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Measuring agricultural water productivity using a partial factor productivity approach 

 

Eric Njuki, and Boris E. Bravo-Ureta
1
 

 

Abstract 

Water and agriculture are inextricably linked. Within Africa, several water-related challenges 

exist that present numerous obstacles and have the potential to impede Africa’s continued 

economic growth. These include: the threat of climate change, as characterized by extreme 

weather events such as floods, and frequent and intense droughts; a multiplicity of trans-

boundary water resources without a coherent arrangement on riparian rights; lack of sufficient 

water infrastructure for supply and delivery of the water resource; and lack of official data on 

water use that can be used to formulate good public policy. All these factors have served to 

increase water scarcity and to raise the competition for scarce water resources between the 

agricultural sector and other sectors of the economy, such as industry and urban households. A 

prerequisite to mitigating these challenges is the establishment of an integrated water 

management system that promotes water productivity and efficiency. Thus, the primary objective 

of this study is to highlight methods and techniques for evaluating agricultural water productivity 

and water use efficiency that are replicable, globally. For this purpose we construct a total factor 

productivity index using the General index proposed in O’Donnell (2016), thereafter we 

demonstrate how to decompose the partial productivity of water using U.S. agricultural data for 

the period 1960-2004. 
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Introduction 

Water and agriculture are inextricably linked. According to the United Nations World Water 

Development Report (2015), the agricultural sector is the largest consumer of water resources 

accounting for 70% of all fresh water withdrawals globally. In Africa, the agricultural sector is 

the single largest economic sector accounting for 32% of total Gross Domestic Product (GDP) 

and provides direct employment to approximately 65% of the Continent’s labor force (World 

Bank, 2016). Notwithstanding this major contribution, agriculture in Africa faces numerous 

obstacles including water-related challenges that if not addressed have the potential to adversely 

affect continued economic growth.  

Rain-fed agriculture is the predominant type of production method in Africa, and water 

scarcity stemming from a changing climate poses a serious threat to this critical economic sector 

(IPCC 2014). Most importantly, the impact of climate change is especially pronounced given the 

significant inter-annual and intra-annual variability of temperature and precipitation that has 

become commonplace in the African Continent (UN, 2016). Climate change has resulted in 

unprecedented extreme weather characterized by floods, storms, and frequent and intense 

droughts. Changes in the timing and intensity of rainfall have resulted in decreased availability 

of water for agricultural purposes and a switch to alternative sources of water (IPCC, 2007; 

2014). Smallholder farmers in many parts of sub-Saharan Africa are increasingly turning to 

irrigation for agricultural production (Giordano et al., 2012). This scenario is further 

compounded by the fact that farmers face increasing competition for scarce water resources from 

other sectors of the economy such as industry and urban households (UN, 2015). Beyond 

extreme weather, climate change has also led to a significant alteration of freshwater and marine 

ecosystems. 

Another important feature is the multiplicity of trans-boundary water resources where a 

coherent arrangement of riparian rights is lacking and the sharing of said resources can be 

problematic. Approximately 75% of sub-Saharan Africa falls within 53 international river basin 

catchments crossed by multiple borders (UN, 2016). Examples of such shared trans-boundary 

water resources are the Lake Chad basin, the Niger Basin, the Nile basin, the Orange basin and 

the Zambezi basin. According to the United Nations report (2014), access to water may become 

the biggest source of conflict and war in Africa over the next 25 years. The report goes on to 

indicate that such conflicts are likely to be between countries where rivers or lakes are shared by 

more than one country. The lack of clearly spelt-out riparian rights, and the fact that most water 

resources in Africa exist as a shared resource across several political boundaries may ultimately 

prove to be a serious challenge if not addressed.  

In addition, most of Africa lacks sufficient water infrastructure that can be used to 

harness this scarce resource. Currently, only 5% of Africa’s potential water resources are 

developed (Sperling and Bahri, 2014). A lack of water supply and delivery infrastructure means 

that water is rarely delivered to where it is needed most. Consequently, the full potential of water 

resources has not been realized.  
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Moreover, monitoring water use represents a huge challenge considering that official 

analyses of water-use are non-existent in most African countries. In places where this type of 

analysis exists, the data system is woefully inadequate. According to the United Nations (2015), 

reliable data that can be used to evaluate efficiency of water use is often incomplete, unavailable 

or otherwise inadequate for decision-making purposes (UN, 2015). Yet, data on water-use is 

indispensable and currently policy makers lack the analysis that is required to implement well-

informed public policies. 

At first glance, the aforementioned challenges appear to be insurmountable. 

Notwithstanding, these challenges can be addressed through efficient water management 

practices. Beginning at the national level, an integrated water resource management approach 

based on sound systematic knowledge, of both surface and groundwater, is imperative (UN, 

2015). In addition, a periodic evaluation of water productivity and water use efficiency is 

prerequisite in order to promote best practices in the management of water in farming. 

Water and economic development are closely interlinked, and poverty oriented water 

interventions can have meaningful and beneficial direct and long-term social, economic and 

environmental results (UN, 2016). Raising water productivity and water use efficiency can 

ensure food security by guaranteeing a steady supply of water, sufficient to meet the demands of 

the agricultural sector and thus provide sufficient food for a growing population. Increased water 

productivity can also contribute to poverty reduction as access to water, which is a key input for 

crop production and animal husbandry, provides incomes, sustenance and livelihoods for rural 

households.  

Water is a common resource not only spatially but also inter-temporally; therefore, the 

sustainable use of water is also needed in order to guarantee intergenerational equity, thus 

ensuring that the current benefits of water can be transmitted to future generations (Stiglitz, 

2009). In sum, there are several benefits to instituting and promoting water productivity and 

efficient water use programs. 

Water productivity can be defined as “…the ratio of the net benefits from crop, forestry, 

fishery, livestock and mixed agricultural systems to the amount of water required to produce 

those benefits” (Molden and Oweis, 2007). An alternative definition is that of water-use 

efficiency, which is “…the ratio of the minimum feasible water used to observed water usage 

associated with a given level of output holding other inputs constant” (Karagiannis et al., 2003). 

According to the USDA (2014), water productivity and efficient water use requires an integrated 

system of plant and animal production practices that, over the long term, enhances environmental 

quality and the natural resource base upon which the agricultural economy depends and this 

requires the protection and enhancement of water resources. Therefore, in a world characterized 

by growing water scarcity, a primary goal is the efficient use of this vital resource, which 

requires deriving the most agricultural output using the least amount of water. 

Consequently, developing suitable tools and indicators in order to measure water 

productivity becomes critical to achieving the overall goal of sustainable water resource 

management. The primary objective of this paper is to highlight methods for evaluating water 
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productivity and water use efficiency, which could be replicated across the globe, provided that 

adequate data are available. The importance of this is clear, considering that agriculture’s share 

of water withdrawals in Africa accounts for 86% of all freshwater sources compared with 81% in 

Asia, 71% in Latin America, 39% in North America and 32% in Europe (FAO, 2012). What this 

means is that, relatively, the agricultural sector in Africa uses the most water, yet generates the 

least amount of output per unit of water used. 

 

Methodologies 

There are several approaches that have been utilized in the literature to evaluate agricultural 

water productivity and efficiency including:  

1) Frontier methods that are commonly used to measure the technical efficiency (TE) component 

of productivity. These efficiency measures can be divided into: (a) output-oriented TE which is 

based on the traditional radial measure that incorporates all inputs (e.g., Aigner, Lovell and 

Schmidt, 1977; Meeusen and van den Broeck, 1977); and (b) an input-oriented approach which 

has been used to derive a non-radial measure of efficiency that isolates the TE of a single input, 

e.g., water, while holding other inputs, output and technology constant (e.g., Kopp, 1981; 

Karagiannis et al., 2003).  

2) Total factor productivity (TFP) which is defined as aggregate output divided by aggregate 

inputs used over a given period of time (e.g., O’Donnell, 2016) after which a partial factor 

productivity (PFP) measure can be derived. Such an approach seeks to measures the ratio of 

aggregate output divided by total water-usage, while holding other inputs used in the production 

process constant.  

3) Single factor productivity defined as output divided by a single input while ignoring other 

inputs. Commonly used single factor measure is the “crop per drop” (e.g., Seckler, Molden and 

Sakthivadivel, 2003). This approach differs from the partial factor productivity (PFP) approach 

mentioned above because whereas a PFP approach accounts for all inputs used in the production 

process, the single factor approach focuses on a single input (e.g., water), while ignoring other 

inputs used in the agricultural production process (e.g., Scheierling et al., 2014).  

 

Partial Productivity of Water (PPW) 

A key contribution of this paper is to utilize a measure of partial productivity of water (PPW) 

within a TFP framework. Accordingly, we define the partial productivity of water as the amount 

of real output that can be generated using a unit of water, while holding other outputs used in the 

production process constant. In order to have meaningful partial productivity measures, it is 

critical that one accounts for all inputs that are relevant in a particular production process. 

Consequently, our approach combines volumetric quantities of water used in agriculture, weather 

variables, and input-output data (i.e., yield, land, labor, capital, intermediate materials). The 

economic intuition behind this approach is that considering the rising water scarcity brought 

about by climate change, along with the rising demand stemming from increasing population and 
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industrialization, a partial productivity of water measure can provide useful information on how 

efficient a farm uses a unit of water to produce agricultural output. 

 Simple partial productivity measures have been widely used in several spheres of 

economic analysis because they are easy to calculate and to interpret. They have been used to 

evaluate production technologies across several sectors and across several countries. For 

example, Owuor (1999), and Nyoro and Jayne (1999) have examined partial productivity 

measures of land and labor in the agricultural sector in Kenya. The U.S. Bureau of Labor 

Statistics (BLS) generates regular publications that measure the partial productivity of labor, 

where a common measure is the real output per labor hour (e.g., Sprague, 2014). Such measures 

are helpful in formulating public policies aimed at enhancing productivity. Nevertheless, it is 

important to point out that due to heterogeneity in production technologies across industries and 

over time, it is necessary to measure the partial productivity of a single input on a case-by-case 

basis.   

As mentioned above, the emphasis of this study is on methods and techniques of 

evaluating agricultural water productivity with the understanding that such techniques can be 

replicated elsewhere. In the next section we describe the U.S. agricultural data that is used to 

demonstrate how to measure partial productivity of water within a total factor productivity (TFP) 

framework.  

 

Data 

The data consist of indices of farm inputs and output across the 48 contiguous states of the U.S. 

The data was developed by the Economic Research Service (ERS) of the U.S. Department of 

Agriculture and spans the period 1960-2004.
2
 This data is supplemented with information on 

irrigation withdrawals at the state-level prepared by the U.S. Geological Survey. This data is 

sourced every fifth year; consequently, linear interpolation is used to obtain the in-between 

years. In addition to input-output data and irrigation withdrawals, we augment the dataset with 

state-level monthly average temperature and precipitation information obtained from the 

National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric 

Administration (NOAA). 

The climatic variables comprise contemporaneous average temperature and precipitation, 

as well as measures of intra-annual standard deviations of precipitation and temperature. Intra-

annual standard deviations capture shocks and volatility within a given year due to unanticipated 

weather patterns (e.g., Mendelsohn, Nordhaus and Shaw, 2004; Lobell, Schlenker and Costa-

Roberts, 2011; Kaminski, Kan and Fleischer, 2012). The maximal possible output in a given year 

is affected not only by the temperature and precipitation that is experienced in that year, but also 

by the variation in temperature and precipitation within that year. For example, if all the rain falls 

on one day, then we expect less output than if it is spread evenly throughout the season. This will 

help in establishing a clear connection between climatic variability and the need for secondary 

sources of water.  

                                                        
2 See Ball et al. 2004 for details concerning the construction of the indices of the input and output data. 
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The evidence within the United States that establishes the connection between climatic 

variability and the need for secondary sources of water, such as irrigation has been building for 

years. A major argument has been that changing temperature and precipitation patterns will lead 

directly to modifications in farming systems and resource use (e.g., Mendelsohn, Nordhaus and 

Shaw, 1994; Adams et al., 1995; Mendelsohn and Dinar, 2003; Deschenes and Greenstone, 

2007; Schlenker and Roberts, 2009; Hatfield et al., 2014). Most importantly, some of these 

studies have noted a growing reliance on irrigation (e.g., Mendelsohn and Dinar, 2003; 

Schlenker, Hanneman and Fisher, 2005; Deschenes and Greenstone, 2007; Hatfield et al., 2014). 

The implementation of such adaptation strategies can be expected, on the one hand, to reduce the 

long-run adverse effects stemming from changes in climatic conditions (Schlenker, Hanemann 

and Fisher, 2005), while on the other, putting further pressure on a resource that is becoming 

increasingly scarce. These developments are clearly not compatible and are likely to increase 

tensions between farmers and other sectors of the economy (Schaible and Aillery, 2012). 

According to the U.S. Geological Survey (USGS), the agricultural sector is the second 

largest consumer of water resources in United States. Combined water withdrawals used in 

irrigation, livestock and aquaculture accounted for approximately 115,000 million gallons per 

day, with 62.4 million acres of land under irrigation (USGS, 2014). Consequently, in the face of 

water scarcity brought about by climate change, irrigation will remain the bedrock of water 

supply. As several regions particularly in the Southwest continue to experience frequent and 

prolonged droughts, water extraction rates are projected to increase, and with this, concerns with 

the depletion of ground water sources will escalate. Irrigation systems are likely to be brought 

under increased scrutiny with a push towards more efficient irrigation methods (e.g., Evans and 

Sadler, 2008; Hatfield et al., 2014; Schaible and Aillery, 2014; Zilberman, 2014). Hence, the 

evaluation of partial productivity of water is critical in order to provide market signals as to the 

value of water, and also to assist in raising water use efficiency. We conjecture that farmers 

adjust their production plans by altering their scale of operations and mix of inputs and outputs 

based on several factors, both man-made and natural. Such as differences in soil types and 

slopes, disparities in temperature and precipitation across regions, differences in outputs, water 

availability, and predominant irrigation technologies. A hypothetical type of adjustment is a shift 

away from high value crops that require large amounts of water (e.g., almonds, rice, alfalfa) 

towards crops that are more drought-tolerant and require less water.  

 

The Production Technology 

In this section we discuss the methodology that is used to characterize the production 

technology. Following O’Donnell (2016), we define a period-and-environment-specific 

technology set that is used to characterize all feasible input-output combinations for a given 

metatechnology under a set of environmental conditions. The period-t metatechnology in 

environment z is given as: 

(1)         𝑇𝑡 (𝑧) = { (𝑥, 𝑞) ∈  ℜ+
𝑀+𝑁: 𝑥 can produce 𝑞 in environment 𝑧 in period 𝑡}. 

We assume the following properties: (1) the output set 𝑃𝑡 (𝑥, 𝑧) ≡  {𝑞: (𝑥, 𝑞)  ∈ 𝑇𝑡 (𝑧)} is 
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bounded for all  𝑥 ∈  ℜ+
𝑀 ; (2) inactivity is possible, (𝑥, 0)  ∈ 𝑇𝑡 (𝑧) for any 𝑥 ∈  ℜ+

𝑀 ; (3)  if 

𝑞 > 0,then  (0, 𝑞) ∉ 𝑇𝑡 (𝑧), implying that a strictly positive amount of at least one input is 

required to produce a positive amount of output; (4) if (𝑥, 𝑞)  ∈ 𝑇𝑡 (𝑧)  and 0 ≤ 𝜆 ≤ 1, then 

(𝑥, 𝜆𝑞)  ∈ 𝑇𝑡 (𝑧), implying outputs are weakly disposable; (5) if (𝑥, 𝑞)  ∈ 𝑇𝑡 (𝑧) and 𝜆 ≥ 1, then 

(𝜆𝑥, 𝑞)  ∈ 𝑇𝑡 (𝑧), implying inputs are weakly disposable as well (this property implies that if an 

output vector can be generated using a particular input vector, then it can also be produced using 

a scalar magnification of that input vector); (6) the output set 𝑃𝑡 (𝑥, 𝑧) ≡  {𝑞: (𝑥, 𝑞)  ∈ 𝑇𝑡 (𝑧)} is 

closed, implying the set of outputs that can be produced given an input vector contains all the 

points on its boundary; and (7) the input set 𝐿𝑡  (𝑞, 𝑧) ≡  {𝑥: (𝑥, 𝑞) ∈ 𝑇𝑡 (𝑧)} is closed, implying 

the set of inputs that can produce a given output vector contains all the points on its boundary 

(O’Donnell 2016). If these seven properties are satisfied, then the period-t metatechnology can 

be represented using a period-and-environment-specific output distance function, defined as: 

(2)               𝐷𝑂
𝑡  (𝑥, 𝑞, 𝑧) = inf {𝛿 > 0: (𝑥,

𝑞

𝛿
) ∈ 𝑇𝑡  (𝑧)}.  

The output distance function is nonnegative and homogeneous of degree one in outputs.  In 

addition to the properties listed above, we assume that outputs and inputs are strongly disposable. 

Strong disposability of outputs implies that it is possible to use the same vector of inputs to 

produce fewer outputs. Strong disposability of outputs guarantees that the output distance 

function is non-decreasing in outputs, which means that it can be used to construct output 

quantity indexes that satisfy the axioms mentioned above. Conversely, strong disposability of 

inputs indicates that it is possible to produce the same outputs using more inputs. Strong 

disposability of inputs means that the input distance function is non-decreasing in inputs, which 

indicates that it can be used to construct input quantity indexes. 

We proceed by introducing i (state) and t (time) subscripts into the notation so that, for 

example, 𝑞𝑖𝑡  and 𝑥𝑖𝑡  represent the output and input vectors of state i in period t. The output 

distance function (ODF) is denoted as: 

(3)     ln  𝐷𝑂
𝑡  (𝑥𝑖𝑡 , 𝑞𝑖𝑡 , 𝑧𝑖𝑡)  = ln 𝑞𝑖𝑡 − 𝛼1𝜏 − ∑ 𝜌𝑗 ln 𝑧𝑗𝑖𝑡

𝐽

𝑗=1

− ∑ 𝛽𝑚 ln 𝑥𝑚𝑖𝑡

𝑀

𝑚=1

. 

Various functional forms can be used to approximate the unknown output distance function (e.g., 

Cobb-Douglas, translog, quadratic). We do not appeal to the more flexible and commonly used 

translog specification because it fails to satisfy the regularity conditions necessary to have a 

production technology that conforms to economic theory (O’Donnell, 2016) and that satisfies the 

seven axioms enumerated above. Instead we use a Cobb-Douglas specification form because it 

satisfies several regularity conditions globally (e.g., O’Donnell, 2016; Guilkey, Lovell and 

Sickles, 1983). The empirical model that we estimate is written as: 

(4)     𝑦𝑖𝑡 = 𝛼0 + 𝛼1𝜏 + ∑ 𝛽𝑚 ln 𝑥𝑚𝑖𝑡

𝑀

𝑚=1

+ ∑ 𝜌𝑗 ln 𝑧𝑗𝑖𝑡

𝐽

𝑗=1

+ ∑ 𝛾𝑘𝑠𝑘𝑖𝑡

𝐾

𝑘=1

+ 𝑣𝑖𝑡 − 𝑢𝑖𝑡 

where: 𝑦𝑖𝑡 = ln 𝑞𝑖𝑡  is the log of an aggregate output; 𝜏 is a time trend;  𝑥1𝑖𝑡 , … ,  𝑥5𝑖𝑡  are land, 

labor, capital, intermediate materials and irrigation inputs;   𝑧1𝑖𝑡 , … ,  𝑧6𝑖𝑡  are climatic variables 
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(i.e., contemporaneous temperature and precipitation, as well as intra-annual standard deviations 

of temperature and precipitation);  𝑠1𝑖𝑡 , … ,  𝑠48𝑖𝑡  are state-level fixed effects that capture time-

invariant features of the environment; 𝑣𝑖𝑡 is an unobserved variable representing functional form 

errors (e.g., omitted variables, functional form used to approximate the true frontier) and other 

sources of statistical noise; and 𝑢𝑖𝑡 = − ln 𝐷𝑂
𝑡  (𝑥𝑖𝑡 , 𝑦𝑖𝑡 , 𝑧𝑖𝑡) is a nonnegative technical efficiency 

effect.  

The index that is used to decompose the PPW is a variation of the General TFP index 

proposed in O’Donnell (2016). It is a proper index in the sense that it satisfies economic-

theoretic properties of index theory that include: monotonicity, linear homogeneity, identity, 

commensurability, proportionality, and transitivity.
3
 As indicated above, we define PPW as real 

output per unit of water used holding all other inputs constant at some predetermined level. If 𝑥1, 

is the irrigation input, then the logarithm of the partial productivity of irrigation for firm i in 

period t is: 

(5)   ln 𝑃𝑃𝑊𝑖𝑡 = ln 𝑞𝑖𝑡 − ln 𝑥1𝑖𝑡 

 

Thus, given the model in equation 4 we rewrite equation 5 as: 

(6) ln 𝑃𝑃𝑊𝑖𝑡 = 𝛼0 + 𝛼1𝜏 + ∑ 𝛽𝑚 ln 𝑥𝑚𝑖𝑡

𝑀

𝑚=1

− ln 𝑥1𝑖𝑡 + ∑ 𝜌𝑗 ln 𝑧𝑗𝑖𝑡

𝐽

𝑗=1

+ ∑ 𝛾𝑘𝑠𝑘𝑖𝑡

𝐾

𝑘=1

+ 𝑣𝑖𝑡 − 𝑢𝑖𝑡 

          ln 𝑃𝑃𝑊𝑖𝑡 = 𝛼0 + 𝛼1𝜏 + ∑ 𝛽𝑚 ln(𝑥𝑚𝑖𝑡 /𝑥1𝑖𝑡)

𝑀

𝑚=1

+ (𝑟 − 1) ln 𝑥1𝑖𝑡 + ∑ 𝜌𝑗 ln 𝑧𝑗𝑖𝑡

𝐽

𝑗=1

+ ∑ 𝛾𝑘𝑠𝑘𝑖𝑡

𝐾

𝑘=1

+ 𝑣𝑖𝑡 − 𝑢𝑖𝑡 

The index that compares the PPW of state i in period t with the PPW of state k in period s is what 

we refer to as the partial productivity of water change, which is denoted as: 

(7)           𝑃𝑃𝑊𝑘𝑠𝑖𝑡 =
𝑃𝑃𝑊𝑖𝑡

𝑃𝑃𝑊𝑘𝑠
 

By using the antilogarithm from equation 5 above, the full expression for the change in PPW can 

be written as: 

(8)   𝑃𝑃𝑊𝑘𝑠𝑖𝑡
𝐺

= [𝑒𝛼1(𝜏𝑡−𝜏𝑠)] [∏ (
𝑧𝑗𝑖𝑡

𝑧𝑗𝑘𝑠
)

𝜌𝑗
𝐽

𝑗=1

] [𝑒(𝑢𝑘𝑠−𝑢𝑖𝑡)] [∏ (
𝑥𝑚𝑖𝑡/𝑥1𝑖𝑡

𝑥𝑚𝑘𝑠/𝑥1𝑘𝑠
)

𝛽𝑚−𝜆𝑚
𝑀

𝑚=1

] [(
𝑥1𝑖𝑡

𝑥1𝑘𝑠
)

𝑟−1

] [𝑒(𝑣𝑘𝑠−𝑣𝑖𝑡)] 

The first right-hand term in expression (8) is a technology index (TI), the second term is an 

environment index (EI), the third term is an output-oriented technical efficiency index (OTEI), 

the fourth term is a measure of input deepening (ID)
4
, and the fifth term is an output-oriented 

scale efficiency index (OSEI). The last term is a statistical noise index (SNI) that accounts for 

                                                        
3 See O’Donnell (2016) for a discussion on the General TFP index. 
4 See Acemoglu and Guerrieri (2008) for a discussion on the concept of input deepening. 
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measurement errors, omitted variables and other sources of statistical noise. Thus, expression 6 

above says that 𝑃𝑃𝑊 = 𝑇𝐼 × 𝐸𝐼 × 𝐼𝐷 × 𝑆𝐸𝐼 × 𝑂𝑇𝐸𝐼 × 𝑆𝑁𝐼.  

Results 

Statistical tests and parameter estimates  

Maximum likelihood estimators (MLE) are used to estimate the empirical model above. A 

primary advantage of using MLE methods is that they are asymptotically normal which means 

that estimators not only converge to the unknown parameters, but they converge at a fast enough 

rate (Greene, 2012). Prior to discussing the results, we acknowledge concerns regarding the 

potential for endogeneity in stochastic production frontier models (e.g., Mutter et al., 2013; Tran 

and Tsionas, 2013; Shee and Stefanou, 2015). In our model, a possible source of endogeneity is 

that input choices may be driven by weather outcomes. For example, a firm’s decision to irrigate 

is based on the amount of rainfall experienced at a given point in time. Therefore, we conduct a 

Wu-Hausman test for endogeneity, where the null hypothesis is that the variable under 

consideration, in our case irrigation, is exogenous. The logarithms of precipitation from 5 years 

prior are used as instruments. With a Wu-Hausman test statistic = 15.9 and a p-value = 0.00, we 

reject the null of exogeneity and thus conclude that irrigation is indeed endogenous. Subsequent 

to a test for endogeneity, we conduct a panel unit root test of Maddala and Wu (1999), and 

Pesaran (2007). Using 4 lags, the test returns a 5% level of significance for the dependent 

variable output, and the explanatory variables land, labor, irrigation, precipitation and 

temperature. In addition, a Pedroni (2004) test indicates that the variables are cointegrated. 

Verbeek (2008, p. 314) and O’Donnell (2016, p. 336) report that if at least one of the explanatory 

variables is an I(1) process and the dependent and explanatory variables are cointegrated, even 

though some of the variables may be endogenous, the slope parameters will remain super-

consistent. 

 A Wald test for the null hypothesis of constant returns to scale generates a test-statistic of 

430.6 with a p-value = 0.00. Therefore we reject the null hypothesis that this model exhibits 

constant returns to scale. Another Wald test to check for the significance of including state-level 

fixed effects in the model generates an F-stat =97.8 with a p-value=0.00. Hence, we conclude 

that the state-level fixed effects belong in the model. Finally, we test for the null hypothesis of 

constant variance (i.e., homoscedasticity) for the statistical errors 𝑣 . A Breusch-Pagan test 

generates a chi-square = 0.00 and a p-value = 0.96. Therefore we are confident that 

heteroscedasticity is not a problem and that the standard errors generated in the estimation 

process are not be biased. 

The parameter estimates for irrigation is 0.0080 indicating that, ceteris paribus, irrigation 

has a positive effect on output. The parameter estimates for the climatic variables reveal that 

precipitation and the variability of precipitation (i.e., intra-annual precipitation) have statistically 

significant impacts on agricultural yields, with coefficient estimates equal to 0.0406 and -0.0248, 

respectively. Extreme climatic events that take place rapidly over a short period of time (e.g., 

storms and floods) are harder to anticipate and more threatening to agriculture (Lin, Perfecto and 

Vandermeer, 2008). We conjecture this to be the reason why intra-annual standard deviation of 
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precipitation, which measures within-year climatic shocks, has a negative and statistically 

significant effect on output. On the other hand, the estimates for temperature and intra-annual 

standard deviation of temperature reveal that these variables have a negative and a positive effect 

respectively, albeit statistically insignificant. Adaptive mechanisms already in place, such as 

drought-resistant crop varieties and on-demand irrigation technologies, are perhaps the reason 

why temperature and intra-annual standard deviation of temperature have statistically 

insignificant effects on output. 

Decomposition of partial productivity of water 

As indicated above, we define partial productivity of water as real output per unit of irrigation 

water holding other inputs constant. The parameter estimates from equation 4 are used to 

estimate the PPW, which decomposes into the technological index (TI), the output-oriented 

technical efficiency index (OTEI), the output-oriented scale efficiency index, the input-

deepening index (ID), the climatic effects index (CEI) and the statistical noise index (SNI). The 

results of the year-to-year change in PPW between 1960 and 2004 are provided in Table 3 

below. All indexes in this table compare the relevant variable in a particular year with the value 

of that variable in Alabama in 1960, which is one. In addition, because the index that we use 

satisfies the transitivity property, we can make comparisons across different states. The 

transitivity axiom states that a direct comparison of the TFP of two decision-making units 

(DMUs) should yield the same estimate of TFP change as an indirect comparison through a third 

DMU (O’Donnell, 2012).  This is also the case for PPW and PPW change. 

The interpretation of the estimates in Table 3 is as follows: the first line tells us that the 

partial productivity of water for Alabama (AL) in 2004 was 23.9% higher compared to Alabama 

in 1960 (PPW=1.239). In other words, a unit of irrigation water in 2004 generated 23.9% more 

real output compared to a unit of irrigation water in 1960. In a different entry in Table 3, we 

observe that a unit of irrigation water in California (CA) in 2004 generated almost twice the 

amount of real output that a unit of irrigation water generated in Alabama in 2004 

(2.328 1.239⁄ = 1.87). Across the United States, irrigation water usage appears to have been 

most efficient in North Dakota (ND) (PPW=3.436). On the other hand, the least efficient usage 

of irrigation water appears to have been in the Northeast with the states of Connecticut (CT), 

Massachusetts (MA), Maine (ME), New Hampshire (NH), New Jersey (NJ), Rhode Island (RI) 

and Vermont (VT) reporting negative partial productivity of irrigation measures. In other words, 

these states used up more water in 2004 compared to 1960 to generate a unit of real output. 

Figure 1 presents a complete picture of the partial productivity index of irrigation and its 

components in the state of California. 

Figure 2 below provides an illustration of partial productivity of water in the United 

States between 1960 and 2004. We observe that Northeastern states were least efficient, in 

comparison with the rest of the country, in their utilization of irrigation water. On the other hand, 

the most efficient states at utilizing irrigation water to generate agricultural output were 

California and New Mexico in the Southwest; Washington, Oregon, Montana and Idaho in the 
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Northwest; Nebraska, Iowa, South Dakota and North Dakota in the Midwest and Northern 

plains.   

 

Conclusion 

Shifting patterns in temperature and precipitation as well as a general trend towards warming has 

caused several regions across the globe to face severe water shortages. Within the African 

continent, the situation is further compounded by a severe shortage of water infrastructure for 

supply and delivery of the water resource, a lack of official data that can be used to evaluate 

water productivity, and a multiplicity of trans boundary water resources without a coherent 

agreement on riparian rights. All these factors have served to increase the level of water scarcity. 

This has resulted in farm adjustments that rely increasingly on secondary sources of water for 

their agricultural needs. As farmers continue to put pressure on scarce water resources, irrigation 

systems are likely to be brought under increased scrutiny with a push towards more efficient 

methods. Developing tools and indicators necessary for measuring the contribution of the 

productive and efficient use of water is critical for achieving the overall goal of sustainable water 

resource management. Consequently, it is important and informative to evaluate the partial 

productivity of water in a manner that considers all other inputs. In this study we use a Partial 

Productivity of Water (PPW) approach, which we define as the amount of real output that can be 

generated using a unit of water, while holding all other inputs fixed. This study demonstrates 

how to decompose a PPW using a variation of the General TFP index that was first proposed by 

O’Donnell (2016). The ability to respond appropriately and in a timely fashion to the adverse 

effects of climate change is expected to have a significant effect on future agricultural 

productivity and on the efficient use of scarce resources, such as irrigation water. 
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Figure 1: Partial Productivity of Irrigation Water and its components in California (1960-2004) 

 
 

 

 

 

 

Figure 2: Partial Productivity of Irrigation Water (PPW) Change in the United States (1960-

2004) 
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Table 1: Summary statistics 

Variable Obs Mean Std.Dev Min Max 

Output 2160 1.14 1.16 0.01 9.33 

Land 2160 2.10 2.23 0.01 15.12 

Labor 2160 2.62 2.31 0.02 12.59 

Capital 2160 1.87 1.67 0.02 9.41 

Intermediate 2160 0.89 0.82 0.01 4.75 

Irrigation ('000 Gallons) 2160 3,034.27 6,019.58 0.03 41,433.34 

Temp (Fahrenheit) 2160 52.00 7.63 36.53 72.58 

Prec (mm) 2160 76.64 31.67 11.37 170.56 

Intra-annual Temp 2160 4.48 2.76 0.99 24.82 

Intra-annual Prec 2160 33.27 14.51 4.76 88.02 
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Table 2: Posterior results 

Variables Coefficient Parameters Std. Errors 

(Intercept) α0 -0.5134 0.3852 

Time α1 0.0126a 0.0004 

Land β1 0.1407a 0.0211 

Labor β2 0.1211a 0.0119 

Capital β3 0.0032 0.0139 

Intermediate β4 0.5651a 0.0144 

Irrigation β5 0.0080a 0.0033 

Precipitation ρ1 0.0406a 0.0151 

Intra-annual Prec ρ2 -0.0248a 0.0086 

Temperature ρ3 -0.0012 0.0062 

Intra-annual Temp ρ4 0.0088 0.0906 

AL γ1 -0.0864b 0.0402 

AR γ2 0.1279a 0.0253 

AZ γ3 0.6720c 0.0478 

CA γ4 -0.0854c 0.0462 

CO γ5 -0.1688a 0.0552 

CT γ6 -0.1115c 0.0576 

DE γ7 0.4409a 0.0279 

FL γ8 0.2153a 0.0201 

GA γ9 0.0827c 0.0446 

IA γ10 0.3583a 0.0375 

ID γ11 0.1899a 0.0298 

IL γ12 0.4195a 0.0419 

IN γ13 0.0824b 0.0405 

KS γ14 0.1012a 0.0244 

KY γ15 -0.1377a 0.0231 

LA γ16 -0.1593a 0.0626 

MA γ17 -0.0945a 0.0290 

MD γ18 -0.0715 0.0567 

ME γ19 0.0665c 0.0393 

MI γ20 0.2340a 0.0507 

MN γ21 -0.0112 0.0213 

MO γ22 0.0282 0.0314 

MS γ23 -0.2831a 0.0569 

MT γ24 0.1198a 0.0457 

NC γ25 -0.5124a 0.0533 

ND γ26 -0.4388a 0.0717 

NE γ27 -0.0318 0.0349 
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NH γ28 -0.4124a 0.0458 

NJ γ29 0.1806a 0.0368 

NM γ30 0.3686a 0.0213 

NV γ31 -0.0178 0.0546 

NY γ32 0.1789a 0.0325 

OH γ33 -0.1193a 0.0315 

OK γ34 -0.0092 0.0373 

OR γ35 0.1141a 0.0320 

PA γ36 -0.3667a 0.0957 

RI γ37 -0.0041 0.0220 

SC γ38 -0.0441 0.0458 

SD γ39 -0.0715a 0.0220 

TN γ40 0.0387 0.0581 

TX γ41 -0.3256a 0.0433 

UT γ42 -0.1722a 0.0582 

VA γ43 -0.0069 0.0231 

VT γ44 0.2381a 0.0353 

WA γ45 -0.5629a 0.0389 

WI γ46 0.2238a 0.0443 

WV γ47 -0.6129a 0.0563 

lambda λ 1.3100 0.1636 

sigma
2
 𝜎2 0.0097 

 𝑠𝑖𝑔𝑚𝑎𝑣
2 𝜎𝑣

2 0.0036 

 𝑠𝑖𝑔𝑚𝑎𝑢
2  𝜎𝑢

2 0.0060 

 log likelihood   2500.19   
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Table 3: Partial Productivity of Water (1960-2004) 

State PPW TI OTEI OSEI ID CEI SNI 

AL 1.239 4.683 0.007 0.560 -3.566 -0.002 -2.565 

AR 2.563 5.341 0.273 0.504 -3.184 -0.015 -3.053 

AZ 1.626 0.143 0.045 0.011 0.133 0.013 1.462 

CA 2.328 0.828 0.041 0.077 0.020 -0.015 1.525 

CO 1.766 0.720 -0.135 0.069 -0.128 0.013 1.145 

CT -0.202 1.992 0.104 0.750 -4.632 0.021 -2.181 

DE 2.003 2.922 0.326 0.653 -4.704 0.011 -1.686 

FL 1.854 4.490 0.080 0.373 -1.787 0.004 -1.425 

GA 1.681 7.599 0.330 0.717 -5.029 -0.026 -4.755 

IA 2.089 -0.240 0.179 -0.146 1.831 0.010 3.163 

ID 2.407 1.067 0.098 0.098 -0.071 -0.005 1.377 

IL 0.886 10.146 0.321 1.196 -9.410 -0.020 -8.742 

IN 1.399 6.362 0.288 0.693 -4.960 0.012 -3.040 

KS 1.905 1.229 -0.134 0.112 -0.246 0.046 0.786 

KY 1.226 2.569 -0.103 0.489 -2.991 0.036 -1.509 

LA 1.965 0.734 0.012 0.050 -0.008 0.014 1.665 

MA -1.021 4.889 -0.026 0.685 -6.127 0.000 -4.619 

MD 1.105 2.608 0.168 0.504 -4.357 0.021 -1.907 

ME -0.186 0.713 0.124 0.401 -1.975 0.006 -0.454 

MI 0.930 5.548 0.106 0.585 -5.058 -0.003 -4.689 

MN 1.145 7.510 0.099 0.809 -6.186 0.013 -6.029 

MO 0.611 9.146 0.059 0.892 -7.149 -0.009 -8.176 

MS 1.873 2.807 0.024 0.252 -1.628 0.022 -0.571 

MT 2.029 1.438 0.286 0.138 -1.062 0.043 -0.169 

NC 1.522 5.394 -0.088 0.543 -3.817 -0.017 -3.640 

ND 3.436 1.474 0.636 0.133 -0.754 0.025 0.882 

NE 2.202 3.244 0.019 0.308 -1.860 0.022 -1.173 

NH -0.363 0.388 0.121 0.282 -3.128 -0.009 -1.040 

NJ -0.306 2.282 -0.040 0.249 -2.947 0.038 -1.859 

NM 2.410 1.038 0.096 0.098 0.171 0.010 1.255 

NV 1.909 -0.021 0.018 -0.016 0.960 0.018 2.252 

NY 0.205 1.378 -0.151 0.126 -1.596 0.033 -0.633 

OH 1.135 3.410 0.074 0.365 -2.381 0.056 -1.797 

OK 1.264 1.914 -0.257 0.160 -0.307 0.016 0.187 

OR 2.230 0.443 0.272 0.042 -0.373 -0.018 1.526 

PA 0.992 4.148 0.092 0.496 -0.283 0.035 1.494 

RI -0.871 0.507 0.174 0.726 -7.122 0.035 -2.200 

SC 1.406 2.801 -0.022 0.240 -1.237 -0.017 -0.018 
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SD 2.013 1.790 0.102 0.165 -1.003 0.005 0.136 

TN 0.720 2.802 -0.312 0.351 -1.574 0.032 -1.322 

TX 1.875 -0.162 -0.101 -0.024 1.003 0.004 2.294 

UT 1.478 0.428 -0.017 0.042 -0.144 0.014 1.055 

VA 1.234 0.716 -0.134 0.046 -0.078 0.010 0.858 

VT -0.035 0.428 -0.040 0.358 -2.183 0.033 -0.669 

WA 2.588 0.008 0.225 -0.016 0.821 -0.032 2.831 

WI 0.117 7.027 -0.205 0.708 -6.084 -0.011 -6.576 

WV 1.417 0.136 -0.032 -0.859 9.930 0.012 2.324 

WY 1.058 0.688 -0.297 0.060 0.079 0.016 0.821 
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