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The common tragedy of regulations¤

Jean-Marc Bourgeony

Rough draft. Do not quote

This paper considers the optimal regulation of extraction of a common resource by mul-

tiple extractors under conditions of asymmetric information between the regulator and the

extractors and costly monitoring of extraction. Extractors are assumed to use the extracted

resource for productive purposes. A classical example is the problem of optimal groundwater

extraction by a group of nonidentical farmers with di¤ering use values, which is the source

of the asymmetric information between the regulator and the extractor, for the extracted

groundwater. One might think intuitively that such problems of asymmetric information

may be circumvented rather easily by simply requiring each farmer to pay the marginal

social cost of extraction for each unit of groundwater extracted if the marginal social cost

of extraction is identical across …rms. This, of course, is the standard Pigouvian solution.

However, the literature on implementation of the standard Pigouvian solution typically as-

sumes that the ability to monitor extraction is costless. If nonnegligible costs of monitoring

extraction are present, then it will generally be optimal for the regulator not to monitor

completely and instead to monitor on a probabilistic basis. Monitoring on a probabilistic

basis, however, turns the regulator’s problem into a compliance game where the extractor’s

bene…t from noncompliance is dependent upon its own use value of the extracted resource.

If this use value is private information, then the presence of costly monitoring re-introduces

problems of adverse selection which must be addressed.

¤File: common0325.tex. Date: March 27, 2002
yJean-Marc Bourgeon is Maître de conférences in the Department of Economics at the Université Paris X,

Nanterre, France. I am indebted to Robert G. Chambers for useful comments and suggestions. All remaining

errors are mine.
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Most analyses of optimal groundwater regulation (Burt and Provencher; Negri) take

an explicitly dynamic approach. For purposes of tractability, however, this approach is

static. Thus, my results are most appropriately interpreted in terms of optimal steady-state

regulation and not in terms of dynamic adjustment paths. The reason for adopting a static

approach does not re‡ect a belief on my part that issues of dynamics are secondary. Indeed,

I would argue that they are of primary importance. However, a number of excellent studies

that focus on these issues already exist, while to my knowledge no studies have addressed

the informational problems that I consider. Thus, this analysis is perhaps best viewed as a

precis of the type of issues that should be addressed in a more complex informational and

dynamic setting.

In what follows, I …rst outline our model. The modelling framework draws on the re-

cent work of Bontems and Bourgeon. I then consider the optimal regulation of groundwater

extraction assuming that the regulator’s objective is social surplus from groundwater extrac-

tion. After that, however, I consider optimal regulation of groundwater extraction that is

further constrained by the government having minimum-income objectives for farmers. The

paper then concludes.

The model

Consider a group ofN farms exploiting a common groundwater resource. Denote byBi(q; q¡i)

the bene…t of farm i using a quantity q of the groundwater when the N ¡ 1 others are ex-

tracting q¡i ´ (qj)j 6=i. Assume that

Bi(q; q¡i) = ¼i(q)¡ dQ¡i

where ¼i(q) is the pro…t farm i would obtain with an amount q of the groundwater resource

if no other farm exploits this groundwater resource and dQ¡i the supplementary cost due

to the extraction of the quantity Q¡i ´ P
j 6=i qj by the N ¡ 1 other farms. I suppose

that unless the resource allocation is nil, in which case ¼i(0) = 0 for all i, these farms

are heterogeneous in the sense that they obtain di¤erent gross bene…ts ¼i from the same

amount of the groundwater resource. More speci…cally, the productivity of farm i depends
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on its productivity level µi according to the relation ¼i(q) = ¼(q; µi). This productivity level

is the private information of each farm (the type of farm i). The government knows the

distribution of productivity levels, denoted by p(µ) with
P

µ p(µ) = N , but it cannot identify

a farm’s type without prohibitively costly monitoring of the purposes activities. I restrict

attention to the case where farms are of two types only, i.e., µi 2 £ = fµ; ¹µg with µ < ¹µ and

I assume that farms are ranked according to their marginal productivity of groundwater.

More speci…cally, denoting by ¢(q) the di¤erence of gross bene…ts from a resource allocation

q, i.e.; ¢(q) ´ ¼
¡
q; ¹µ

¢
¡ ¼ (q; µ), I assume that1

¢0(q) > 0:(1)

If the regulator knew the private information of each farm of the sector and could costlessly

monitor extraction of groundwater, she would implement the …rst-best assignment rule qFBi ,

i.e., the production levels that maximize the social welfare given by

W = ¡sQ+
X

i

Bi(qi; q¡i)(2)

where ¡sQ is the social damage corresponding to a total extraction Q ´ P
i qi of the

groundwater resource by the N farmers. These …rst-best assignments satisfy

¼0i(q
FB
i ) = s+ (N ¡ 1)d

for all i = 1; :::; N . These levels are equivalent to assigning to each farm i one of the two

di¤erent levels qFB(µ) or qFB(¹µ) given by

@q¼(q
FB(µ); µ) = s+ (N ¡ 1)d

for µ 2 £, where @x denotes the partial derivative with respect to x. The …rst-best as-

signment of farm i is di¤erent from its private choice, given by ¼0i(q
¤
i ) = 0 or equivalently

@q¼(q
¤(µi); µi) = 0, which yields the sel…sh gross pro…t level ¼¤(µi) ´ ¼(q¤(µi); µi).

In the presence of asymmetric information, it is doubtful that the regulator is able to

implement a given quantity assignment without resorting to a reward and/or threat system,

that I assume to be monetary (a tax-subsidy and/or …ne system). Absent redistributional

and …scal concerns, it would be possible to implement the …rst-best allocation via a Pigouvian
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tax (or subsidy) with constant marginal rate equal to the marginal damage s + (N ¡ 1)d,

assuming the agency is able to control without cost the amount of groundwater resource

extracted by each farm.

No farm would willingly comply, however, with such a rule if they are not controlled

by the regulator. Hence, every tax or subsidy scheme must be augmented by a monitoring

system. A public policy is thus a scheme, a (non-linear) relationship between quantities q,

monetary amounts t and f , and a probability of control or monitoring ¹, where q is the

amounts of groundwater resource that the farm can extract, t is a tax or licence fee paid

by the farm for this amount and f the …ne paid in case of a monitoring revealing that an

e¤ective level of groundwater resource y greater than the one permitted q.2

In designing such a scheme, it is easier to consider the “game-form” of the regulation

problem. Indeed, this problem is mathematically equivalent to the problem of having to

design an “announcement game” or “mechanism” where the farms truthfully announce their

private information to the regulator. To obtain truthful announcements, however, the regu-

lator must be able to commit to an assignment rule q(µ), payment rules t(µ) and f(y; µ), and

monitoring probability ¹(µ) (0 � ¹(µ) � 1) that satisfy incentive compatibility constraints

given by

Bi(q(µi); q¡i)¡ t(µi)¡ ¹(µi)f(q(µi); µi) ¸ max
y;~µ

Bi(y; q¡i)¡ t(~µ)¡ ¹(~µ)f(y; ~µ)(IC)

for all µi 2 £.3 Constraints (IC) require that a type-µi farm is never worse-o¤ announcing

truthfully its type and following the policy requirements than choosing any other announce-

ment ~µ and production level y. Because the cost dQ¡i due to the extraction of the other

farms does not change the incentive constraint of the farm i, it can be removed from each

side of (IC). The incentive constraints can be thus expressed equivalently in term of gross

pro…ts.

With a control that reveals only the e¤ective amount y and not the farm’s type µ, two

types of misbehavior are possible: The farm may choose to ‘mimic’ another farm’s type, or it

may try to ‘evade’ the policy by not complying with its intended allocation. The …rst type of

cheating is the standard adverse-selection problem investigated in the regulation literature

(Guesnerie and La¤ont). The evasion problem was …rst investigated by Becker and then
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developed by Towsend, Mookherjee and Png and Chandler and Wilde. In the following, we

assume that …nes are constrained by

¹F ¸ f(y; µ) ¸ 0

where ¹F , for example, may corresponds to the limited liability of farms. It is common in the

taxation literature to assume that the maximum …ne can be farm-speci…c (e.g., Chandler

and Wilde). However, because monitoring does not permit the regulator to assess the farm’s

pro…t in case of evasion, the maximum …ne cannot be farm-speci…c.

By the incentive constraints (IC), one must have for all µ; f(q(µ); µ) = 0 and f(y; µ) = ¹F

for all y 6= q(µ). Indeed, for any payment schedule t(¢), setting the …ne to 0 in case of

compliance increases the left-hand side of (IC), while imposing the maximum …ne in case

of evasion at least weakly decreases the right-hand side of (IC).4 This very simple …ne

schedule allows us to separate the two incentive problems of the administration. Let U(µ) ´
¼(q(µ); µ)¡t(µ) denote the gross pro…t of a compliant type-µ farm. The ine¢cient mimicking

problem is addressed by the usual adverse-selection constraints

U(µ) ¸ max
~µ
¼(q(~µ); µ)¡ t(~µ);(3)

which require that regulation must be designed so that mimicking behavior cannot improve

the farm’s pro…t. Evasion is deterred if

U(µi) ¸ ¼¤(µi)¡min
~µ

ft(~µ) + ¹(~µ) ¹Fg(4)

which states that a farm is worse o¤ being sel…sh while declaring to be of a type that

minimizes its expected payment (…ne in case of control included) than by complying with

the groundwater regulation.

Simple manipulations of (3) give

¢(q(¹µ)) ¸ U(¹µ)¡ U(µ) ¸ ¢(q(µ))(ASC)

implying

¢(q(¹µ)) ¸ ¢(q(µ))
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or

Z q(¹µ)

q(µ)

¢0(q)dq ¸ 0:

By this last expression and (1), it follows that the only incentive compatible contracts

are ones with q
¡
¹µ
¢

¸ q (µ) :

Denote by K ´ min~µft(~µ) + ¹(~µ) ¹Fg. The constraints (4) can be written equivalently as

K ¸ ¼¤(µ)¡ U(µ)

for all µ. Using the …rst inequality of (ASC), we have

¼¤(¹µ)¡ U(¹µ)¡ (¼¤(µ)¡ U(µ)) ¸ ¡¢(q(¹µ))¡ (¼¤(µ)¡ ¼¤(¹µ))

¸ ¡¢(q(¹µ))¡ (¼(q¤(¹µ); µ)¡ ¼¤(¹µ))

=

Z q¤(¹µ)

q(¹µ)

¢0(q)dq:

The second inequality comes from the fact that ¼¤(µ) ¸ ¼(q; µ) for all q: Under the reason-

able assumption that the regulator never wants to implement a level of extraction by the

¹µ-type farmer that is higher than what he or she would extract privately, i.e., q¤(¹µ) ¸ q(¹µ),

this last expression is positive. It then follows that deterring the ¹µ-type farmer from evading

the allocation regulation is also su¢cient to deter the less productive from evasion. Math-

ematically, this observation implies that a single constraint is required to ensure that the

contracts deter evasion:

K ¸ ¼¤(¹µ)¡ U(¹µ)(EC)

Finally, by the de…nitions of K and U(µ),

K � t(µ) + ¹(µ) ¹F

= ¼(q(µ); µ)¡ U(µ) + ¹(µ) ¹F

which implies that the inspection e¤ort is bounded below by

¹(µ) ¸ (U(µ)¡ ¼(q(µ); µ) +K)= ¹F ¸ 0(CTR)
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where the last inequality comes from (4), using ¼¤(µ) ¸ ¼(q(µ); µ). The meaning of (CTR)

is straightforward: the agency has to inspect farms with positive probability to enforce an

assignment level lower than the sel…sh one.

The preceding arguments establish that the government’s groundwater allocation problem

is given mathematically by

max
q(£);U(£);K
¹(£)�1

X

µ2£
f¼(q(µ); µ)¡ [s+ (N ¡ 1)d]q(µ)¡ c¹(µ)gp(µ) : (ASC),(EC),(CTR)(5)

where c¹ denotes the cost of an audit ¹ incurred by the agency. Before solving the program,

observe that since the audit is costly, the constraints (CTR) are binding at the optimum;

i.e.; the optimal solution involves K = t(µ)+¹(µ) ¹F for all µ, which means that the expected

payment in case of evasion is the same for both type of farms. This implies a negative

relationship between the tax and the probability of control: The more a farm has to pay,

the less it is inspected. Since tax payment and groundwater allocations must be positively

related to satisfy (3) constraints, it then follows from this observation that the higher is the

farm’s allocation, the lower will be the optimal inspection probability for that farm type.

Characterizing the Optimal Extraction Policy with No

Redistributional Concerns

In solving program (5), it is analytically convenient to adopt a two-step solution procedure

suggested originally by Weymark and later developed more fully by Chambers and Bourgeon

and Chambers. The solution strategy is to …rst solve the adverse selection and evasion

problems given a particular groundwater assignment q(£) and then to pick the optimal

groundwater assignment. Let us consider the case of an interior solution for ¹ …rst. With

binding constraints (CTR), the groundwater allocation problem (5) can be rewritten as

max
q(£)

X

µ2£
f(1 + c= ¹F )¼(q(µ); µ)¡ [s + (N ¡ 1)d]q(µ)gp(µ)¡ C(q(£))(6)

where

C(q(£)) ´ c
¹F
min
U(£);K

(
NK +

X

µ2£
U(µ)p(µ) : (ASC),(EC)

)
.(7)
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C(q(£)) can be interpreted as the cost of the adverse-selection and evasion problem

for a given groundwater resource assignments q(£). Since I assume that there is no social

gain associated to the amount of tax collected, the cost of the policy comes solely from the

inspection e¤ort that the regulation of the groundwater extraction necessitates. Using the

fact that t = ¼ ¡ U , a decrease of U(µ) for the µ-type farm corresponds to an increase of its

tax payment, which from binding (CTR) allows to monitor less intensively this farm. Still

from binding (CTR), a decrease in the expected evasion payment K allows the agency to

reduce inspection e¤ort on all farms.

Figure 1 illustrates problem (7) for a given K in gross pro…t level (U(£)) space. The

straight lines parallel to the bisector (the 450 degree line emanating from the origin) cor-

respond to the binding incentive constraints (ASC). The incentive-compatible pro…t pairs

are thus located between these two lines. The horizontal line with intercept ¼¤(¹µ)¡K cor-

responds to the evasion constraint (EC), and the relevant pro…t values are located above

this line. Finally, the lines with intercepts C ¡K and C¤ ¡K with the same negative slope

correspond to the agency’s iso-cost lines. Cost is decreasing downward as indicated. Observe

that the incentive area delimited by the (ASC) lines does not depend on K, whereas iso-cost

lines and the evasion line (EC) do. Consequently, for any q(£), there are three possible

situations depending on the value of K. We either have

¼¤(¹µ)¡K � ¢(q(µ))

which corresponds to an intercept of the (EC) line located below the intercepts of the (ASC)

lines (e.g.; at point D), or

¢(q(¹µ)) < ¼¤(¹µ)¡K < ¢(q(µ))

which corresponds pictorially to an intercept of the (EC) line located between the intercepts

of the two (ASC) lines (e.g.; at point B), and …nally

¼¤(¹µ)¡K ¸ ¢(q(¹µ))

which is the case depicted. These cases correspond to decreasing values of K, and given (7),

we intuitively infer that the later situation of a “small” K is the optimal one. This intuition
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is easily veri…ed. Consider that the …rst case is the optimal situation, i.e.; that the optimal

solution is such that

¼¤(¹µ)¡K � ¢(q(µ))

The optimal point is at the intercept of the ¹µ-type incentive constraint (ASC), which

gives

U(¹µ) = ¢(q(µ))

U(µ) = 0

whence

C(q(£)) =
c
¹F
min
K

fNK + p(¹µ)¢(q(µ))g

Minimizing with respect to K increases the intercept of the (EC) line which would eventu-

ally be higher than the intercept of the ¹µ-type (ASC) line since ¼¤(¹µ) > ¢(q(µ)), hence a

contradiction. Same reasoning applies in the second case, i.e.;

¢(q(¹µ)) < ¼¤(¹µ)¡K < ¢(q(µ))

In that case, the optimal point solution is at B, which gives

U(¹µ) = ¼¤(¹µ)¡K

U(µ) = 0

hence

C(q(£)) =
c
¹F
min
K

fp(µ)K + p(¹µ)¼¤(¹µ)g

Again, minimizing the right hand side with respect to K increases the intercept of the

(EC) line which would eventually be higher than the intercept of the µ-type (ASC) line since

¼¤(¹µ) ¸ ¼(q(¹µ); ¹µ), hence a contradiction.

We thus must have

K < ¼¤(¹µ)¡¢(q(¹µ))(8)
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at the optimum of the program, which is the situation depicted Fig. 1. The optimal point

solution is thus at point A which yields a cost equal to C¤. The optimal solution is located

where the µ-type incentive constraint (ASC) and the evasion constraint (EC) intersect. In-

deed, we then have

U(¹µ) = ¼¤(¹µ)¡K(9)

U(µ) = U(¹µ)¡¢(q(¹µ))

whence

C(q(£)) =
c
¹F
fN¼¤(¹µ)¡ p(µ)¢(q(¹µ))g:(10)

Observe that the constant K disappears from the expression of the cost. Consequently,

as long as (8) is satis…ed, optimal tax levels are de…ned up to a constant. Indeed, because

the regulator has no redistributive concerns, only marginal tax rates matter. However, the

condition (8) on K imposes that total tax payments t(¢) must be su¢ciently small to reduce

inspection e¤orts. Also notice that

dC(q(£))=dq(¹µ) = ¡p(µ)¢0(q(¹µ))c= ¹F < 0

so that under (1) an increase in the allocation to the ¹µ-type of farmer reduces the cost

of implementing the groundwater assignment. The reason that this happens is clear from

Figure 1. The binding incentive constraint for the regulator is the one which makes it at

least weakly optimal for the less productive farmer not to mimic the extraction practices of

the more productive farmer. Hence, a marginal increase in q(¹µ), which brings a relatively low

return to the low productivity farmer, makes the contract intended for the more productive

farmer even less attractive. As we shall see below, this leads to a ‘spreading’ e¤ect of the

type noticed by Chambers.

Substituting (10) in (6) and solving for q(¢) give the following …rst-order conditions for

an interior solution,

@q¼(q̂(¹µ); ¹µ) =
s+ (N ¡ 1)d
1 + c= ¹F

¡ c= ¹F

1 + c= ¹F

p(µ)

p(¹µ)
¢0(q̂(¹µ))(11)
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and

@q¼(q̂(µ); µ) =
s+ (N ¡ 1)d
1 + c= ¹F

(12)

and it is easy to show that

qFB(µ) < q̂(µ) < q¤(µ)

qFB(¹µ) < q̂(¹µ)

and

q̂(µ) < q̂(¹µ)

Because the marginal tax rates de…ned by the right-hand sides of (11) and (12) are lower

than the Pigouvian tax, s + (N ¡ 1)d, the optimal groundwater allocation induces over-

extraction of groundwater as compared to the …rst best. Notice, however, that the marginal

tax presented to the ¹µ-type farmer is lower than the marginal tax presented to the lower

productivity …rms. Thus, when compared with the …rst best, the more productive farmers

have a higher marginal incentive to over-extract than the less productive farmers. The last

result (no bunching at the optimum) is deduced from (1) and the fact that using (12) and

(11) we have

@q¼(q̂(¹µ); ¹µ) < @q¼(q̂(µ); µ)

To understand the intuition behind these results recall that there are two incentive prob-

lems that the groundwater regulator is trying to address. One is the existence of information

asymmetries between the regulator and the extracting farmers, and the other is the existence

of a costly monitoring mechanism. Consider the latter problem …rst. Generally, it is not

optimal to monitor completely (set ¹(µ) = 1). Without complete monitoring, even if the

Pigouvian tax is charged, farmers will optimally depart from …rst-best extraction practices.

Thus, some over extraction, relative to the …rst best, emerges from the presence of costly

monitoring.

Now consider the former informational e¤ect. As we have seen above, C (q(£)) is de-

creasing in q(¹µ) because raising q(¹µ) makes it less attractive for the less productive farmer
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to mimic the extraction practices of the more e¢cient farmer. Put another way, there is

a reduction in the informational cost of implementing an extraction assignment if q(¹µ) is

higher. Hence, because of the presence of the information asymmetries the more productive

farmer receives an extra incentive to over-extract groundwater when compared with the less

productive farmer. This additional over-extraction e¤ect depends on the extent of the di¤er-

ence between …rms types, their relative proportions and the monitoring cost. Rearranging

terms in (11) give

@q¼(q̂(¹µ); ¹µ) =
p(¹µ)

p(¹µ) +N(c= ¹F )

µ
s+ (N ¡ 1)d+ c

¹F

p(µ)

p(¹µ)
@q¼(q̂(¹µ); µ)

¶

and we have q̂(¹µ) < q¤(¹µ) if

@q¼(q
¤(¹µ); µ) > ¡p(

¹µ)

p(µ)

¹F

c
[s+ (N ¡ 1)d]

Consequently, a high monitoring cost compared to the maximal …ne, or a large number

of type-µ …rms, may induce the agency to give up reducing the resource extraction of the

type-¹µ …rms to reduce monitoring costs.

As mentioned above, optimal tax payments are de…ned up to a constant. This is not the

case for inspection probabilities, which are completely determined by the resource allocation

pair q̂(£). Indeed, using binding (CTR) constraints and (9), we obtain

¹(¹µ) = [¼¤(¹µ)¡ ¼(q̂(¹µ); ¹µ)]= ¹F

¹(µ) = ¹(¹µ) + [¼(q̂(¹µ); µ)¡ ¼(q̂(µ); µ)]= ¹F

This is easily understood. Inspection probabilities must deter type-¹µ producers from

evading the regulation. The agency has to design a regulation such that whatever type-¹µ

farmers’ announcements, expected bene…ts in case of evasion are the same, and are lower

than their revenues when complying. Observe that even if producers do not comply with

their extraction assignments, they do have paid the tax payment corresponding to their

announcements. Consequently, if they have announced their true type, the tax payment do

not matter, and the inspection probability is deduced from the binding evasion constraint

(EC): ¼(q̂(¹µ); ¹µ)¡ t(¹µ) = ¼¤(¹µ)¡ [t(¹µ)+¹(¹µ) ¹F ]: (Since the tax payment of type-¹µ producers

appears on both sides of this equation, the agency inspection e¤ort is the same whatever the
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tax level.) If they have paid the type-µ tax amount, we must have t(µ)+¹(µ) ¹F = t(¹µ)+¹(¹µ) ¹F

to maintain the same expected payment in case of evasion. Since the same constant a¤ects

both tax payments, it cancels out, and the supplementary e¤ort of inspection on the less

e¢cient producers depends only on the di¤erence between tax levels.

The case where ¹(µ) = 1 at the optimum is straightforward. Because there is no possi-

bility to save on the monitoring costs of type-µ, arising from the information asymmetry, we

have

@q¼(q̂(µ); µ) = s+ (N ¡ 1)d

and

@q¼(q̂(¹µ); ¹µ) =
s+ (N ¡ 1)d
1 + c= ¹F

i.e.; only the type-¹µ groundwater resource level is increased, and this distortion is limited to

the direct monitoring e¤ect.

It is worth to summarize the results obtained in this section. The cost minimization

stage allowed us to deduce that at the optimum, more productive farms are tempted to

evade from the regulation (they are indi¤erent at the optimum). Low productive producers

are not tempted to evade, but they are inclined to mimic more productive farms to increase

their resource extraction. From the second stage, we have obtained that the optimal resource

extraction levels are greater than Pigovian levels. This over-extraction allows the agency to

reduce its monitoring cost on all farms. For more productive producers, this over-extraction

e¤ect is exacerbated by the incentive of less productive farmers to choose the resource ex-

traction - tax payment pair designed for the more productive farmers. Over-extraction of the

more productive farmers allows the agency to increase the tax payment of the less productive

farmers, thus to decrease monitoring e¤orts on these farms.

Maintaining farm incomes

We observed previously that since the government has no redistributive concerns, the tax

schedule is only de…ned up to a constant. However, it is common for agricultural policy
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makers to have minimal income targets for their farm programs most obviously manifested

in the form of parity incomes. Suppose that the regulation of groundwater exploitation is

tempered by a farm-income goal. Because the reduction of the resource extraction diminishes

farms pro…ts, the optimal regulation characterized above may lead the agency to actually

subsidize farms (negative tax payments). This is the case when the marginal social damage

s is large and the number of farms N is important. The agency would follow these policy

requirements if they do not encounter a budget constraint. This is obviously not a reasonable

assumption, and in the following I will assume that the agency’s program is a¤ected by

terms re‡ecting the cost of public funds and the preference of the agency for tax revenues.

More precisely, taking into account the cost of raising funds to …nance public programs, the

agency’s objective is given by

X

µ2£
f¼(q(µ); µ)¡ [s+ (N ¡ 1)d]q(µ)¡ (1 + ¸)c¹(µ) + ¸t(µ)gp(µ)(13)

where ¸ > 0 is the per monetary unit deadweight loss incurred by distortionary taxation

systems.5

Denote by ¹R the minimum farm revenue that the government wants to guarantee. The

agency problem possesses an additional constraint

U(µi)¡ dQ¡i ¸ ¹R

for all µi, or

U(µ) ¸ ¹R+ d[Q¡ q(µ)](PI)

and

U(¹µ) ¸ ¹R+ d[Q¡ q(¹µ)]

Because the incentive constraints (ASC) imply U(¹µ) ¸ U(µ) and q(¹µ) ¸ q(µ), only

constraint (PI) is relevant at the optimum.

The agency problem is now given by

max
q(£)

X

µ2£
f(1 + ¸)(1 + c= ¹F )¼(q(µ); µ)¡ [s+ (N ¡ 1)d]q(µ)gp(µ)¡ ~C(q(£))(14)
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where

~C(q(£)) ´ min
U(£);K

(
(1 + ¸)c= ¹FNK + [(1 + ¸)c= ¹F + ¸]

X

µ2£
U(µ)p(µ) : (ASC),(EC),(PI)

)
.

(15)

A strictly positive ¸ and the constraint (PI) change the optimal solution of program (15)

as depicted Fig. 2. Compared to Fig. 1, the constraint (PI) limits the available gross pro…t

pairs to the right of the vertical line going trough the x-axis at the point ¹R + d[Q ¡ q(µ)].
With ¸ > 0, point A can no longer be the optimal solution. Indeed, we would have

~C(q(£)) = min
K

¡¸NK + [(1 + ¸)c= ¹F + ¸)][N¼¤(¹µ)¡ p(µ)¢(q(¹µ))]:

Minimizing with respect to K decreases the intercept of the (EC) line, which can no

longer cross the (ASC) constraint of the type-µ farmers at point A, hence a contradiction.

This result re‡ects the fact that the agency places a positive weight on tax revenues, and

thus will arrange that incomes of (at least) the less productive farmers do not exceed the

minimal income requirement. Pictorially, this implies that the optimal solution is located on

the (PI) line between points B0 and D0. Consequently, three type of situations are possible

candidates for an optimum: Along the vertical segment between points B0 and D0, where

both incentive constraint (ASC) are lenient, at point B0, where the type-µ (ASC) is binding,

and …nally at point D0, where the type-¹µ (ASC) is binding.

Before examining the di¤erent possibilities, it is convenient to de…ne

¹̧ ´ p(µ)c= ¹F

p(¹µ)¡ p(µ)c= ¹F

which is positive if p(¹µ)=p(µ) > c= ¹F and is a threshold level for the deadweight loss of public

funds. Indeed, for given extraction levels, the agency has to balance two e¤ects when de…ning

the tax payment of the type-¹µ farmers. Since t = ¼ ¡ U , a decrease dU of their gross pro…t

allows the agency to raise an additional tax revenue dt = ¡dU per farm, inducing a social

gross bene…t equal to ¡¸p(¹µ)dU . Moreover, with an increased tax payment, pretending to

be a type-¹µ farmer is less attractive for type-µ producers. This allows the agency to monitor

less intensively type-¹µ farms while satisfying their (CTR) constraint, leading to an additional

bene…t ¡(1 + ¸)p(¹µ)c= ¹FdU . However, to avoid tax evasion of type-¹µ farmers, the agency
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will have to increase K, the expected payment in case of evasion, as indicated by (EC).

This involve to monitor more intensively all farms, as indicated by (CTR). This second

monitoring e¤ect annihilates the former one and induces an additional social cost on type-µ

producers equal to (1 + ¸)p(µ)c= ¹FdU . As a result, adding $1 to the tax payment of the

type-¹µ farmers induces a social net bene…t equal to

¸p(¹µ)¡ (1 + ¸)p(µ)c= ¹F = [p(¹µ)¡ p(µ)c= ¹F ](¸¡ ¹̧)

Consequently, when the number of type-¹µ farmers and the deadweight cost of public

funds are large (i.e.; p(¹µ)=p(µ) > c= ¹F and ¸ > ¹̧) the agency is induced to raise as much tax

revenue as possible on type-¹µ farmers. Otherwise, the primary concern of the agency is to

reduce the monitoring cost of enforcing the groundwater allocation schedule.

We can now proceed to the examination of the possible optimal situations. Assume …rst

that the optimal point belongs to the vertical segment between points B0 and D0. At such a

point, the vertical (PI) line crosses the horizontal (EC) line and none of the (ASC) is binding

at the optimum. The optimal solution would be given by

U(µ) = ¹R + d[Q¡ q(µ)]

U(¹µ) = ¼¤(¹µ)¡K

whence

~C(q(£)) = min
K
[p(¹µ)¡ p(µ)c= ¹F ](¹̧ ¡ ¸)K(16)

+[(1 + ¸)c= ¹F + ¸]fp(¹µ)¼¤(¹µ) + p(µ)( ¹R+ d[Q¡ q(µ)])g:

Unless ¸ = ¹̧, minimizing with respect to K changes the intercept of the (EC) line, which

can no longer cross the (PI) line at the intended point, hence a contradiction. However, such

a situation is optimal when ¸ = ¹̧ (which implies that p(¹µ)=p(µ) > c= ¹F ). In that case, the

agency is indi¤erent to the tax payment of the more productive farmers (tax payment of the

less productive farmers is deduced from the parity income constraint), since an increase of

their tax payment induces social costs due to monitoring of the less productive farmers that

o¤set marginal social bene…ts. Their tax payment is thus de…ned up to a constant depending

on K, the expected cost of evasion. However, since none of the (ASC) constraints is binding,
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we must have

¹R + d[Q¡ q(µ)] + ¢(q(¹µ)) > ¼¤(¹µ)¡K > ¹R + d[Q¡ q(µ)] + ¢(q(µ))

which, for given q(£), limits the range of available values for K.

Observe that (16) increases with the allocations of all farms. Indeed, an increase of

the resource extracted decreases the net bene…t from the resource of the less productive

farms due to the supplementary cost of extraction (equal to dp(¹µ) for a marginal increase

of the more productive farms and d[p(µ)¡ 1] for the less productive farms). This leads the

agency to decrease the type-µ tax payment to reach the parity income, and to monitor more

intensively the less productive farms to deter tax-evasion. For each $ lost by a type-µ farms,

the marginal social cost is thus equal to (1 + ¸)c= ¹F + ¸.

Taking into account these e¤ects, the optimal extraction level ~q(£) satis…es

@q¼(~q(¹µ); ¹µ) =
s+ d[p(¹µ)¡ 1]
(1 + ¸)(1 + c= ¹F )

+ dp(µ)

and

@q¼(~q(µ); µ) =
s+ dp(¹µ)

(1 + ¸)(1 + c= ¹F )
+ d[p(µ)¡ 1]

and are attainable only in the improbable case where ¸ = ¹̧.

When ¸ 6= ¹̧, it is easy to deduce from (16) which situation of the two remaining pos-

sibilities B0 and D0 is optimal. If p(¹µ)=p(µ) < c= ¹F (which implies ¹̧ < 0) or if ¹̧ > ¸, then

reducing K allows to decrease (16). The optimal solution is thus located point B0. At this

point, the horizontal (EC) line crosses the vertical (PI) line and the type-µ (ASC) line. We

thus have an additional equation that allows to determine the optimal value for K, given by

K¤ = ¼¤(¹µ)¡ ¹R¡ d[Q¡ q(µ)]¡¢(q(¹µ))

The cost of a resource extraction pair q(£) is then given by

~C(q(£)) = (1 + ¸)c= ¹FN¼¤(¹µ) + ¸Nf ¹R+ d[Q¡ q(µ)]g+ (¸¡ ¹̧)[p(¹µ)¡ c= ¹Fp(µ)]¢(q(¹µ))

Observe that if the second term of ~C(q(£)) is still increasing with the resource extracted,

the last term decreases with q(¹µ). As explained above, when there is only a small number
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of more productive farms, or when the deadweight loss ¸ is low, the primary concern of the

agency is still to reduce the cost of auditing farms. This situation thus parallels the one

explained in the previous section where asymmetric information leads to an increase of the

resource extraction of the more productive farmers. Indeed, denoting by qB(£) the optimal

extraction schedule, we have

@q¼(q
B(¹µ); ¹µ)¡ @q¼(~q(¹µ); ¹µ) =

(¸¡ ¹̧)[p(¹µ)¡ c= ¹Fp(µ)]
(1 + ¸)(1 + c= ¹F )

[dp(µ) + ¢0(qB(¹µ))]

< 0

and

@q¼(q
B(µ); µ)¡ @q¼(~q(µ); µ) =

(¸¡ ¹̧)[p(¹µ)¡ c= ¹Fp(µ)]
(1 + ¸)(1 + c= ¹F )

d[p(µ)¡ 1]

< 0

Compared to the preceding case, we thus have over-extraction for all farms due to the

agency’s objective to reduce monitoring costs. As in the previous section, this over-extraction

e¤ect is exacerbated for the more productive farmers to reduce the incentive of the less

productive farmers to choose their extraction - tax payment pair.

When ¸ > ¹̧ > 0, increasing K allows to reduce (16). The optimal solution is thus

located point D0, as depicted Fig. 2. Type-¹µ farmers (ASC) constraint is binding which

gives

K¤ = ¼¤(¹µ)¡ ¹R¡ d[Q¡ q(µ)]¡¢(q(µ))

hence

~C(q(£)) = (1 + ¸)c= ¹FN¼¤(¹µ) + ¸Nf ¹R + d[Q¡ q(µ)]g

+(¸¡ ¹̧)[p(¹µ)¡ c= ¹Fp(µ)]¢(q(µ));

The last term of ~C is now increasing in q(µ). As above, this arises from informational

concerns. However, in that case, it is the incentive constraint (ASC) for the type-¹µ farmers

that binds at the optimum. The more productive farmers are thus (weakly) induced to

mimic less productive farmers in order to receive compensation payments. A decrease of the

resource extraction of the less productive farmers q(µ) makes this mimicking less attractive
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by reducing the gross pro…t of the more productive farmers. More speci…cally, denoting by

qC(£) the optimal extraction schedule, it is easily shown that

@q¼(q
C(¹µ); ¹µ)¡ @q¼(~q(¹µ); ¹µ) =

(¸¡ ¹̧)[p(¹µ)¡ c= ¹Fp(µ)]
(1 + ¸)(1 + c= ¹F )

dp(µ)

> 0

and

@q¼(q
B(µ); µ)¡ @q¼(~q(µ); µ) =

(¸¡ ¹̧)[p(¹µ)¡ c= ¹Fp(µ)]
(1 + ¸)(1 + c= ¹F )

fd[p(µ)¡ 1] + ¢0(qC(µ))g

> 0

Compared to the case ¸ = ¹̧, extraction is reduced for all farms. This e¤ect is exac-

erbated for the less productive farm. The primary goal of the agency is now to increase

tax revenues while maintaining the income of the less productive farmers to its minimum

level. The regulator, if he could, would capture the more productive farmers revenues above

the minimum income level. If the planner attempts to do so, however, he gives the more

productive farmers an incentive to mimic the behavior of the less productive farmers. The

incentive problem is now on the other foot. To deter this type of mimicking behavior, the

regulator optimally raises the cost to the more productive farmers of mimicking the less

productive farmers by adjusting the groundwater allocation intended for the less productive

farmers downward.

Conclusion

This paper addresses the optimal regulation of groundwater extraction under two assump-

tions not usually maintained in the literature on groundwater regulation: positive costs of

monitoring the rate of extraction and the presence of asymmetric information between the

regulator and the farmer on the use-value of the extracted groundwater. In such a situation,

the presence of costly monitoring prevents the regulator from using the Pigouvian solution

to achieve what is …rst best. It is shown that the presence of these twin problems thus leads

to over-extraction of the resource as compared to the …rst best. When there are no redis-

tributional concerns, the more productive type of farmer has a greater marginal incentive
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to extract than the less productive farmer. When there are redistributional concerns, the

primary objective of the agency depends on the cost of public funds. When this cost is low,

reducing monitoring cost is still the primary objective of the regulator, and we have over-

extraction compared to the second-best situation. When raising tax revenues is the primary

concern, this relationship is turned on its head, and farmers have lower marginal incentive

to extract.
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Notes
1Since ¼ (0; µ) = 0 for all type µ, (1) implies ¢(q) > 0 for all stricly positive allocation q.

2Monitoring, if it occurs, is assumed to be perfectly informative.

3I assume commitment is possible on the part of the regulator.

4If f(q(µ); µ) were di¤erent from 0, we could replace t(¢) by the schedule t̂(¢) ´ t(¢) + ¹(¢)f(q(¢); ¢) with a

…ne equal to 0 in case of compliance to obtain the same set of inequalities.

5¸ re‡ects the so-called “double dividend” of environmental taxation policies. The term 1 + ¸ a¤ecting

the agency’s cost is the per monetary unit “shadow cost” of public funds.
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Figure 1: Enforcement costs and incentives.
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Figure 2: Redistribution, incentives and enforcement costs.
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