wheat futures contracts, 1989-1999. t-values are in parentheses 

 

In Table 1 the results from the regression are reported in the following way; January is the 
constant term, η1, February is η1+η2 etc. From the results in Table 1 we see a very pronounced 
maturity effect, and weak evidence of seasonality for each contract. Looking for example at the 
March contract we see that volatility starts to rise in December. The volatility in January, 
February and March is approximately six times the volatility in April.3 We also see that the 
volatilities of the remaining months of the March contract are significantly different from 
volatility in January. Note also that the summer months have slightly higher volatilities than April 
and the autumn months. We find this pattern for the other contracts as well. In this paper we 
shall investigate whether this term structure effect is priced in the option market. 

                                                 
2 OLS generally displayed autocorrelated residuals. The Hildreth and Lu grid search procedure was employed to 
yield consistent parameter estimates. 
3 The low t-statistics in February and March simply imply that the volatilities in those months are 
indistinguishable from the volatility in January. 

March May July September December
0.062          (7.32) 0.011          (1.25) 0.027          (1.86) 0.009          (0.95) 0.003          (0.18)
0.061          (0.20) 0.010          (0.05) 0.030          (0.40) 0.009          (0.01) 0.004          (0.11)
0.060          (0.24) 0.032          (2.11) 0.035          (0.71) 0.013          (0.39) 0.014          (0.93)
0.009          (4.99) 0.065          (5.04) 0.054          (2.15) 0.016          (0.63) 0.032          (2.11)
0.010          (4.61) 0.071          (5.33) 0.067          (2.93) 0.015          (0.54) 0.035          (2.17)
0.011          (4.44) 0.008          (0.24) 0.072          (3.17) 0.017          (0.65) 0.035          (2.08)
0.012          (4.32) 0.010          (0.10) 0.077          (3.47) 0.048          (3.30) 0.040          (2.37)
0.012          (4.34) 0.010          (0.02) 0.013          (0.91) 0.073          (5.38) 0.055          (3.31)
0.010          (4.65) 0.009          (0.16) 0.009          (1.24) 0.077          (5.89) 0.073          (4.65)

 0.010          (4.83) 0.009          (0.12) 0.019          (0.56) 0.004          (0.41) 0.084          (5.79)
0.010          (5.31) 0.010          (0.12) 0.019          (0.67) 0.005          (0.36) 0.096          (7.58)
0.032          (3.93) 0.008          (0.30) 0.024          (0.33) 0.006          (0.43) 0.098          (10.03)

Adj R2 0.58 0.56 0.68 0.65 0.73

1η

2η

3η

4η

5η

6η

7η

8η

9η

10η

11η

12η
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3.2 Indication of jump behaviour from option prices  

If wheat futures prices are characterised solely by deterministic time-dependent volatility, they are 
lognormally distributed. Furthermore, the implied volatility from option prices will be constant 
across strike prices. However, if jumps are likely to occur, implied volatility will be skewed. In 
Figure 1 we have calculated implied volatility from call futures prices at January 18, 1995. When 
backing out implied volatilities, we used the formula derived by Black (1976) adjusting for the 
fact that the options are of American type using the approximation of Barone-Adesi and Whaley 
(1987). Figure 1 shows no horizontal pattern of implied volatility, but an implied "volatility 
smile". A jump diffusion model may produce such a pattern. When futures prices are allowed to 
jump upwards, out-of-the-money (OTM) call options have a higher probability of ending in-the-
money (ITM) than otherwise would be the case, and they will trade at a higher price. This in turn 
creates an upward sloping volatility pattern for call options evident from Figure 1. For a call 
option ITM, the probability of a negative jump will cause the options to be worth more than 
would be the case in a lognormal world.  

Figure 1 Implicit volatility patterns from CBOT wheat call options with maturity in May 19, 
1995 at January 18, 1995. Implied volatility for American options are approximated as in 
Barone-Adesi and Whaley (1987) 

3.3 Constructing the data set 

From the preliminary analysis above we have seen evidence suggesting that our model, including 
both jumps and time dependent volatility, will capture important market characteristics. We have 
therefore tested our model on wheat futures option prices collected from CBOT. The eleven 
years of data consist of fifty-five futures contracts. The futures contracts matures in March, May, 
July, September, and December. At each point in time, there are five contracts traded, meaning 
that one year is the longest contract an investor can enter into. The options written on the 
contracts can be exercised prior to maturity, hence they are of American type. The last trading 
day for the options is the first Friday preceding the first notice day for the underlying wheat 
futures contract. The expiration day of a wheat futures option is on the first Saturday following 
the last day of trading. 

We applied several exclusion filters to construct the data sample. First, our sample starts in 1989. 
We did not use prices prior to 1989 since market prices then were likely to be affected by 
government programs in the United States (price floor of market prices and government-held 
stocks). Second, only trades on Wednesdays were considered, yielding a panel data set with 
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weekly frequency. Weekly sampling is simply a matter of convenience. Daily sampling would 
place extreme demands on computer memory and time. Third, only settlement (closing) prices 
were considered. Fourth, the last six trading days of each option contract were removed to avoid 
the expiration related price effects (these contracts may induce liquidity related biases). Fifth, to 
mitigate the impact of price discreteness on option valuation, price quotes lower than 2.5 
cents/bu were deleted. Sixth, assuming that there is no arbitrage in this market, option prices 
lower or equal to their intrinsic values were removed. Three-month Treasury bill yields were used 
as a proxy for the risk free discount rate. The exogenous variables for each option in our data set 
are strike price, K, futures spot price, F, today’s date, t, the maturity date of the option contract, 
T, the maturity date of the futures contract, T*, the instantaneous risk-free interest rate, r, 
observed settlement option market price, Cit, where i is an index over transactions (calls of 
assorted strike prices and maturities), and t is an index over the Wednesdays in the sample. 

4 Implicit parameter estimation and in-sample performance 

4.1 Method 

Besides the exogenous variables obtained from the data set, the option pricing formula requires 
some parameters as inputs. In the full model the following parameters need to be estimated: the 
season and maturity effect-related parameters ijj δβασ ,,,  and the jump-related parameters 

λκ ,,v . There are two main approaches to estimate these parameters; from time series analysis of 
the underlying asset price, or by inferring them from option prices (Bates, 1995). There are two 
main drawbacks of the former approach. First, very long time series are necessary to correctly 
estimate jump parameters, at least if prices jump rarely. Second, parameters obtained from this 
procedure correspond to the actual distribution, and hence the parameters cannot be used in an 
option pricing formula, since the parameters needed for option pricing are given under the 
EMM. The latter approach, to infer some or all of the distributional parameters from option 
prices conditional upon postulated models has been used in, e.g., Bates (1991, 1996, 2000); 
Bakshi et al. (1997); and Hilliard and Reis (1999). Implicit parameter estimation is based on the 
fact that options are forward looking assets and therefore contain information on future 
distributions. Implied estimation delivers the parameters under the EMM. 

We infer model-specific parameters from option prices over an eleven years long time period. 
The model is separately estimated for March, May, July, September and December wheat futures 
contracts expiring in 1989 through 1999. In previous studies, implicit parameters have been 
inferred from option prices during a very short time interval, often daily (e.g., Bates (1991, 1996); 
Hilliard and Reis, 1999). However, this method can be applied to data spanning any interval that 
has sufficient number of trades (Hilliard and Reis, 1999). Daily recalibrations can fail to pick up 
longer horizon parameter instabilities (Bates, 2000). In this study, one of the aspects we focus on 
is the changing volatility during the year. Options written on a specific contract have only one 
maturity each year. If we were to use daily data, a model with time-dependent volatility would be 
indistinguishable from a model with constant volatility. Information of changing volatility will be 
revealed as the option prices change during the course of the year. In other words, we need a 
long time span, in order to be able to pick up volatility term structure effects in this market. 

American option prices, itC , are assumed to consist of model prices plus a random additive 
disturbance term: 

( ) itijjiitit evrTTtKFCC += δβασλκ ,,,,,,,,,,,, *  (5) 
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Equation (5) can be estimated using non-linear regression. The unknown implicit parameters 
ijjv δβασλκ ,,,,,,  are estimated by minimising the sum of squared errors (SSE) for all option 

in the sample given by 

( )[ ] [ ]∑∑∑∑
= == =

=•−=
T

t

N

i
it

T

t

N

i
it eCCSSE

1 1

2

1 1

2  (6) 

where i is an index over transactions (calls of assorted strike prices and maturities), and t is a time 
index. The parameters minimising (6) were found using the Quadratic-hill climbing algorithm in 
GAUSS. 

Many alternative criteria could be used to evaluate performance of option pricing models. The 
overall sum of squared errors (SSE) is used as a broad summary measure to determine how well 
each alternative option pricing model fits actual market prices. Assuming normality of the error 
term, nested models can be tested using F-test statistic.4 Bates (1996, 2000) points out that the 
option pricing model is poorly identified. This means that when we minimise the non-linear 
function (5), quite different parameter values can yield virtually identical results. As a result of 
this, parameter estimates should be interpreted with care. 

4.2 Implied parameters and in-sample pricing fit 

The following models were estimated (abbreviations used later in the paper are in parentheses): 
Black's (1976) diffusion (Black76), Bates's (1991) jump-diffusion (Bates91), Black's model with 
season and maturity effect (Black SM) and Bates with season and maturity effect (Bates SM). 
Table 2 shows implicit parameter estimates for March, May, July5, September and December 
wheat options. For the Black SM and Bates SM estimation was done with the maturity effects of 
order 1, i.e., only one parameter for βα , and δ , respectively.6 As a result of forcing eleven years 
of data into one option pricing model with constant parameters, the SSE is quite large. However, 

2R  values are high and vary between 0.967 and 0.988 between contracts and models. 

 

  

                                                 

4 The F statistic is computed as [ ] ( )
KnSSE

JSSESSE
KnJF

U

UR

−
−

=−,  where SSEU and SSER are sum squared 

errors for unrestricted and restricted models respectively, J is number of restrictions, n is number of observations 
in the sample, and K is number of parameters in the unrestricted model. In the nonlinear setting, the F 
distribution is only approximate (Greene, 1993, p. 336).  
5 For July contracts with the Bates SM model we had a problem in minimising function (6) in one step, so the 
parameters for this model were estimated in two steps. In step one all parameters except 1α  and 1β  were 

estimated. The parameters σ  and 1δ  from step one were then used as constants in step two. 
6 We have also done some estimation of order 2 for both seasonal parameters and maturity parameters. 
Generally, using SSE as the performance criterion there is little improvement from including seasonal and 
maturity effects of order 2 compared to the more restrictive order 1 seasonal and maturity effects. Estimations of 
order 2 for only the seasonal parameters gave almost the same results as estimation of order 2 for both maturity 
and seasonal parameters, and are not reported here. However, the results are available from the authors upon 
request. 
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Table 2 Implicit parameter estimates for various models on March, May, July, September and 
December contracts on wheat in the period 1989-1999. 4264, 3859, 5074, 3971 and 5231 
observations, respectively. t-values are in parentheses 

Black76 Black SM Bates91 Bates SM
March contracts
       0.21 (514.7) 0.85 (1072) 0.15 (132.1) 1.18 (955.0)

0.04 (51.5) 0.04 (47.9)
0.04 0.04
0.19 (542.8) 0.19 (215.4)
0.57 (61.3) 0.59 (45.2)

2.85 (247.3) 3.98 (812.6)
-0.11 -(22.6) -0.11 -(10.2)
-0.57 -(223.4) -1.00 -(151.8)

SSE 2 300 600 2 035 600 2 016 600 1 822 600
May contracts
       0.20 (1388) 0.25 (2897) 0.18 (2146) 0.23 (11.4)

0.08 (6.4) 0.05 (5.9)
0.09 0.06
0.26 (673.8) 0.17 (466.9)
0.14 (21.4) 0.60 (8.4)

0.36 (3935) 0.71 (3.3)
-0.02 -(74.0) -0.03 -(1.9)
-0.02 -(121.3) -0.05 -(7.0)

SSE 1 514 000 1 458 200 1 399 100 1 299 000
July contracts
       0.21 (1102) 0.22 (889.7) 0.13 (598.0) 0.39 (183.2)

0.04 (89.4) 0.02 (71.5)
0.04 0.02
0.05 (206.5) 0.15 (225.2)
6.49 (578.8) 1.52 (93.8)

0.01 (0.9) 4.49 (177.0)
-0.03 -(26.0) -0.15 -(5.8)
-0.08 -(76.7) -0.10 -(6.1)

SSE 4 793 100 3 848 100 4 609 900 3 840 900
September contracts
       0.24 (330.8) 4.00 (1027) 0.18 (1290) 0.34 (706.9)

0.11 (158.1) 0.14 (21.3)
0.12 0.16
0.17 (60.8) 0.46 (636.3)
0.56 (60.7) 0.14 (23.7)

7.86 (533.8) 1.20 (173.2)
2.41 (444.3) -0.15 (421.4)
2.46 (502.3) -0.03 (169.8)

SSE 5 591 300 4 664 100 5 335 900 4 242 600
December contracts
       0.23 (805.3) 0.29 (477.0) 0.15 (156.5) 0.30 (24.5)

0.01 (78.0) 0.05 (271.1)
0.01 0.05
0.24 (61.3) 0.35 (402.1)
0.65 (442.1) 0.22 (24.4)

1.03 (268.1) 1.56 (21.7)
0.01 (4.7) 0.05 (5.7)

-0.12 -(144.8) -0.12 -(11.3)
SSE 4 734 500 4 548 000 4 360 800 4 173 200
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The results provide clear evidence of the importance of the seasonal and maturity effects; Bates 
SM performed best for all contracts. Furthermore, the inclusion of seasonal and maturity effects 
in Black76 sometimes gave approximately the same and sometimes better fit than Bates91 jump 
diffusion model. This indicates that the volatility term structure may be more important, in terms 
of option pricing, than the possibility of jumps. As Hilliard and Reis (1999) found this analysis 
also shows that Bates91 performed better than Black76. We have formally tested the models 
against each other using F-tests. The results given in Table 3, indicate that we can reject the other 
models proposed in the literature in favour of our model with both jump and time dependent 
volatility.  

 Table 3 Model specification tests for March, May, July, September and December contracts 

4.3 A closer look at the volatility term structure 

From Table 2 we also see that parameters governing the volatility dynamics differ somewhat 
across contracts. This may be explained partly by the fact that different parameter values may 
cause quite similar option prices, as mentioned above. We have plotted the volatility term 
structure for each contract in Figure 2, using the estimated parameters in Table 2. For each 
contract, the volatility term structure spans one year, and ends as the futures contract expires.  

We see that March, July and September contracts reveal the most profound maturity effect. The 
December contract combines high summer volatility and a maturity effect during autumn. In 
sum, the December contract seems to be more volatile during the second half of the year. The 
July contract shows few signs of seasonality at all, but from Table 2 we see that the seasonal 
parameters are significantly different. Again, this illustrates that the maturity effect has a far 
bigger impact on the term structure of volatility than the seasonal effect.            

 

Null hypothesis Restrictions F-value F0.95-critical Decision
March contracts
Bates SM = Bates91 151.0 8.5 Reject H0
Bates91 = Black76 202.1 8.5 Reject H0
Black SM = Black76 187.0 8.5 Reject H0
May contracts
Bates SM = Bates91 98.9 8.5 Reject H0
Bates91 = Black76 105.5 8.5 Reject H0
Black SM = Black76 49.2 8.5 Reject H0
July contracts
Bates SM = Bates91 338.2 8.5 Reject H0
Bates91 = Black76 67.2 8.5 Reject H0
Black SM = Black76 415.0 8.5 Reject H0
September contracts
Bates SM = Bates91 340.5 8.5 Reject H0
Bates91 = Black76 63.3 8.5 Reject H0
Black SM = Black76 262.9 8.5 Reject H0
December contracts
Bates SM = Bates91 78.3 8.5 Reject H0
Bates91 = Black76 149.3 8.5 Reject H0
Black SM = Black76 71.4 8.5 Reject H0
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Figure 2 Estimated term-structure of the volatility from option data for March, May, July, 
September and December futures contracts  

 

4.4 A closer look at the jump parameters 

As argued elsewhere, implied volatility curves reveal the effects of jumps on option prices. As an 
illustration of the effect of jumps on implied volatility, we computed theoretical option prices on 
American calls for different strikes using parameters from the full model (Bates SM) of the May 
contract in Table 2. The futures price is set to F(t,T*) = 3000, the maturity of the contract T* = 7 
months, and the risk free rate r = 0.05. We backed out implied volatility curves using 5 strikes (K 
= 2400, 2700, 3000, 3300 and 3600) for three different option maturities (T = 2, 4 and 6 
months). The results are given in Figure 3.   

Figure 3 Implicit volatility patterns from CBOT wheat call options where options contracts have 
2, 4 and 6 months to maturity, respectively and the underlying futures contract has 7 months to 
maturity. Implied volatility for American options are approximated as in Barone-Adesi and 
Whaley (1987) 
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We recognise the clear "smile" effect from Figure 1, caused by the possibility of both upward and 
downward jumps. It is also evident that this "smile" gets more pronounced as option expiration 
gets closer. If there is only a short time to maturity, far OTM options in a lognormal model will 
be worth relatively little, since an extreme upward price swings is very unlikely. In a jump-
diffusion model, these options may end up ITM if a jump occurs, and consequently, these 
options will be relatively more valuable in a jump-diffusion than in a lognormal world. When 
there is long time to option maturity, the jump component plays a less prominent part when it 
comes to moving futures prices upwards or downwards. In the case of OTM options say, the 
diffusion term alone will be able to move the futures price so that the option will end up ITM.7 
We also note from Figure 3 that the volatility curve shifts upwards when option maturity 
increases. This fact is mainly caused by the maturity effect captured by the volatility term 
structure. 

5 A numerical example  

Finally, we provide a numerical example showing the economic significance of our findings. 
Assume that our model specification is correct; that both the volatility term structure and jumps 
are present in futures prices, and hence our option pricing formula calculates the true option 
price. What kind of mispricing will take place if we use the model of Black (1976) or Bates (1991) 
previously suggested in the literature? We stick to the example above and compute American call 
option prices based on parameters from the May contract for different option maturities. These 
prices are compared to Black76 and Bates91 model prices, again picking parameters from Table 
2. The results are given in Table 4.  

Table 4 Comparison of American wheat futures option prices using Black76, Bates91 and 
Bates SM for different strikes when the underlying futures contract has 7 months to maturity 
and the futures price is set to F(t,T*) = 3000, and the risk free rate r = 0.05. Parameter 
estimates for the May contract in Table 2 is used 

 

Concentrating on the last two columns, we see that Bates SM produce very different option 
prices than Black76 and Bates91. We note that the difference between Bates SM and Black76 is 
as much as 48% for the nearest OTM call. The general results are as follows: The prices from all 
                                                 
7 In our special case, there is roughly equal chance for the jump to be either positive or negative under the EMM 
( 0≈κ ). This means that as time to option expiration increases, multiple jumps will have a tendency to cancel 
each other out. This will enforce the flattening effect on the volatility smile as time to expiration increases. 
However, jump effects will in general be more visible in terms of implied volatility as time to expiration 
shortens (see Das and Sundaram (1999) for an investigation of term structure effects in a jump-diffusion model). 

K Black76 Bates91 Bates SM Black76 - Bates SM Bates91 - Bates SM
T = 2m 2600 401.65 402.89 401.38 0.1 % 0.4 %
T* = 7m 3000 96.81 94.07 75.93 27.5 % 23.9 %

3400 6.97 11.23 13.45 -48.1 % -16.5 %

T = 4m 2600 414.12 414.64 409.74 1.1 % 1.2 %
T* = 7m 3000 136.02 134.96 124.30 9.4 % 8.6 %

3400 25.45 30.95 31.89 -20.2 % -2.9 %

T = 6m 2600 430.10 432.01 436.09 -1.4 % -0.9 %
T* = 7m 3000 167.14 168.58 181.44 -7.9 % -7.1 %

3400 46.06 53.11 65.47 -29.6 % -18.9 %

%Diff.
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three models are more or less the same for ITM calls. This is due to the fact that the intrinsic 
value dominates the value of an option when deep ITM, and hence most models would produce 
quite similar results. The at-the-money (ATM) price differences are basically influenced by the 
term structure effect. Both Black76 and Bates91 use an average volatility for the whole period as 
input. The fact that the volatility of futures contract increases as maturity approaches, means that 
using an average value for the volatility will produce too high option prices for short maturity 
options and too low prices for long maturity options. We note that the prices from Black76 and 
Blates91 are in quite good agreement with each other; however, they differ quite severely from 
the Bates SM model. Last, the two alternative models produce significantly lower price for OTM 
calls than Bates SM. For the Black76 model, this fact is not surprising since OTM calls will be 
more valuable in a jump-diffusion world. The results from the Bates91 model deserve some 
explanation. We see that the parameters estimated for Bates91 give a less pronounced smile 
effect than Bates SM. This is because, as the volatility term structure is restricted to be flat, the 
jump parameters will influence both the prices across strikes, and the overall price level. From 
the discussion on implied volatility, the jump parameters influence both the "smile" and the level 
of the implied volatility curve.8 In Bates SM, the term structure of volatility can take care of the 
level, and the jump parameters can “concentrate” on "smile" effects. Hence the parameters in 
Bates91, through the estimation method, emerge as a compromise of the two effects. 

The results provided here may be of great importance in other valuation contexts. For example, 
Hilliard and Reis (1999) argue that average based Asian options are popular in commodity over-
the-counter (OTC) markets. They show that Asian option prices in the Black76 versus Bates91 
differ even more than is the case for European/American options prices. Our results indicate, in 
addition to the jump effect, that Asian option prices will differ quite substantially depending on 
where in the life of the option the average is calculated. Especially, the relative strong maturity 
effect will give very different prices on Asian options depending on both the length of averaging 
period and how close the averaging period is to the maturity of the futures contract.  

6 Summary and concluding comments 

In this paper we have developed an option pricing model that incorporates several stylised facts 
reported in the literature on commodity futures price dynamics. The volatility may depend on 
both calendar-time and time to maturity. Furthermore, futures prices are allowed to make sudden 
discontinuous jumps. We estimated the parameters of the futures price dynamics by fitting our 
model to eleven years of wheat options data using non-linear least squares. Several models 
suggested in the literature are nested within our model, and they all gave significantly poorer fit 
compared with our more complete model formulation. In a numerical example we showed that 
ignoring term structure and jump effects in futures prices may lead to severe mis-pricing of 
options. 
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