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Abstract 

This paper revisits the decades-old puzzle of the inverse productivity plot-size relationship 

(IR), which states that land productivity decrease with increasing plot size in developing 

countries. While most empirical studies about the IR define yields as self-reported production 

divided by plot size, this paper complements this approach with an alternative, objective 

method to estimate yields: crop cuts. Using crop cuts as proxy for yields, the IR in Ethiopia 

disappears, while the relationship is strong when yields are based on self-reported production. 

The inverse relationship is even reversed as there exists a weak, positive correlation between 

plot size and crop cuts. This implies that farmers systematically over report production on 

small plots and underreport it on larger ones. Our findings suggest that the IR is an artifact of 

systematic measurement error in self-reported production. 

  



1. Introduction 

The inverse relation (IR) between farm size and land productivity has puzzled agricultural 

economists for over half a century. As first noted by Chayanov (1926) in Russia and 

rediscovered by Sen (1962) in India, it states that production per hectare decreases with 

increasing farm and, even, plot size. These relationships have been observed in many 

developing countries over several decades and are often considered a stylized fact (Larson, 

Otsuka, Matsumoto, & Kilic, 2013). 

The policy implications of the inverse productivity-size relationship are disturbing and 

counter-intuitive for many agricultural economists, which explains the vast literature on the 

topic. An oft-emphasized implication concerns land redistribution. Redistributing land from 

large-scale to small-scale farmers will not only improve equality, but may also increase 

production since small-scale farmers are more efficient than large-scale farmers. In a similar 

vein, the IR suggests that policy makers should focus on small-scale farmers to generate 

productivity growth, rather than on promoting large-scale agriculture. Although agricultural 

economists are well aware of the IR, few would recommend land redistribution for efficiency 

reasons and some even argue that large-scale farming is a more promising pathway for rural 

development in developing countries (Collier & Dercon, 2013). 

The implication of the IR for land consolidation programs are also important, although less 

frequently emphasized (Ali & Deininger, 2014; Blarel, Hazell, Place, & Quiggin, 1992). In 

pursuit of productivity gains and economies of scales, several countries have implemented 

land consolidation programs to halt land fragmentation and create larger consolidated fields. 

The IR predicts that this strategy will fail since small plots are more productive than large 

plots. Again, it is not unusual that agricultural economists and policymakers favor land 

consolidation in regions where the agricultural landscape is highly fragmented (Pašakarnis & 

Maliene, 2010). 

The IR is even at odds with economic theory. One of the core principles of micro-economy is 

that factor productivity should be equal across farms and plots. In the absence of factor 

productivity equality, active land markets should assure that households with higher marginal 

productivity acquire land from households with a lower marginal productivity until the 

marginal returns on land are equal across farms. Within a single household, marginal 

productivity should also be equalized across plots since rational households allocate labor and 

inputs efficiently across plot (Barrett, Bellemare, & Hou, 2010).  

Because of the controversial policy implications of the IR as well as its inconsistency with 

economic theory, a vast theoretical and empirical literature has emerged offering and testing 

explanations for the IR that are consistent with conventional wisdom. These explanations can 

be classified in three sets. The most common explanation for the inverse productivity farm-

size relationship is related to missing or imperfect land and labor markets (Carter & Wiebe, 

1990), credit and insurance markets (Barrett, 1996) and imperfections in labor supervision 

(Eswaran & Kotwal, 1986; Feder, 1985). The consequence of imperfect markets is that small-

scale farmers apply more than the optimal amount of inputs on their plots since their outside 

options are limited. Yet, while missing markets can explain differences in land productivity 

between households, they cannot explain productivity differences across plots within a single 

household (Assunção & Braido, 2007). The second explanation, differences in soil quality 

between small and large plots, can explain both the inverse productivity plot-size and farm-



size relationship (Benjamin, 1995; Bhalla & Roy, 1988). Soil quality explains the IR if 

smaller farms (plots) have on average more fertile soils than larger farms (plots). Since it is 

notoriously difficult to measure soil quality, most empirical work omits this variable 

altogether or uses self-reported measures. Using excellent, objective soil quality data, Barrett 

et al. (2010) showed, however, that soil quality contributes only marginally to explaining the 

IR in Madagascar. The final explanation for the IR is related to measurement error in self-

reported land area, which was first suggested by Lamb (2003). Recent work showed that 

measurement error in land alone is unlikely to explain the inverse relationship. Replacing self-

reported land size with GPS measurement weakened the IR somewhat in several African 

countries (Carletto, Gourlay, & Winters, 2015), but the relationship never disappeared and 

even strengthened in Uganda (Carletto, Savastano, & Zezza, 2013). 

This paper offers and tests a new explanation for the inverse productivity plot-size 

relationship: measurement error in self-reported production. If farmers systematically over 

report production on small plots and underreport it on larger plots, this would generate a 

spurious inverse productivity plot-size relationship. As far as we could assess
1
, recent studies 

on the IR defined yields as self-reported production divided by plot size (e.g. (Ali & 

Deininger, 2015; Carletto, Gourlay, et al., 2015; Carletto et al., 2013; Larson et al., 2013)). 

Systematic measurement error in production may therefore affect the estimation of the IR in 

several studies. 

One reason why systematic measurement error in self-reported production has not yet been 

considered as an explanation for the IR are the demanding data requirements to test it. 

Systematic measurement error can only be observed if one has a second, independent 

measurement method. In this study, we draw on two waves of a nationally representative 

dataset from Ethiopia which asked farmers to report production for all plots, but which also 

implemented crop cuts on a limited set of plots. Crop cuts are an objective method to measure 

yields. Yields are estimated by randomly sampling a small subplot (often a 4m x 4m square) 

within the plot, delimiting it and cutting and weighing the harvest of this subplot. Yields are 

then defined as the harvest in the subplot divided by the area of the subplot. Crop cuts are 

sometimes considered the gold standard of yield measurement (Fermont & Benson, 2011).  

Using crop cuts as proxy for yields, the inverse productivity plot-size relationship disappears 

in our data, while this relationship is strong if yields are based on self-reported production. 

After carefully establishing the robustness of these findings and evaluating alternative 

explanations, most notably differences in labor input between plots, systematic measurement 

error in self-reported production remains the only plausible explanation. The key assumption 

for this explanation to hold is that measurement errors in crop cuts occur randomly, while 

measurement error in self-reported production can be systematic and may be correlated with 

plot size. This assumption holds by definition if crop cuts are the gold standard of yield 

measurement. Even if they are not, it appears unlikely that measurement errors in crop cuts 

vary with plot size. Bias in self-reported variables, on the other hand, has been shown to 

correlate with plot and household characteristics. For instance, households systematically 

overestimate the area of small plots and underestimate the area of larger plots (Carletto, 

                                                           
1
 Most studies do not discuss how they measured yields. We contacted the authors of the several recent 

studies on the IR cited above. They confirmed that yields were based on self-reported production. 



Gourlay, et al., 2015), while larger households underreport consumption relative to smaller 

households (Gibson & Kim, 2007). 

In addition to advancing the literature on the IR, this paper contributes to the small literature 

on systematic measurement errors in household surveys and their implications for statistical 

inference. This paper adds to a set of papers that have demonstrated that not all measurement 

error is white noise, which may induce spurious correlations in the data (Aguiar & Bils, 2015; 

Beegle, De Weerdt, Friedman, & Gibson, 2012; Carletto, Gourlay, et al., 2015; Gibson & 

Kim, 2007). As is well-known, but perhaps insufficiently emphasized, this illustrates that the 

‘Iron Law of Econometrics’ – as Hausman famously called the observation that estimated 

coefficients in a regression usually underestimate the true magnitude – critically depends on 

the assumption that measurement error occurs randomly (Hausman, 2001). If measurement 

error is systematic, spurious correlations may be observed in the data. 

The remainder of this paper is structured as follows. In the next section, we discuss the data 

and provide some descriptive statistics. Next, we outline our estimation strategy and discuss 

the conditions under which systematic bias in self-reported production can generate the 

inverse productivity plot-size relationship. In the result section, we show that the inverse 

productivity plot-size relationship exists when yields are based on self-reported production, 

but disappears when yields are estimated with crop cuts. Based on these findings, the sign and 

magnitude of the measurement error in self-reported production as function of plot size is 

discussed. Section 5 concludes. 

 

2. Data and descriptive statistics 

We use data from two waves of the nationally representative Ethiopian Socioeconomic 

Survey (ESS). This survey is an ongoing project to collect high-quality panel data in Ethiopia. 

It is implemented by the Central Statistical Agency of Ethiopia in close collaboration with the 

LSMS-ISA
2
 team of the World Bank, which has a long history of producing high-quality data. 

All data and relevant documentation is publicly available. 

The first wave was administered in 2011/2012 to 3969 rural households, while the second 

wave was administered in 2013/2014 to 5262 household – 3776 panel households and 1486 

new, mainly urban, households. We only included households in the dataset that were 

interviewed in both waves. The time dimension in the data was not exploited and all the 

observations were simply pooled. The survey collected standard information on household 

characteristics, consumption, living conditions and health. 

The unique feature of the survey is its focus on agriculture. To gather detailed and accurate 

agricultural data at plot level, households were visited three times during the agricultural year. 

The first visit occurred in September-October to collect data on planting activities. During this 

visit, the area of most plots was measured with GPS. The second visit occurred in November 

and implemented the livestock module. The final visit took place from January to April and 

collected data on agricultural production. This visit also included the household questionnaire. 

                                                           
2
 LSMS-ISA: Living Standards Measurement Study – Integrated Surveys on Agriculture. 



In this paper, we exploit that yields were measured with two different methods: crop cuts and 

self-reported production by plot in combination with land measurement with GPS3. In 

addition, we also used the detailed information on labor input during planting (first visit) and 

the harvest (third visit). 

Crop cuts were implemented in both waves of the survey for 23 major crops. Five plots per 

crop were randomly selected from a list of all plots cultivated by the sampled households 

within an enumeration area. In most cases, the plot selected for crop cutting was 

monocropped. Only if the crop was cultivated on less than five plots in pure stand within an 

enumeration area, were crop cuts also implemented on intercropped plots. Once a plot was 

sampled from this list, a rectangular subplot within the plot was randomly sampled. In the first 

wave, this subplot was 4m² (2m x 2m), while it was 16m² (4m x 4m) in the second wave. 

Within the subplot, the crop was harvested by a trained enumerator and weighed. If logistical 

constraints allowed, crop cutting occurred simultaneously with the harvest of the main crop 

by the farmer. In both waves, nearly 40% of the crop cuts were executed in November and 

more than 90% were executed between October and December. Both fresh weights and dry 

weights were recorded. The correlation between both measures was over 0.95. We used the 

dry weights to calculate yields. 2975 and 3532 crop cuts were taken in wave 1 and 2, 

respectively. We discarded, however, those crop cuts for which we had fewer than 150 

observations per crop. Finally, 5920 crop cuts remained in the dataset, providing yield 

estimates for 19 different crops. 

Farmers reported the harvest per crop and plot during the third visit. In wave 1, most visits 

occurred in January (57%), while in wave 2 most visits took place in February (78%). Note 

that the recall period ranges up to 5 months since most crops during the Meher season are 

harvested from September till February (Taffesse, Dorosh, & Asrat, 2011). On average, 

production was reported 77 and 98 days after the implementation of the crop cuts in wave 1 

and 2, respectively. 

Production was reported on 3683 and 23,638 plots in wave 1 and 2, respectively. Besides 

production data, detailed data on labor input during planting and the harvest at plot level was 

also collected. 

As we focus on the inverse productivity plot-size relationship, the unit of analyses is the plot. 

It is therefore important to clearly define a ‘plot’, as this definition is context specific. In the 

Ethiopian household survey, enumerators first defined parcels, which are units of land that are 

owned by a single household and surrounded by land owned by another household or 

demarcated by natural boundaries (forest, water, road). Within a parcel, the plots were 

identified. Plots were clearly demarcated by hedges or paths. In most plots (80%) a single 

crop was cultivated. All data (land area, production, inputs and crop cuts) was collected at 

plot level, with the exception of irrigation, soil quality and the possession of a land certificate, 

which formalizes land tenure, which were reported at parcel level. Since parcels are already 

small pieces of land, plots are even tinier. Mean and median plot size is 0.13ha and 0.064ha, 

respectively and more than 95% of the plots were smaller than 0.5ha. Production at plot level 

was valued at median self-reported prices in order to make output from different crops 

comparable.  

                                                           
 



In order to examine if crop cuts were indeed randomly implemented across households and 

plots, we compare households with at least one plot selected for crop cutting versus those 

without a single plot selected for crop cutting and compare plots with and without crop cuts. 

Household characteristics are very similar between both groups (table 1). The only important 

difference is that households selected for crop cuts owned slightly more land (1.30 ha versus 

1.19 ha). This is in line with expectations since households with more land are also more 

likely to cultivate at least one plot suited for crop cutting. In terms of plot characteristics, 

differences between plots selected for crop cuts and the other plots are also due to the 

sampling design (table 2). Plots with crop cuts are larger, further away from the dwelling of 

the household and more likely to be planted with a single crop. Differences in terms of 

fertilizer application (both organic and inorganic), irrigation, labor input and soil quality are 

small. In sum, crop cuts occurred randomly across households and plots. 

Table 1: Household characteristic for households with and without plots with crop cuts 

  No crop cuts Crop cuts 

Landholdings (ha) 1.19 1.30 

 
(0.052) (0.076) 

Applied chemical fertilizer (%) 0.47 0.491 

 
(0.019) (0.017) 

Asset index 0.16 0.16 

 
(0.0016) (0.0024) 

Household size 5.79 5.75 

 
(0.052) (0.076) 

Age household head 46.36 45.82 

 
(0.33) (0.50) 

Household head can read and 
write 38 38 

 
(0.010) (0.016) 

Female headed household (%) 20 17 

 
(0.0086) (0.012) 

N 2069/2125 905/918 
Standard errors in parentheses. Number of observations differs by variable due to missing variables 
  



 

Table 2: Plot characteristic for plot selected and not selected for crop cutting 

  Plots without crop cuts Plots with crop cuts 

Plot size (m²) 1227 1501 

 
(10.9) (21.6) 

Log of distance 0.383 0.519 

 
(0.003) (0.007) 

Plot slope (%) 14.6 14.3 

 
(0.084) (0.159) 

Plot elevation 1931 1968 

 
(3.24) (6.38) 

Plot potential wetness index 12.6 12.5 

 
(0.013) (0.026) 

Land title (certificate) 0.483 0.502 

 
(0.003) (0.007) 

Pure stand 0.572 0.867 

 
(0.003) (0.004) 

Applied manure (% plots) 33.1 20.7 

 
(0.003) (0.005) 

Applied compost (% plots) 5.2 5.8 

 
(0.002) (0.003) 

Applied organic fertilizer (% plots) 1.8 2.0 

 
(0.001) (0.002) 

Irrigation (% plots) 4.4 2.3 

 
(0.001) (0.002) 

Self-reported soil quality (only wave 2) 1.748 1.890 

 
(0.005) (0.012) 

Fertilizer (kg/ha) 44.4 46.2 

 
(0.752) (1.384) 

Distance to dwelling (km) 0.685 0.953 

 
(0.007) (0.016) 

Family labor planting (days/ha) 16.9 16.1 

 
(0.173) (0.313) 

Hired labor planting (days/ha) 7.5 7.3 

 
(0.299) (0.603) 

Exchange labor planting (days/ha) 15.2 15.1 

 
(0.395) (0.670) 

Family labor harvesting (days/ha) 12.2 8.1 

 
(0.121) (0.166) 

Hired labor activities (days/ha) 4.8 4.16 

 
(0.218) (0.337) 

Exchange labor activities (days/ha) 15.34 15.08 

 
(0.374) (0.642) 

N (max 21401 5920 
N (min) 20046 3296 
Standard errors in parentheses. Number of observations differs by variable due to missing variables. Soil quality was only reported in wave 
2. 
 

In order to explore if an inverse productivity plot-size relationship exists in our data, we 

examined maize yields in wave 2 by quartile of plot size and measurement method (figure 1). 

Mean and median yields based on self-reported production clearly decrease with increasing 

plot size. Median maize yields are over 2000 kg/ha on the smallest plots, but decrease to 1000 

kg/ha on the largest plots. 

The inverse productivity plot size relationship disappears, however, when yields are estimated 

with crop cuts. Crop cuts of maize even increase with plot size. When comparing crop cuts 



with yields based on self-reporting, we note that crop cuts are substantially lower than self-

reported yields on the smallest plots, but higher on the largest plots. This suggests that self-

reported production is systematically overestimated on small plots and underestimated on 

larger plots. Given the few important differences between households and plots with or 

without crop cuts, this suggests that the inverse productivity size relationship can be attributed 

to systematic measurement error in self-reported production. This will be examined in more 

detail in the remainder of this paper. 

Figure 1: Mean (left panel) and median (right panel) maize yields (kg/ha) in wave 2 by measurement method in function 
of plot size 

 
Sample restricted to plots with both crop cuts and self-reported production. 62, 134, 138 and 134 observations in quartile 1 to 4, respectively. The quartiles 

have an average plot size of 150m², 425m², 1128m² and 3645m², respectively. 

 

3. Methodology 

The standard approach to estimate the inverse productivity  size relationship is 

straightforward: yields are regressed on plot size (𝐴) and a set of plot and household 

characteristics (Assunção & Braido, 2007; Barrett et al., 2010). Hence, the following equation 

is typically estimated: 

log(𝑦𝑖𝑒𝑙𝑑𝑖𝑗𝑟) = 𝛼log (𝐴𝑖𝑗) + 𝛽𝑋𝑖 + 𝛿𝑍𝑗 + 𝜇𝐿𝑗 + 𝑣𝑟 + 𝜖𝑖𝑗  (1) 

Where 𝑖, 𝑗 and 𝑟 represent the household, the plot and the enumeration area, respectively. The 

coefficient 𝛼 is the parameter of interest which defines the strength of the inverse relation, 𝑋𝑖 

is a vector of household characteristics, 𝑍𝑗 represents plot characteristics, 𝐿𝑗 is labor input at 

plot level and 𝑣𝑟 are enumeration area fixed effects. 

This equation will be estimated twice using a different proxy for yields: self-reported 

production divided by plot size or crop cuts. Both approaches for yield measurement are 

imperfect for different reasons and measure yields with error (Fermont & Benson, 2011). The 

properties of these errors determine if measurement error in yields can induce a spurious 

correlation between plot size and land productivity. 

One has to make a distinction between two types of measurement error: systematic 

measurement error or bias and random measurement error (Boumans, 2015). Bias reduces the 



accuracy of the measurement, while random measurement error reduces the precision of the 

measurement. Ideally,  measurement instruments are both accurate and precise. One intuitive 

approach to formalize this distinction is called the Mean Squared Error (MSE), which is 

defined as the square of the expected difference between the outcome of the measurement and 

the ‘true’ (unobserved) value of the concept that is being measured (De Groote & Traoré, 

2005): 

𝑀𝑆𝐸(𝑦𝑖𝑒𝑙𝑑) = 𝐸(𝑦𝑖𝑒𝑙𝑑 − 𝑦𝑖𝑒𝑙𝑑∗)2 = (𝑦𝑖𝑒𝑙𝑑∗ − 𝐸(𝑦𝑖𝑒𝑙𝑑))
2

+ 𝑉(𝑦𝑖𝑒𝑙𝑑) (2) 

Where 𝑦𝑖𝑒𝑙𝑑 is the outcome of the measurement using self-reporting or crop cuts, and 𝑦𝑖𝑒𝑙𝑑∗ 

represents true, unobserved yields. 

The first term in equation 2 shows the bias in the measurement, that is, it shows the systematic 

difference between the true yields and the expected value of the measurement. The second 

term is the variation in the measurement, which corresponds to the inverse of the 

measurement precision. While measurement precision increases with sample size (e.g. 

repeated measurement), the bias is independent of sample size and an integral part of the 

measurement instrument. 

Both the bias and the precision of the measurement can be correlated with plot size. However, 

only a correlation between the bias and plot size can induce a spurious inverse productivity 

size relationship (Carroll, Ruppert, Stefanski, & Crainiceanu, 2012). To see this, assume that 

the bias decrease with plot size. For instance, the measurement always overestimate true 

yields on small plots and correctly estimates true yields on larger plots. This creates a 

negative correlation between estimated yields and plot size. More formally, a correlation 

between bias in the measurement and plot size introduces a correlation between the error term 

in equation 1, ε, and plot size, which biases the parameter of interest, α.  

The variance in yield measurement, the second term in equation 2, may also be correlated 

with plot size. For instance, yields might be less precisely estimated on larger plots. This 

creates heteroscedasticity in the error term in equation 1. Heteroscedasticity does not lead to 

biased estimates, but does bias standard errors. One can correct for heteroscedasticity by using 

robust estimation techniques. 

In sum, a negative correlation between bias in yield measurement (first term in equation 2) 

and plot size cause a spurious inverse productivity plot size relation, while a correlation 

between the variance of the measurement (second term in equation 2) and plot size causes 

heteroscedastic errors. Crop cuts and self-reported production are both biased and imprecise 

estimates of unobserved yields. The question is whether the bias correlates with plot size. 

Measurement error enters self-reported production because respondents may not accurately 

recall how much they harvested or because they systematically under or overestimate 

production. Importantly, previous research has shown that errors in self-reported variables can 

systematically be correlated with crop type and household or plot characteristics. Carletto, 

Gourlay, et al. (2015), for instance, show that households systematically overestimate plot 

size on small plots and underestimate it on larger ones. Gibson and Kim (2007) analyses 

suggest that larger households systematically underestimate consumption relative to smaller 

households, while Beegle et al. (2012) illustrate how different approaches of consumption 

measurement can substantially affect poverty estimates. Several authors have argued that 



crops harvested on a daily basis such as cassava are less precisely recalled than crops that are 

harvested at one moment in time (Carletto, Jolliffe, & Banerjee, 2015; Jerven, 2013). These 

correlations introduces systematic bias, which invalidate statistical inference. It cannot be 

excluded that similar processes cause a negative correlation between bias in self-reported 

production and plot size
4
.
 
 

In contrast to bias in self-reported production, bias in crop cuts is unlikely to be correlated 

with household or plot characteristics. Enumerators always followed the same guidelines 

when implementing the crop cuts, which are completely independent of plot size. Yet, crop 

cuts introduce a type of error that is absent for self-reported production: sampling errors. 

Sampling errors affect the precision of the measurement, but do not cause bias. Crop cuts are 

taken from a randomly selected subplot within the plot. Since yields are likely to vary within a 

plot, this introduces sampling error in the yield estimate. Sampling errors introduces a 

negative correlation between the precision of the measurement and plot size. Consider, for 

instance, a plot that is exactly equal to the subplot selected for crop cutting (i.e. 16m² in wave 

2). In this case, yields are perfectly measured because the whole plot is harvested. Consider 

next a plot of 1ha (10,000 m²). A crop cut of 16m² within a plot of 1ha is unlikely to give a 

precise estimate of the yields. Hence, the precision of yield measurement with crop cuts 

decreases with plot size. The more variation in yields within a plot or the larger the plot, the 

less precise the estimation of yields. Yet, a lack of precision in the measurement can never 

cause a spurious correlation between plot size and land productivity since it only increases the 

standard errors of the estimated coefficients in equation 1. 

So far, we implicitly assumed that crop cuts and yields based on self-reported production 

capture the same underlying concept. In other words, the ‘true’, unobserved yields, 

represented by 𝑦𝑖𝑒𝑙𝑑∗ in equation 2, are assumed to be the same for both methods. This is not 

necessarily true. Crop cuts measure the maximum potential yield, while self-reported 

production measures the actual harvest. In theory, crop cuts are an upper bound of yields, 

while self-reported production gives a more accurate estimate of the realized yields since it 

takes harvest losses into account. This conceptual difference challenges our empirical 

analysis. If the IR holds for self-reported proxies of land productivity, but disappears for crop 

cuts, one may argue that smaller plots are simply more completely harvested. To control for 

this possibility, we include labor input during planting and harvest at plot level in the 

regressions. In addition, we estimate the correlation between plot size and labor input in order 

to examine if small plots are indeed more completely harvested than larger ones. 

The previous discussion about biased measurement of yields showed that the inverse 

productivity size relationship will be observed for yields based on self-reported production 

and disappear for crop cuts if farmers overestimate production on small plots relative to larger 

ones. This hypothesis can be tested directly by estimating the following equation:  

log(𝑦𝑖𝑒𝑙𝑑𝑗
𝑆𝑅/𝑦𝑖𝑒𝑙𝑑𝑗

𝐶𝐶) = 𝐶 + 𝛿 log (𝐴𝑗) + 𝛽𝐿𝑗 + 𝜀𝑗 (3) 
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 Precision of yield measurement based on self-reported production may be positively correlated with plot size. 

If self-reported production is proportionally less over or underestimated on small plots than large ones, the 
correlation between plot size and the precision of the measurement is negative. For instance, if ‘true’ yields are 
1000kg/ha, production on a plot of 1ha equals 1000kg, while it equals 10kg on a plot of 100m². If a farmers 
over or under estimate production by 1kg on the small plot and by 50kg on the larger plot, yields are over or 
underestimated by 10% on the small plot and by 5% on the larger plot. 



Where 𝑦𝑖𝑒𝑙𝑑𝑖𝑗
𝑆𝑅/𝑦𝑖𝑒𝑙𝑑𝑖𝑗

𝐶𝐶 is the ratio of yields based on self-reported production to yields 

based on crop cuts. If 𝛿 is negative, farmers indeed systematically over report production on 

small plots relative to larger plots. Labor inputs, 𝐿𝑖, is also included in the regression since 

self-reported yields may be higher than crop cuts on plots that are more completely harvested. 

Based on equation 3, one can then derive the sign and magnitude of measurement error in 

self-reported production. Self-reported yields equal the sum of the ‘true’, but unobserved 

production, 𝑋∗, and an error term, µ, divided by plot area, 𝐴. True, but unobserved yields 

(yield∗) equal true production divided by plot size. We are interested to estimate µ, the 

absolute error in self-reported production, in function of plot size. 

Crop cuts are unlikely to be exactly equal to the true yields. Rather, we assume that the ratio 

of crop cuts to ‘true’ yields equals an unknown constant, 𝑣. Previous research has shown that 

crop cuts are likely to overestimate ‘true’ yields, and we thus believe that 𝑣 > 1 (Fermont & 

Benson, 2011). Based on these assumptions and by manipulating equation 3, we can now 

derive measurement error in self-reported production: 

𝜇

𝐴𝑗∗𝑦𝑖𝑒𝑙𝑑∗ = (𝑣𝛾𝐴𝑗
𝛿 − 1)   with 𝛾 = exp (𝐶);    −1 < 𝛿 < 0 (4) 

The term 
𝜇

𝐴𝑗∗𝑦𝑖𝑒𝑙𝑑∗ represents relative measurement error in self-reported production, that is, 

the ratio of the absolute measurement error to the ‘true’ production. Since the right-hand side 

of equation 4 can be positive or negative, self-reported production can overestimate true 

production (𝜇 > 0) or underestimate it (𝜇 < 0), depending on the values of the parameters 

𝛿, 𝑣, 𝛾. Production is under estimated on plots smaller than 
log(𝑣𝛾)

𝛿
, and overestimated on plots 

larger than this critical value. This thresholds depends on the difference in the strength of the 

IR estimated with self-reported yields and crop cuts. However, since the parameter 𝑣 is 

unknown, we cannot determine this threshold exactly without additional assumptions about 𝑣. 

Recall that 𝑣 is the ratio of yields based on crop cuts to ‘true’ yields. If one is willing to 

accept that crop cuts are the gold standard of yield measurement, 𝑣 exactly equals 1. If crop 

cuts always overestimate ‘true’ yields, 𝑣 is larger than 1. In order to get a rough estimate of 

the magnitude of relative measurement error as well as the threshold below which self-

reported production is overestimated, we calculate relative measurement error and the 

threshold for several values of 𝑣. 

4. RESULTS 

Table 3 shows the results of the estimation of equation 1 using yields based on self-reported 

production (column 1-4) and yields based on crop cuts as the dependent variable (column 5-

6). In all specifications robust t-statistics are reported to account for heteroscedasticity. We 

first discuss the results for self-reported yields and firmly establish that the inverse 

relationship holds in the data. Next, we show that the inverse productivity plot size 

relationship disappears when yields are measured with crop cuts. We then examine if 

differences in labor input between small and large plots or systematic bias in self-reported 

production explain the findings. 

The classic approach to estimate the inverse productivity plot-size relationship includes 

household fixed effects and plot characteristics (table 3, column 1). This shows that the 

inverse relationship holds in Ethiopia and is stronger than in many other Sub-Saharan African 



countries (Larson et al., 2013): yields decrease by 40% if plot size doubles. The second 

specification replaces the household fixed effects by enumeration area fixed effects and 

includes a set of household characteristics. This does not affect the IR. In other words, the 

results remain similar when examining differences in land productivity between large and 

small plots within a household or between households within a same enumeration area. This is 

important because household fixed effects are replaced by enumeration area fixed effects 

when using crop cuts as proxy for land productivity. Restricting the sample to plots for which 

we have both self-reported production and crop cuts (columns 3 and 4), reduces the sample 

size from over 25,000 observations to slightly over 5000 observations. In both specifications, 

the IR remains highly significant. Specification 4 includes labor at plot level as additional 

control variable, which substantially weakens the IR. Without including labor, yields decrease 

by 30% if plot size doubles, while yields only decrease by 16% if differences in labor input 

between small and large plots are taken into account. This important point will be discussed in 

more detail below. 

In addition to plot size and labor, there are several plot and household characteristics that are 

significantly correlated with yields based on self-reported production. Of the 11 plot 

characteristics included in the regressions, 4 are significantly correlated with yields. Irrigation 

and the application of fertilizer as well as the distance to the dwelling increase yields. Most 

plots (30%) are located in the immediate vicinity of the dwelling. It may be that these plots 

are overexploited and have therefore lower yields. In wave 2, yields are higher on plots with 

mixed cropping systems, perhaps because of complementary between crops. In wave 1, yields 

are by design always underestimated on mixed plots. With regards to household 

characteristics, only the asset index is significantly correlated with yields in most 

specifications. The asset index is a simple, standardized count of the number of assets owned 

by the household. Thirty-five assets are considered including agricultural equipment such as 

ploughs, sickles and axes as well as durable consumption goods such as radios and mobile 

phones. It is a proxy for household’s wealth. Perhaps unsurprisingly, wealthier households 

tend to have higher yields. This may be because they own more agricultural equipment, are 

better connected to extension services or because they are less risk averse than poorer 

households. In some specifications, female headed households have lower yields, while 

poorly educated household have higher yields. 

The results of the estimation of the IR using crop cuts as dependent variable are also shown in 

table 3 (column 5-6). Specification 5 is the counterpart of specification 3, while specification 

6 includes labor input and can be compared directly to specification 4. In both specifications 

the IR disappears. We even observe a positive and highly significant correlation between plot 

size and yields. Several other variables are also correlated with crop cuts. As in the previous 

specifications, chemical fertilizers and the asset index increase yields, although the latter 

variable is only marginally significant. Labor input also correlates positively with crop cuts, 

but the correlations are weaker than between labor and yields based on self-reporting. 

 

  



Table 3: The inverse plot-size relationship for yields based on self-reporting and  crop cuts 

  Self-reported measurement   Crop  cuts 
  (1) (2)   (3) (4)   (5) (6) 

Log of plot size (m²) -0.397*** -0.396*** 
 

-0.303*** -0.161*** 
 

0.104*** 0.149*** 

 
(-55.84) (-36.11) 

 
(-12.65) (-6.22) 

 
(8.63) (9.36) 

Wave -0.103*** -0.0978* 
 

-0.101* -0.0966* 
 

-0.427*** -0.403*** 

 
(-2.98) (-1.78) 

 
(-1.87) (-1.69) 

 
(-9.45) (-8.60) 

Plot characteristics 
        Log of distance field to dwelling 0.133*** 0.110*** 

 
0.150*** 0.0925** 

 
-0.0188 -0.0285 

 
(4.56) (4.26) 

 
(3.27) (2.20) 

 
(-0.65) (-1.01) 

Plot Slope (percent) -0.00238* 0.000461 
 

0.00202 0.00132 
 

-0.000340 -0.000522 

 
(-1.86) (0.38) 

 
(0.88) (0.60) 

 
(-0.24) (-0.38) 

Plot Elevation (m) -0.000246** -0.000198* 
 

-0.000262 -0.000148 
 

-0.000328*** -0.000248** 

 
(-2.27) (-1.83) 

 
(-1.64) (-1.04) 

 
(-3.08) (-2.34) 

Plot Potential wetness Index -0.000669 -0.000929 
 

-0.00625 -0.00684 
 

-0.00882 -0.00952 

 
(-0.12) (-0.19) 

 
(-0.61) (-0.77) 

 
(-1.09) (-1.25) 

Household has land title (no=1) 0.0105 0.0190 
 

0.0193 0.0429 
 

0.0436* 0.0532** 

 
(0.28) (0.74) 

 
(0.46) (1.10) 

 
(1.69) (2.09) 

Crop in pure stand (no=1) -0.304*** -0.325*** 
 

-0.308*** -0.313*** 
 

-0.0871 -0.102 

 
(-4.35) (-3.34) 

 
(-3.39) (-3.55) 

 
(-1.09) (-1.28) 

Pure stand (no=1)*Wave 2 0.619*** 0.619*** 
 

0.457*** 0.465*** 
 

0.0445 0.0602 

 
(8.52) (5.90) 

 
(3.44) (3.70) 

 
(0.39) (0.54) 

Manure applied (no=1) 0.0456* 0.0191 
 

-0.0129 0.0191 
 

-0.0677* -0.0573 

 
(1.82) (0.68) 

 
(-0.26) (0.41) 

 
(-1.89) (-1.60) 

Compost applied (no=1) 0.0420 0.0196 
 

-0.116 -0.0952 
 

-0.0455 -0.0223 

 
(0.94) (0.48) 

 
(-1.51) (-1.30) 

 
(-0.68) (-0.35) 

Organic fertilizer (no=1) -0.0266 0.0663 
 

-0.0841 -0.0799 
 

-0.254** -0.265** 

 
(-0.33) (0.81) 

 
(-0.56) (-0.58) 

 
(-2.27) (-2.38) 

Field irrigated (no=1) -0.272*** -0.202** 
 

-0.290*** -0.265** 
 

0.0340 0.0520 

 
(-4.08) (-2.15) 

 
(-2.78) (-2.59) 

 
(0.42) (0.63) 

Log of fertilizer (kg/ha) 0.0838*** 0.0779*** 
 

0.0840*** 0.0496*** 
 

0.0421*** 0.0272*** 

 
(17.74) (12.12) 

 
(9.94) (6.12) 

 
(6.21) (3.98) 

Household characteristics 
        Asset index 
 

0.682*** 
 

0.591*** 0.514** 
 

0.319* 0.345* 

  

(4.22) 
 

(2.93) (2.57) 
 

(1.72) (1.66) 
Female headed household 
(no=1) 

 
0.0801*** 

 
0.0533 0.0561 

 
0.00490 0.0151 

  

(3.12) 
 

(1.02) (1.16) 
 

(0.14) (0.45) 
Age household head 

 
0.000379 

 
-0.00409 -0.00942 

 
-0.00208 -0.00256 

  

(0.11) 
 

(-0.65) (-1.57) 
 

(-0.42) (-0.51) 
Age² 

 
0.00000278 

 
0.0000461 0.0000909 

 
0.0000332 0.0000357 

  

(0.08) 
 

(0.77) (1.59) 
 

(0.67) (0.71) 
Household head can read and 
write (no=1) 

 
0.0503** 

 
0.00557 0.00674 

 
-0.0270 -0.0297 

  

(2.40) 
 

(0.15) (0.20) 
 

(-0.95) (-1.11) 
Labor input (logs) 

        Family labor planting (days/ha) 
    

0.123*** 
  

0.0718*** 

     

(6.06) 
  

(4.79) 
Hired labor planting (birr/ha) 

    

0.0365*** 
  

0.0210* 

     

(2.64) 
  

(1.89) 
Exchange labor planting 
(days/ha) 

    

0.00427 
  

0.0158** 

     

(0.43) 
  

(2.16) 
Family labor harvest (days/ha) 

    

0.292*** 
  

0.0591*** 

     

(12.23) 
  

(3.31) 
Hired labor harvest (birr/ha) 

    

0.0918*** 
  

0.0158 

     

(5.74) 
  

(1.39) 
Exchange labor (days/ha) 

    

0.105*** 
  

0.0353*** 

     

(9.94) 
  

(5.34) 
Constant 12.64*** 11.93*** 

 
12.34*** 10.33*** 

 
10.13*** 9.278*** 

 
(36.59) (28.08) 

 
(19.90) (18.36) 

 
(23.98) (21.31) 

Household fixed effects Yes No   No No   No No 
Enumeration area fixed effects No Yes   Yes Yes   Yes Yes 

Observations 25811 25004 
 

5248 5059 
 

5248 5059 
R-squared 0.194 0.201 

 
0.110 0.215 

 
0.120 0.140 

N_g 2980 310 
 

277 276 
 

277 276 
r2_w 0.194 0.201 

 
0.110 0.215 

 
0.120 0.140 

rho 0.323 0.229   0.255 0.241   0.399 0.392 

***,**,* denote statistical significance at the 1%, 5% and 10% levels. Robust t-statistics in parentheses. 

  



Three robustness checks were carried out (not reported here): (1) restricting the sample to 

wave 1 and wave 2; (2) restricting the sample to maize plots and (3) discarding the bottom 

and top 5% of yields to deal with outliers. The results held in all subsamples: the IR was 

strong when yields were based on self-reporting, but disappeared when yields when crop cuts 

were used. 

A first explanation for the finding that the existence of the IR depends on the method used to 

estimate yields is that both methods to estimate yields do not capture the same underlying 

concept. Crop cuts measure maximum attainable yields, while self-reported production is a 

proxy for the actual harvest. The observed inverse relation between plot size and self-reported 

yields is a real phenomenon if small plots are more completely harvested than large ones. This 

would not rule out that potential yields, as measured by crop cuts, remain constant across 

plots. This hypothesis is only partially upheld in the data. 

Table 5 shows the results of estimating the relation between labor input per hectare and plot 

size. Two types of labor (family and hired labor) and agricultural activity (planting and 

harvesting) are distinguished. There is a strong, inverse relation between family labor (during 

planting and harvest) and plot size, and a positive, but less robust, relation between plot size 

and hired labor. This confirms that small plots are more intensively cultivated than large plots. 

Both findings are not novel in the literature and have been reported by Ali and Deininger 

(2015) in Rwanda and Larson et al. (2013) in several African countries.  

Table 5: Estimation of the inverse relation between labor input per hectare and plot size 

  (1) (2) (3) (4) 

  
Family labor 

planting 
Hired labor 

planting 
Family labor 

harvest 
Hired labor 

harvest 

Log of plot size (m²) -0.382*** 0.0661*** -0.311*** 0.0769*** 

 
(-40.18) (8.30) (-22.08) (8.01) 

Household characteristics Yes Yes Yes Yes 
Plot characteristics Yes Yes Yes Yes 
Labor input Yes Yes Yes Yes 
Enumeration area fixed effects Yes Yes Yes Yes 

Observations 24743 24743 25004 25004 
R-squared 0.299 0.038 0.169 0.035 
***,**,* denote statistical significance at the 1%, 5% and 10% levels. Robust t-statistics in parentheses. Full results are available upon request. All dependent 

variables are expressed in days/m². 

While controlling for labor input during planting and harvest substantially weakens the IR, the 

relationship remains statistically significant (table 3, column 4). Family labor, particularly 

during the harvest, is correlated with yields based on self-reporting (table 3, column 4) and 

crop cuts (table 3, column 6), but the former correlation is much stronger than the latter. This 

confirms that self-reported yields are higher than crop cuts if the plot is more completely 

harvested. Since small plots are more completely harvested than larger ones, yields based on 

self-reporting are higher than crop cuts on small plots. In sum, the analyses suggest that 

households indeed harvest small plots more intensively than large plots, which contributes to 

explaining the inverse relationship between plot size and self-reported production per hectare, 

but does not completely explain the inverse relationship. 

The second explanation for the IR is systematic measurement error in self-reported 

production. This can explain the IR if bias in self-reported production systematically 

correlates with plot size, that is, if farmers over reported production on small plots and 

underreported it on large plots. This can be tested directly by regressing the ratio of self-



reported yields versus crop cuts on plot size (table 6), which confirms that self-reported 

productivity is overestimated on smaller plots. It also confirms that yields based on self-

reporting increase if the plot is more completely harvested. 

Based on these regressions, relative measurement error in self-reported production can be 

estimated as a function of plot size. This requires, however, an assumption about the 

parameter 𝑣, which represents the ratio of yields based on crops cuts versus unobservable 

‘true’ yields. We show results for three values of 𝑣 (1;  1,2;  1,4). This choice corresponds to 

assuming that crop cuts are the gold standard of yield measurement (𝑣=1) or systematically 

over estimate yields by 20% (𝑣 = 1.2) or 40% (𝑣 = 1.4). In order to assess the sensitivity of 

the results to the estimated parameters of the IR, relative measurement error in self-reported 

production is estimated using parameters for the core sample (left panel in figure 2), which 

excluded the top and bottom 5% of yields, and for the full sample (right panel in figure 2). 

 

Table 6: Regression of the log of the ratio of self-reported yields versus crop cuts on plot size 

  (1) (2) (3) 

  
 Full 

sample 
Full 

sample 
Core 

sample 

Log of plot size (m²) -0.295*** -0.287*** -0.233*** 

 
(-25.64) (-11.99) (-10.36) 

wave 0.414*** 0.319*** 0.291*** 

 
(15.58) (5.58) (5.48) 

Labor inputs (logs) 
   Family labor planting (days/ha) 
 

0.0302* 0.0305* 

  

(1.69) (1.83) 
Hired labor planting (birr/ha) 

 
0.0119 0.00698 

  

(0.93) (0.60) 
Exchange labor planting (days/ha) 

 
-0.00517 -0.00490 

  

(-0.54) (-0.50) 
Family labor harvest (days/ha) 

 
0.226*** 0.182*** 

  

(9.70) (7.90) 
Hired labor harvest (birr/ha) 

 
0.0654*** 0.0461*** 

  

(4.46) (2.80) 
Exchange labor (days/ha) 

 
0.0644*** 0.0506*** 

  

(6.38) (5.92) 

Enumeration area fixed effects No Yes Yes 
Household characteristics No Yes Yes 
Plot characteristics No Yes Yes 

Observations 5914 5053 4593 
R-squared 0.133 0.223 0.161 
***,**,* denote statistical significance at the 1%, 5% and 10% levels. Robust t-statistics in parentheses. Full results are available upon request. The core sample 

discard bottom and top 5% of yields based on self-reporting and yields based on crop cuts. 

Independent of the choice of 𝑣, the graphs show that relative error in self-reported production 

decrease rapidly with plot size. Relative errors are smaller when parameter estimates are 

based on the core sample compared to estimates based on the full sample, but the trends are 

broadly similar. We will therefore only discuss the results for the core sample. 

With 𝑣 = 1, production is overreported by at least 50% on plots smaller than 80m² and 

underreported by more than 25% on plots larger than 1500m². For larger values of 𝑣, 

overreporting on small plots increases, while underreporting on larger plots decreases. The 

critical threshold of plot size below which over reporting of production changes to 



underreporting of production depends on the choice of 𝑣. This critical threshold equals 445m², 

992m² and 2000m² for 𝑣 = 1, 1.2 and 1.4, respectively. 

Figure 2: Relative measurement error in self-reported production in function of plot size (m²) 

 

With an additional assumptions about ‘true’ yields, absolute measurement errors in self-

reported production can be estimated. Assume that average ‘true’ yields are 1000 kg/ha. 

Under this assumption, ‘true’ production on a plot of 100m² is 10kg and over reporting by 

50% implies an overestimation by 5kg. With the same assumptions, ‘true’ production on a 

plot of 2500m² is 250kg, but is underreported by 80kg. While an overestimation by 5kg on 

small plots seems reasonable, the large underestimation on larger plots appears less credible. 

It is worth pointing out, however, that a similar pattern has been observed for self-reported 

land area: farmers tend to overestimate the area of small plots, but underestimate the area of 

larger plots (Carletto, Gourlay, et al., 2015). Moreover, the order of magnitude of 

over/underestimation is similar to our findings. For instance, Carletto, Gourlay, et al. (2015) 

report that farmers overestimate plot size by 103% relative to GPS measurement on plots 

smaller than 0.5 acres (2000 m²) and underestimate it by 33% on plots larger than 5 acres 

(20,000 m²).  

5. Conclusion 

This paper examined the decades old puzzle of the inverse relation between plot size and land 

productivity in developing countries. It argues that the relationship is an artifact of systematic 

measurement error in self-reported production. This explanation has not yet been explored in 

the literature. Yet, most studies on the inverse relationship rely on self-reported production to 

estimate yields. We use an alternative measure: crop cuts. Crop cuts are an objective approach 

to measure yields, based on randomly sampling a subplot within a plot and cutting and 

weighing the harvest within the subplot. Crop cuts are sometimes considered the gold 

standard of yield measurement and are frequently used in specialized agricultural surveys. 

Drawing on a dataset from Ethiopia, which implemented both methods of yield measurement 

on the same plots, we show that the inverse relationship is strong when yields are based on 

self-reported production, but disappears when crop cuts are used. We even observe a positive 

correlation between plot size and crop cuts. 



In theory, these results could be explained by differences in labor input between large and 

small plots since crop cuts measure the potential harvest (i.e. just before the harvest) and self-

reported production the actual harvest (i.e. just after the harvest). If small plots are more 

completely harvested than large plots, an inverse relation would only be observed for self-

reported yields and not for crop cuts. Although we did find evidence of an inverse relation 

between plot size and family labor, the inverse relationship remained significant after 

controlling for labor input. 

This leaves systematic measurement error in self-reported production as the remaining 

explanation for our findings. Nobody will dispute that self-reported production in household 

surveys is always measured with substantial error for various reasons, including the long 

recall period. Yet, this error is invariably assumed to be random. Random errors never induce 

spurious relations. The IR can only be explained by measurement error if the errors are 

systematically correlated with plot size. Our findings suggest that households over report 

production on small plots and underreport it on larger ones. Moreover, the systematic bias is 

substantial. Our best estimates indicate that production needs to be over reported by 40% to 

100% on plots of 100m² and underreported by 10% to 35% on plots of 3000m² to explain the 

IR. 

This paper does not reveal why farmers systematically over and underreport production. One 

may speculate that these errors are related to heaping or rounding errors, which occur 

frequently in survey data. A small, upwards rounding error in production on a small plot 

translates into a substantial error in yields when production is divided by the small plot size. 

On larger plots, small rounding errors are a lesser concern because a small rounding error in 

production will not be amplified to a large error in yields when production is divided by a 

large plot size. This asymmetry between small and large plots causes decreasing measurement 

error in yields with increasing plot size, which could generate an inverse relation. However, it 

does not yet explain why farmers systematically round upwards on small plots. This is an 

interesting avenue for future research. 

Our results may be partially driven by the small plots size in Ethiopia, where the average plot 

size was 0.13ha. Because plot sizes are so small, small measurement errors in self-reported 

production translate into large measurement errors in yields. These errors may be less 

important when average plot size is larger or when total production is aggregated at farm 

level, which is often done when the inverse relation between farm size and productivity is 

studied. Consequently, systematic measurement error in production is especially troublesome 

when estimating the inverse productivity plot-size relationship, but its effects may be less 

pronounced for the inverse productivity farm-size relationship. 

Although our analyses should be replicated in other settings, the rejection of a negative 

correlation between plot size and crop cuts gives nevertheless some solace to the agricultural 

economists that find the far-reaching policy implications of the IR disturbing. The hypothesis 

of missing markets as the main explanation for the inverse productivity farm size relationship 

has been discredited because it fails to explain productivity differences across plots within the 

same household (Assunção & Braido, 2007). Attributing the inverse productivity plot-size 

relationship to measurement error thus reinvigorates the more conventional explanation of 

missing markets for the inverse productivity farm-size relationship. From a policy 

perspective, this implies that reducing frictions in land and labor markets will increase 



agricultural output. The rejection of the inverse productivity plot-size relationship has also 

important implications for land consolidation programs since the IR has frequently been cited 

as an argument against land consolidation. Although the positive correlation between plot size 

and crop cuts is weak in our data, we can at least claim that land consolidation will not 

necessarily reduce agricultural production. 
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