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Abstract 

 

 This study analyzed how extreme weather conditions affect the mean and variability of 

the yields of 11 staple crops in Nigeria. The research involved the use of a pooled panel data of 

36 states and the federal capital territory over the period of 1991-2012.  The framework for 

analysis consisted of the production risk model developed by Just and Pope for yield 

estimation. Unit root tests and Maximum Likelihood Estimation techniques were used to 

obtain reliable estimates of the model’s parameters. The results showed that the mean and 

variance of the yield of all the staple crops were diversely influenced by extreme weather 

events.  

 

Keywords: Extreme Weather, Yield Response, Climate, Unit Roots, Pope and Just Model, 

Nigeria 

JEL Code: D24, C23 

 

1.0 Introduction 

 

 Agriculture is inherently risky. Farmers usually lack knowledge of the precise output 

at the time of their production and input decisions. This is because agriculture in general has 

a relatively long production cycle and is affected by a large number of endogenous or 

exogenous uncertainty factors. The prevailing climatic conditions for instance are important 

sources of uncertainty. Climatic factors such as temperature, rainfall or sunlight are 

characterized by inter-annual variability, part of which can be explained by gradual shifts in 

mean conditions but another part is constituted by seemingly random fluctuations. The 

overall direction and magnitude of the inter-annual variations are beyond farmers’ control as 

well as their predictive capabilities. As a result, climate is not only an important determinant 

of the general suitability of any given region for agricultural production but also a source of 

substantial production risk, causing unexpected variability of output. 

In both the developing and developed worlds, extreme weather events and climatic anomalies 

have serious effects on agriculture. Weather extremes and climate anomalies can affect yields 

and disease patterns. For instance, when Droughts is followed by intense rains, it may 

increase the potential for flooding thereby creating conditions that favour fungal infestations 

of leaves, roots, and tuber crops. Sequential extremes, along with altered timing of seasons, 

may also decouple long-evolved relationships among species (e.g., predator/prey) essential 

for controlling pests and pathogens as well as populations of plant pollinators (Epstein and 

Chilwenhee, 1994). Therefore, an objective assessment of the potential impacts of climate on 

agriculture should be based not only on the mean values of expected climatic parameters but 

also on the probability, frequency, and severity of possible extreme events. Hence when user-

focused weather and climate information are readily available and used wisely by farmers 

and agricultural insurance corporations, losses resulting from adverse weather and climatic 

conditions can be minimized. 

In recent decades in Nigeria, major advances in short term and seasonal weather forecasting 

as well as in long term climate modeling are available for early warnings and advisories. This 

has caused an increasing emphasis on management of the risk to agriculture from extreme 

weather event and anomalies in climate conditions. Each year, a large amount of government 

spending is devoted by Nigerian governments to two major programmes that help farmers 

manage risk. The programmes are: subsidized premiums for agricultural risk-reducing 

insurance policies and frequent ad-hoc disaster payments to reimburse farmers after 

occurrence of natural disasters. It is expected that these costs will continue to increase 

because of climate change and increased occurrences of extreme weather events unless 
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proper reform is put in place. Fundamental to such a reform will be an adequate knowledge 

of the effects of weather extremes on yields of various crops grown in the nation. 

 Even though risk analysis is a very important topic for agricultural production both 

from a policy and an academic perspective, most scholars so far have not paid appropriate 

attention to the risk aspect, in particular not to climate-related risks. Specifically, empirical 

studies such as Zhang and Carter (1997), and Ajetomobi and Ajiboye 2010 take climate 

variables as normal inputs in production, whereas Nhemachema and Hassan (2007) and 

Mendelsohn (2009) study the impacts of climate variables on farmers’ net revenues. 

However, the issues of production risk stemming from climate factors and standard physical 

inputs as well as farmers’ possibilities to adapt to this risk have not been systematically 

examined in the Nigerian context. This is necessary to guide the nation’s agricultural 

insurance corporation on how best to protect farmers in the face of climate-related risks.  

Thus, this study is proposed to assess the effects of extreme weather on the mean and 

variability of the yields of major staple crops in Nigeria. In specific terms, the main 

objectives of this paper are to: 

1) estimate the effect of extreme temperatures and rainfall during the growing season on 

yields for the following major Nigerian staple crops: cassava, cocoyam, cotton, 

cowpea, groundnut, maize, melon, millet, rice, sorghum, and yam. 

2) estimate the effect of extreme temperatures and rainfall during the growing season on 

yield variability for the following major Nigerian staple crops: cassava, cocoyam, 

cotton, cowpea, groundnut, maize, melon, millet, rice, sorghum, and yam. 

The study tests the following hypotheses stated in null form 

1) Ho1: Exposure of crops to temperatures above a critical maximum point will have a 

positive effect on yield and exposure to temperatures below this point will have a 

negative effect on yield.  

2) Ho2: Exposure of crops to rainfall above a critical maximum point will have a positive 

effect on yield and exposure to rainfall below this point will have a negative effect on 

yield.  

3) Ho3: Exposure of crops to temperatures above a critical maximum point will have a 

positive effect on yield variability and exposure to temperatures below this point will 

have a negative effect on yield variability.  

4) Ho4: Exposure of crops to rainfall above a critical maximum point will have a positive 

effect on yield variability and exposure to rainfall below this point will have a 

negative effect on yield variability.  

 

 

2.0 Literature Review 

 

  Traditionally, time series data of crop yields have been used to assess the influence of 

year-to-year weather fluctuation on crop yields, either for specific climatic regions or by 

relying on a panel. Rosenzweig and Parry (1994) use calibrated crop-models to examine the 

effect of year-to-year weather fluctuation on crop yields to estimate the effect of changing 

climate conditions on yields and simulate farm adaptation. Deschenes and Greenstone (2004) 

use a panel data set to estimate the relation between profits and climatic variables. The 

authors regress profits in a county on climatic variables using county fixed effects. 

Chalise and Ghimire 2013 utilize the historical data on yield, temperature, and precipitation 

in three adjacent agricultural districts of Georgia to assess the impacts of temperature and 

precipitation on mean yield of peanut production. The study finds that all levels of 

temperature have positive impact on peanut yield. Similarly, precipitation has positive impact 

on yield but up to certain limit. Excessive precipitation has negative effect on peanut yield. 
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Schlenker and Robert 2006 employ a 55-year panel of crop yields in the United States paired 

with a weather data set that incorporates the whole distribution of temperatures between the 

minimum and maximum within each day and across all days in the growing season to 

estimate the impacts of climatic factors on crop yield. The study shows that yields increase as 

temperature increases until about 29◦C for corn and soybeans and 33◦C for cotton, but 

temperatures above these thresholds quickly become very harmful. 

Soja and Soja examine which kind of extreme weather causes bad harvests for seven 

agricultural crop species in three regions of Austria. The data consisted of the area-based 

agro-statistical surveys and the monthly means of meteorological parameters from 1869 to 

2003. The results show that milder winters will be especially advantageous if no extreme 

temperatures occur in February while dry weather in spring is especially disadvantageous for 

spring cereals. Dry, hot summers are unfavourable for sugar beet and corn and to a lesser 

extent for potato. 

Robertson (2012) provides a detailed review of partial equilibrium modeling of the short term 

and localized effect of climate. The models are production or profit (Gay et.al, 2006; 

Schlenker and Robertson, 2006, 2008; Deschenes and Greenstone 2007), hedonic model 

(Mendelsohn and Reinsborough 2007, Mendelsohn 2009, Wang et.al, 2009, Ajetomobi et.al 

2011) and simulation model (Rosenzweig and Parry, 1997; Felkner 2009). Robertson (2012) 

uses the production model to capture the marginal impact of temperatures modeled in three 

ways, namely, monthly average, GDD and SR. She specified the general model which takes 

the form shown in Equation 1, where the natural log of yields, y, for crop i in year t, is a 

function of temperature (TEMP) in ºC, total seasonal rainfall in mm (RAIN), a vector of 

district dummies, D, and a time trend, T. the climate variables and the district dummies are 

vectors. 

 

iijijttiktiktiit TDRAINTEMPY    lnlnln      (1) 

She hypothesized that temperatures in the mid-30s (ºCelsius) have a different marginal 

impact than temperatures in the mid-20s (º Celsius).  

Luo (2011) provides a review of temperature thresholds for a range of crops. Such 

identification of temperature thresholds provides a basis for quantifying the probability of 

exceeding temperature thresholds which is a very important aspect of climate change risk 

assessment. He also reviews the effects of extreme temperatures on yield and yield 

components. 

At present, little empirical evidence exists on crop yield variation in response to the 

alterations in climatic conditions in sub-Sahara Africa. Further, none of the previous studies 

assess the effects of the major climatic factors (temperature and precipitation) on mean and 

variance of crop yield in Nigerian states despite regular newspapers’ reports of weather-based 

disasters affecting crop yields.  

 

3.0 Methodology 

 

3.1 Model Specification 

 

In order to account for the effects of the weather variables on the probability distribution of 

each crop yield, the stochastic production function introduced by Just-Pope (1979) was 

estimated from each crop panel data. The model has been widely employed by applied 

economist and it is still very much adopted in recent studies (Khumbhakar and Tveteras, 

2003, Chen et. al; 2004, Kim and Pang, 2009). Following Just and Pope (1979), the 

production function is given by 
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 ),(),( XhXfY     1)var(,0)(  E      (2) 

 

Where Y is the crop yield (cowpea, corn, cotton, groundnut, sorghum, cassava, maize, melon, 

rice, cocoyam, and yam),  f() is an average production function, and X is a set of 

independent explanatory variables (climate, location, and time period). The functional form 

h() for the error term  , is an explicit form for heteroskedastic errors, which permits 

estimation of variance effects. Estimates of the parameters of f() give the average effect of 

the independent variables on yield, while h() gives the effect of each independent variable 

on the variance of yield as follows 

 

),()( XfYE   and ),()var( 2 XhY        (3) 

 

. The interpretation of the signs and magnitudes on the parameters of h() are 

straightforward. If the marginal effect on yield variance of any independent variable is 

positive, then increases in that variable increase the standard deviation of yield, while a 

negative sign implies increases in that variable reduces the yield variance. Cobb Douglas and 

linear production form are chosen for the average yield function, f(X). The functional forms 

are consistent with the Just and Pope postulates which is an additive interaction between the 

average and variance functions. 

the basic model in linear form is specified as:  
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Where itY   is the crop output in region i  at time t ; kitX  is the input quantity of factor k  in 

region i at time t , and kjj ........1,0,   ,, are the parameters to be estimated. mitX  denotes a 

factor which can influence the risk level and m is the corresponding coefficient.   is a 

stochastic disturbance term following the standard normal distribution. Thus, the expected 

output (often called the mean output) and the variance of output are determined by separate 

functions, which can algebraically be denoted as 
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Given the assumption that production risk in this framework takes the form of 

heteroskedasticity in the production function, the second term on the right-hand side of 

equation (4) can be interpreted as a heteroskedastic error term for the purpose of estimation. 

The difference between the linear and the Cobb Douglas functional forms is that the variables 

in the latter are expressed in logarithmic form. The better functional form for each crop 

depends on the results of the diagnostic tests, namely, Wald chi square, log-likelihood, 

Akaike Information Criteria (AIC) and Bayesian Information Criteria. 

The two commonly used approaches for estimating equation (5) are (i) Feasible Generalized 

Least Square (FGLS) suggested by Just and Pope (1979) and (ii) Maximum Likelihood 

Estimation (MLE) introduced by Saha, Havenner and Talpaz (1997). Under a small sample, 

the MLE has been proven to provide better efficient estimates when compared with FGLS 

(Saha et.al; 1997). The log-likelihood function is  
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3.2 Time Series Estimation 

 

An assumption of the production model is that the variables used are stationary. Deterministic 

and stochastic trends in variables can introduce spurious correlations between the variables, 

because the errors in the data-generating-processes for different series might not be 

independent (Granger and Newbold, 1974). The solution to these problems is to first test for 

stationarity of the variables. Non-stationary variables can be differenced once and retested. If 

the differenced versions are stationary, the variables are said to be integrated of order one or 

I(1). If they are Stationary at levels, then the time series are integrated of order zero or I(0). 

Regressions on stationary variables may satisfy ideal conditions, and inferences on a 

deterministic time trend can be made safely. There are several versions of these so-called 

panel unit root tests due to Im, Pesaran, and Shin (1997), Levin and Lin (1992, 1993) and 

Hadri Z. Im et.al; 1997 was used in this study. The test is applied to each variable, taking the 

whole panel at once. In 1997, Im et al. show that the test has a better finite sample 

performance than other approaches. The test is valid when region regressions are serially 

uncorrelated and normally and independently distributed across regions. As long as the 

number of regions is large relative to the number of time period, the test statistic is normally 

distributed. For cassava, the data is made up of 726 observations with 22 years of data across 

33 states in the country. There are 748 observations for maize with 22 years of data across 34 

states of the federation.  

Given that the yield or weather variable is a stochastic first order auto regressive process for 

region i in time t, 

ittiiiit YY   1,   i = 1, …….., N; t = 1, …………….., T,   (7) 

 

Where itY  and it  are independently and identically distributed across region i and time t. 

The null hypothesis of a unit root in (7) is tested as 

Ho: 0i  for all i. 

 

The models (unit roots and MLE) were estimated for each of the major staple crops in 

Nigeria. As the production function is specified in a log-linear way, the coefficient estimates 

showed the elasticities of each crop output with respect to the respective input factors.  

 

 

 

 

3.3 Variable Measurement 

 

Extreme Temperature 

 

In this paper, heat index is used as the indicator of extreme temperature. The heat index is 

defined as the number of days per month with maximum temperature exceeding a certain 

threshold
*

T , e.g. *

max
T T while heat-wave is defined as a continuous period (2 days or more) 

with daily maximum temperature exceeding 30
o
C. For this study, all the approaches will be 

tried to find out which one explain changes in crop yield in Nigeria.  
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Extreme Precipitation 

 

Precipitation (P) was measured as the accumulated total over the crop growing season, 

measured in centimeters. To compute extreme events for precipitation the number of days 

which have 95-percentiles of the daily precipitation was used. 
 

3.4 Sources of data 

 

The yield data are obtained from the official records of each state Agricultural Development 

Programme. The data are available for all states in the country from 1991 to 2012. This is 

because about half of the states in the country were created in 1991. The climate data were 

purchased from National Meteorological Agency in Lagos Nigeria for all the 32 weather 

stations across all the states in the country. The data consist of daily observations of 

maximum temperature (Tmax), minimum temperature (Tmin), and  precipitation from 

January 1, 1981 to December 31, 2012.  

 

 

 

 

 

 

4.0 Results and Discussion 

 

4.1 Description of the Dataset 

 

This section describes the yield, and weather data (temperature and rainfall) l used in the 

analysis. The weather data in each state are matched up with the yield of each crop over the 

particular crop growing season. The growing seasons for the selected crops are shown in 

Table 1.   The growing seasons vary, depending on whether the crop is grown in the northern 

or southern part of Nigeria. In addition, maize, rice, groundnut and melon have two growing 

seasons in the country.  

 

 

Sorghum       

S. Corn        

N. Corn         

2
nd

  Corn          

Millet         

S. Rice       

N. Rice       

S. 2
nd

 

Rice  

        

N. 2
nd

 

Rice 

      

N. Cotton       

E. Cotton       

S. Cotton      

N. Gnut       
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Table 1: Growing 

seasons of staple 

crops in Nigeria 

Note: “S” stands 

for southern part, 

“N” stands for 

northern part, “2
nd

 

“ means second 

season and “Gnut” 

means groundnut 

 

The temperature 

threshold used to 

construct the hot 

day heat index for various crops are  

shown in Table 2. For the cereals, the threshold is 35
o
C while for tubers, it is 40

o
C. The crop 

with the lowest threshold is melon (30
o
C). 

 

Table 2: Temperature Threshold for Staple Crops in Nigeria 

 

 

 

 

 

 

 

 

 

 

Sources: Luo 2011 

Production functions were estimated for the first growing seasons in respect of maize, melon 

rice and groundnut. This is because of data inconsistencies and scarcity. 

Fig 1 above shows the descriptive statistics of the average yield of staple crops in Nigeria 

between the period of 1991 to 2012. The graph shows that over the entire analysis period, 

yam has the highest yield and exhibits an upward trend. It is followed closely by cocoyam 

and cassava. The result shows that root and tuber crops have an edge over all other staple 

crops in Nigeria. This may be due to higher demand and favourable climatic conditions. The 

yield of other crops is less than 3 tons per hectares over the analysis period. 

S. Gnut        

Yam   

Cocoyam      

Cassava  

Melon          

2
nd

 Melon           

Cowpea         

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
CROP Minimum 

Temperature 

Maximum 

Temperature 

Minimum 

Rainfall 

Maximum   

Rainfall 

Rice 10 35 600 1000 

Maize 15 35 500 800 

Sorghum 10 35 450 650 

Millet 10 35 450 650 

Yam 20 40 1200 2000 

Groundnut 10 35 600 1250 

Cotton 10 40 500 1200 

Melon 15 30 400 700 

Cassava 15 40 800 1200 

Cocoyam 15 40 1250 2200 

Cowpea 10 32 400 750 
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Figure 1: Average Yield of Staple Crops in Nigeria (1991 - 2012) 

 

 The descriptive statistics for the crops over the analysis period are shown in appendix A, The 

total number of observation used for data analysis varies from 264 for cotton to 814 for rice 

over the analysis period (1991-2012). The difference is a reflection of the number of states 

producing the crops. For instance, cassava is grown in 33 states while rice is grown in 34 

states. This translates to 726 and 748 observations for cassava and rice respectively over the 

22 years considered for the analysis. The mean yield over the period is generally higher for 

tuber crops (cassava, cocoyam and yam) than other crops. The mean yield for cassava, for 

instance, is 11.61 tonnes/ha while it is 1.85 for maize.  

The number of days with extreme temperature and rainfall vary from crop to crop. The 

average number of days with exposure to heat above the temperature threshold is 6.25 for 

cassava, 44.60 for cowpea, and 72.89 for rice. The number of days with extreme rainfall for 

the crops is 17.79, 5.45 and 14.39 for cassava, cowpea and rice respectively.  

 

 

 

4.2 Time Series Properties of the Regression Variables  

 

In 1997, Im et al. introduced a series of unit root test statistics in heterogeneous panel 

regression to establish the stationarity of variables.  The LM bar test is based on the mean of 

the individual unit root statistics. The test is valid when the errors in the region regression are 

serially correlated, and normally and independently distributed across region. Under these 

circumstances LM-bar is distributed as standard normal as long as the number of region is 

large relative to the number of time periods. Under the assumption of serially uncorrelated 

errors, the LM-bar statistics used to test this null hypothesis is define by 
LML

   tTNT VarELMN  /
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LM- bar is the simple average of region Lagrange Multipliers. This avoids possible spurious 

correlation between variables and allows the establishment of valid relationship. 

  The table above shows the results from applying the panel unit root test procedure to all 

individual variables of yield, heat index rainfall and 95 percentiles of rainfall. 

Table 3 shows the results from applying the panel unit root test procedure to all individual 

variables of yield, hot day heat index, rainfall and 95 percentiles of rainfall. The Table shows 

that all the variables are stationary at levels for each crop. In other words, they are integrated 

of order zero I(0), thereby rejecting the null hypothesis of a unit root test. The tests reject the 

hypothesis of a unit root in all the variations of IPs tested. The interest of the study is that 

stationarity of all the variables are used in the panel production function model to avoid 

possible spurious correlation between variables and allows valid result 

 

 

 

 

 

 

 

 

 

  Table 3: IPS Panel Unit Root Test 

No- Serial  

Correlation 

Yield Heat Rain Rain95 

Cassava -2.607* -3.765 -3.390* -3.983* 

Cocoyam -2.359* -3.540* -3.235* -3.787* 

Cotton -2.527* -3.873* -4.211* -4.432* 

Cowpea -2.325* -3.764* -4.353* -4.826 

Groundnut  -3.902* -3.534* -3.688* -4.349* 

Maize  -2.077* -4.752* -3.535* -3.812* 

Millet -2.887* -3.539* -3.895* -4.429* 

Rice  -2.659* -3.940* -3.772* -4.274* 

Sorghum -2.403* -3.338* -3.776* -4.238* 

Yam -3.691* -3.910* -3.596* 3.979* 

Melon  -2.882* -3.759* -3.172* -3.744* 

Serial correlation Yield  Heat Rain Rain95 

Cassava -1.687* -6.757* -8.052* -11.662* 

Cocoyam 0.409* -7.697* -6.350* -8.098* 

Cotton -1.011* -6.176* -8.053* -9.101* 

Cowpea -0.812* -3.765* -13.128* -16.642* 

Groundnut  -10.412* -7.136* -8.211* -10.911* 

Maize  1.569* -9.073* -11.724* -11.454* 

Melon -3.101* -6.378* -5.322* -12.184* 

Millet -3.428* -6.801* -8.699* -11.449* 

Rice -3.109* -10.30* -9.670* -10.898* 

Sorghum -0.732* -6.513* -8.323* -11.680* 

Yam -9.018* -10.681* -8.279* -10.934* 

Correlation 

across groups 

Yield Heat Rain Rain95 

Cassava -2.284* -4.051* -3.362* -3.549* 
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Note:  This table report three versions of Im et al.’s LM-bar test statistics. “Serial correlation” statistics are robust to 

error term serial correlation, while “correlation across groups” statistics are robust to serial correlation in the cross-

section dimension  

Key:  * Null hypothesis of non-stationary is rejected with 99% confidence.  

 

4.3  Just and Pope Modelling of the Crop Yield and Variability Functions 

Two specifications of the production function are tested, namely, linear and Cobb- Douglas 

production functions. The value of Akaike Information Criteria (AIC), Bayesian Information 

Criteria (BIC), Wald and Log likelihood are better in the Cobb Douglas (CD) result for all the 

crops, hence the CD results are discussed. The Cobb Douglas and Linear models are 

estimated using Maximum Likelihood Estimation (MLE) approach. The optimization 

procedure in STATA 11.2 program is employed to obtain the estimates. The estimated results 

show the effects of extreme weather variables on the average and the variability of crop yield. 

Regional dummies are dropped in the equations because most of them are insignificant. This 

might be because yield variability among regions is not quite different. The time trend 

variable is included to describe the technological process. The estimation results for the 

function are shown in appendix B, Table 1 to 11. The coefficients of the variables from the 

CD are interpreted as the direct elasticities. 

 Extreme temperature is negatively related to the average yield of cassava, cocoyam, cotton, 

millet rice, sorghum, yam and maize. A 1% rise in extreme temperature decreases the average 

cassava yield by 0.05%. For cocoyam, the extreme temperature elasticity is 0.02. This same 

value also applies for rice and yam which yield decreases by about 0.02% with 1% increase 

in extreme temperature. An increase in extreme temperature by 1% decreases the yield of 

millet by 0.007% while the extreme temperature elasticity of sorghum is found to be 0.03.  

For maize, a 0.01% decline in yield results from a 1% increase in extreme temperature. On 

the contrary, extreme temperature still has a positive influenced on the yield of groundnut, 

cowpea and melon. A 1% increase in in temperature increases groundnut, cowpea and melon 

yields by 0.0006, 0.031 and 0.31 % respectively. The crops are predominantly grown in 

Northern part of Nigeria. 

Rainfall is also observed to have negative effects on cassava, rice and sorghum. It is noted 

that rainfall elasticity for these crops are 2.17, 5.11 and 2.52 respectively which implies an 

increase in rainfall by 1% will decrease the yield of the selected crops by 2.17, 5.11 and 

2.52% respectively. For other crops, a positive correlation exists between extreme rainfall 

and their yields. In respect of the effects of total amount of rainfall over each crop growing 

season, the effect is negative for cotton and millet, insignificant for sorghum, yam, maize and 

melon and positive for cassava, cocoyam, groundnut and rice. 

 It is noteworthy that both temperature and precipitation enlarge the yield variability. 

The coefficient for temperature is statistically significant in both equations. A 1% rise in 

extreme temperature increase yield variability of cassava, cocoyam, groundnut, rice and 

maize by 4.8, 8.37, 11.42, 2.58 and 4.7% respectively. It has a negative effect on millet yield 

Cocoyam -2.753* -3.744* -3.150* -2.575* 

Cotton -2.462* -4.662* -4.215* -2.419* 

Cowpea -2.518* -4.974* -4.323* -3.868* 

Groundnut  -3.969* -3.193* -3.557* -4.431* 

Maize  -2.159* -4.527* -3.815* -4.911* 

Melon -3.073* -4.239* -3.214* -3.133* 

Millet -2.976* -4.515* -3.908* -3.104* 

Rice  -3.609* -4.209* -3.461* -3.837* 

Sorghum -2.577* -4.312* -3.673* -3.450* 

Yam -4.933* -4.303* -3.630* 3.952* 
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variability which decreases by 6.06% with a 1% rise in temperature. A 1% increase in 

extreme rainfall causes cassava, cocoyam, groundnut, and maize yield variability to increase 

by 5.25, 1.84, 3.18 and 6.33%. Altogether, it is expected that this crops yield variability may 

increase by about 2 - 6.5% when both temperature and rainfall increases by 1%. The increase 

crop yield variability can result in wide fluctuations in crop production and could make price 

unstable. 

 

5.0 Concluding Remark 

 

The tests in this paper used extreme weather indices to measure the impact of weather on 

crops’ yield and their variability. The approach is an improvement over the direct use of 

weather variables in crop yield response regressions. The empirical results show that the two 

extreme climate variables have significant impact on the yield and the variability.  This is 

expected to have some implication on planned climate adaptation initiatives. 
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Appendix A: Descriptive Statistics 

 

Cassava 

 

Variable Obs Mean Std. Dev. Min Max 

      

  

  

Yield 726 11.60969 5.537916 1.085 43.503 

Heat 726 6.249311 14.1735 0 71 

Rain 726 1495.103 739.4782 0 4243.1 

rain95 726 17.78512 6.530615 0 56 

            

 

Cocoyam 

 

Variable Obs Mean Std. Dev. Min Max 

      

  

  

Yield 462 7.567429 8.164548 0.008 50.849 

Heat 462 16.83117 41.12087 0 245 

Rain 462 1508.325 649.9735 441.7 3522.9 
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rain95 462 8.937229 5.956673 0 28 

 

Cotton 

 

Variable Obs Mean Std. Dev. Min Max 

      

  

  

Yield 264 1.633527 1.27486 0.189 5.454 

Heat 264 19.47727 34.33407 0 235 

Rain 264 939.4057 290.5291 0 1789.4 

rain95 264 15.44697 5.483212 4 53 

 

Cowpea 

 

Variable Obs Mean Std. Dev. Min Max 

      

  

  

Yield 704 0.752692 0.439484 0.057 4.741 

Heat 704 44.60085 64.70332 0 1521 

Rain 704 603.3238 327.3771 0 1931.7 

rain95 704 5.454545 4.660378 0 62 

            

 

 

 

 

Groundnut 

 

Variable Obs Mean Std. Dev. Min Max 

      

  

  

Yield 660 0.856358 0.273253 0.069 3.172 

Heat 660 34.46061 39.72336 0 214 

Rain 660 1052.662 426.2183 0 2937.9 

rain95 660 10.22424 4.462763 1 47 

 

Maize 

 

Variable Obs Mean Std. Dev. Min Max 

      

  

  

Yield 814 1.852947 1.101431 0.141 7.955 

Heat 814 43.30958 245.5027 0 6936 

Rain 814 1065.4 468.7166 0 2937.9 

rain95 814 10.78624 6.109981 0 47 

            

 

Melon 

 

Variable Obs Mean Std. Dev. Min Max 
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Yield 440 0.47598 0.23895 0.087 1.299 

Heat 440 84.21818 44.80759 0 885 

Rain 440 553.153 340.0819 0 1787.6 

rain95 440 6.077273 3.109751 0 16 

            

 

Millet 

 

Variable Obs Mean Std. Dev. Min Max 

      

  

  

Yield 418 1.163593 0.471523 0.071 3.857 

Heat 418 26.77033 33.06124 0 155 

Rain 418 780.8227 245.6211 0 1562.5 

rain95 418 7.710526 3.603879 0 36 

 

 

 

 

 

 

Sorghum 

 

Variable Obs Mean Std. Dev. Min Max 

      

  

  

Yield 418 1.163593 0.471523 0.071 3.857 

Heat 418 26.77033 33.06124 0 155 

Rain 418 780.8227 245.6211 0 1562.5 

rain95 418 7.710526 3.603879 0 36 

 

Yam 

 

Variable Obs Mean Std. Dev. Min Max 

      

  

  

Yield 594 12.06839 7.080928 0.98 120.349 

Heat 594 7.882155 34.24645 0 268 

Rain 594 1677.128 756.5424 0 3854.5 

rain95 596 15.62416 6.864084 0 37 

 

Rice 

 

Variable Obs Mean Std. Dev. Min Max 

      

  

  

Yield 748 1.942406 1.257582 0.18 17.083 

Heat 748 72.8877 54.56419 0 196 

Rain 748 469.7096 351.9039 0 2361 
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rain95 748 14.39037 7.116548 0 47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B: Results of the Production Function Estimate Using MLE Approach 

 

Table: 1 Cassava estimation result 

 

 Cobb Douglas function Linear function 

Variable Coefficient Std. Err. Z Coefficient Std. Err. Z 

Mean       

Heat index -0.046** 0.008 -5.75 -0.079** 0.020 -3.92 

Rain index -0.092** 0.042 -2.17 0.001** 0.001 3.9 

Rainfall 0.191** 0.042 4.52 -0.059** 0.031 -1.92 

Trend 0.011** 0.002 4.9 0.140** 0.028 4.85 

_cons 0.953** 0.273 3.49 10.011** 0.664 15.08 

Std dev.       

Heat index 0.027** 0.005 4.8 0.036** 0.016 2.24 

Rain index 0.143** 0.027 5.24 -0.001** 0.0001 -4.49 

Rainfall -0.276** 0.028 -9.65 0.048* 0.028 1.69 

Trend 0.001 0.001 0.82 0.046** 0.018 2.52 

_cons 2.148** 0.205 10.43 4.997** 0.613 8.14 

Log 

Likelihood 

-492.776**   -2205.38**   

Wald Chi2 123.52**   71.96**   

AIC 1005.552   4430.752   

BIC 1051.386   4476.628   

No of Obs 726   726   
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Table 2: Cocoyam estimation result 

 

 Cobb Douglas 

function 

 Linear function  

 Coef. Std. Err. Z Coef. Std. Err. Z 

Mean       

Heat index -0.020* 0.011 -1.75 0.051** 0.020 2.53 

Rain index -0.106 0.106 -1 0.001* 0.001 1.56 

Rainfall 0.362* 0.182 1.99 -0.066 0.062 -1.07 

Trend 0.001 0.003 0.31 0.027 0.021 1.31 

_cons -0.765 1.139 -0.67 5.202** 0.569 9.14 

Std dev.       

Heat index 0.083** 0.010 8.37 0.154** 0.014 11 

Rain index 0.160* 0.087 1.84 -0.0008* 0.001 -1.73 

Rainfall -0.550** 0.157 -3.49 0.049 0.051 0.96 

Trend 0.001 0.002 0.59 0.049** 0.012 3.95 

_cons 4.499** 0.979 4.6 2.711** 0.389 6.96 

Log 

Likelihood 

-463.37**   1260.8**   

Wald Chi2 18.42**   9.64**   

AIC 946.747   2541.605   

BIC 987.972   2582.961   

No of Obs 462   462   

* means significant at 10% level; ** means significant at 5% level 
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 Table 3: Cotton estimation result 

 

 Cob Douglas  Linear  

 Coef. Std. Err. Z Coef. Std. Err. Z 

       

Mean       

Heat index -0.010 0.043 -0.24 Heat 0.004 0.004 

Rain index 0.155 0.169 0.92 Rain -0.001 0.0003 

Rainfall -0.571** 0.2253 -2.54 rain95 0.035 0.020 

Trend 0.002 0.008 0.25 trend 0.015 0.011 

_cons 3.706** 1.3822 2.68 _cons 1.779 0.384 

       

Std Dev.       

Heat index 0.047* 0.031 1.49 Heat 0.010 0.004477 

Rain index -0.023 0.141 -0.16 Rain -0.0004 0.000255 

Rainfall -0.111 0.162 -0.69 rain95 0.039 0.017912 

Trend 0.007 0.005 1.44 trend -0.007 0.008006 

_cons 1.265 1.037 1.22 _cons 0.897 0.350385 

Log 

Likelihood 

-184.626   -422.089   

Wald Chi2 10.17   15.77   

AIC 465.654   864.1785   

BIC 389.252   899.938   

No of Obs 264   264   
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Table 4: Groundnut estimation result 

 

 Cob douglas  Linear  

 Coef. Std. Err. Z Coef. Std. Err. Z 

       

Mean       

Heat index 0.001* 0.000334 1.84 -0.017* 0.0094* -1.82 

Rain index -0.009 0.010 -0.48 0.034 0.0256* 1.36 

Rainfall -0.0004 0.002 -0.2 -0.085* 0.044* -1.94 

Trend 0.0006 0.001 0.52 0.004** 0.0019** 2.06 

_cons 0.842** 0.033 25.51 0.311 0.297 1.05 

       

Std Dev.       

Heat index 0.002** 0.000223 11.42 0.050** 0.005** 9.01 

Rain index 4.25E-

05** 

1.34E-05 3.18 0.012 0.019 0.64 

Rainfall 0.0008 0.0019 0.51 0.040* 0.025* 1.61 

Trend -0.004** 0.0008 -5.5 -0.004** 0.001** -3.18 

_cons 0.152** 0.020293 7.51 -0.092 0.154 -0.6 

Log 

Likelihood 

53.993**   53.993**   

Wald Chi2 5*   8.71*   

AIC 87.986**   285.439**   

BIC 43.064**   328.610**   

No of Obs 660   660   
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Table 5: Millet estimation result 

 

 Cobb Douglas  Linear  

 Coef. Std. Err. Z Coef. Std. Err. Z 

       

Mean       

Heat index -0.007 0.0073 -1 -0.001* 0.0006 -1.93 

Rain index -0.045 0.043 -1.06 0.0002** 0.0001 2.16 

Rainfall 0.149** 0.072** 2.07 -0.004 0.003 -1.34 

Trend 0.004* 0.003* 1.57 0.007* 0.004 1.92 

_cons -0.872** 0.456* -1.91 0.982** 0.088** 11.12 

       

Std Dev.       

Heat index -0.032** 0.005 -6.06 -0.001** 0.0006** -2.37 

Rain index 0.045 0.040 1.25 9.47E-05 7.07E-05 1.34 

Rainfall -0.106** 0.046 -2.28 -0.009** 0.003* -3.49 

Trend 0.008** 0.0018 4.1 0.009** 0.002** 3.98 

_cons 0.959** 0.284 3.37 0.390** 0.074** 5.24 

Log 

Likelihood 

-

203.81** 

  260.61**   

Wald Chi2 12.04**   19.47**   

AIC 427.63**   541.21**   

BIC 467.89**   581.57**   

No of Obs 414   414   
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Table 6: Rice estimation result 

 

 Cob douglas  Linear  

 Coef. Std. Err. Z Coef. Std. Err. Z 

       

Mean       

Heat index -0.024** 0.008** -2.96 -0.004** 0.000801 -4.92 

Rain index -0.156** 0.030** -5.11 0.001** 0.000179 4.79 

Rainfall 0.170** 0.024** 7.01 -0.015** 0.004838 -3.09 

Trend 0.009** 0.003** 3.35 0.0153** 0.005072 3.03 

_cons -0.113 0.162 -0.7 1.890*8 0.146567 12.9 

       

Std, Dev.       

Heat index 0.017** 0.006** 2.58 -0.004** 0.00053 -8.43 

Rain index 0.034* 0.022** 1.48 0.0008** 0.000124 6.97 

Rainfall 0.052** 0.017** 3.01 -0.007** 0.003027 -2.62 

Trend 0.005** 0.002** 2.62 0.0008 0.003397 0.26 

_cons -0.008 0.114 -0.08 1.133** 0.106024 10.69 

Log 

Likelihood 

-

539.168** 

  -

1063.46** 

  

Wald Chi2 121.15**   143.08**   

AIC 1098.335   2146.913   

BIC 1144.483   2193.087   

No of Obs 748   748   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7: Sorghum estimation result 

 

 Cob douglas  Linear  

 Coef. Std. Err. Z Coef. Std. Err. Z 
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Mean       

Heat index -0.033** 0.006 -5.3 -0.003** 0.0006 -4.54 

Rain index -0.130** 0.051 -2.52 -8.8E-05 8.93E-05 -0.98 

Rainfall 0.087** 0.069 1.26 -0.013** 0.004 -3.18 

Trend 0.005** 0.003 1.83 0.007** 0.003 2.1 

_cons -0.157 0.452 -0.35 1.514** 0.115 13.13 

       

Std, Dev.       

Heat index 0.004 0.004 0.99 0.0003 0.0005 0.62 

Rain index 0.021 0.039 0.55 -0.001** 6.38E-05 -2.51 

Rainfall -0.199** 0.049 -3.99 -0.008** 0.002 -3.18 

Trend 0.004* 0.002 1.96 0.005** 0.002 2.24 

_cons 1.650 0.310 5.31 0.632** 0.078 8.09 

Log 

Likelihood 

-

234.917** 

  -

307.267** 

  

Wald Chi2 51.03**   48.41**   

AIC 489.8337   634.5349   

BIC 531.1893   675.8905   

No of Obs 462   462   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8: Yam estimation result 

 

 Cobb douglas  Linear  

 Coef. Std. Err. Z Coef. Std. Err. Z 

       

Mean       

Heat index -0.023* 0.006 -3.37 0.031** 0.008112 3.83 
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Rain index -0.024 0.042 -0.57 -0.022 0.033236 -0.68 

Rainfall -0.008 0.051 -0.15 0.229** 0.044737 5.13 

Trend 0.0132** 0.003 4.49 -0.001 0.003302 -0.51 

_cons 2.295** 0.344 6.66 -1.888** 0.281471 -6.71 

       

Std Dev       

Heat index -0.003 0.005 -0.73 0.003 0.005 0.7 

Rain index 0.033 0.030 1.1 -0.032 0.023 -1.41 

Rainfall -0.041 0.044 -0.94 -0.097** 0.037 -2.57 

Trend 0.006** 0.002** 3.21 0.007** 0.002 3.37 

_cons 0.570** 0.283** 2.01 1.103** 0.229 4.81 

Log 

Likelihood 

-

345.736** 

  -

1946.08** 

  

Wald Chi2 30.79**   34.85**   

AIC 711.4715   3912.166   

BIC 755.1705   3956.035   

No of Obs 594   594   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9: Cowpea estimation result 

 

 Cobb douglass  

 Coef. Std. Err. Z 

    

Mean    

Heat index 0.031** 0.008 3.83 

Rain index -0.022 0.033 -0.68 

Rainfall 0.229** 0.044 5.13 
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Trend -0.001 0.003 -0.51 

_cons -1.888** 0.281 -6.71 

    

Std Dev    

Heat index 0.004 0.005597 0.7 

Rain index -0.032 0.023265 -1.41 

Rainfall -0.097** 0.037845 -2.57 

Trend 0.007** 0.002 3.37 

_cons 1.103** 0.229 4.81 

Log 

Likelihood 

-

507.993** 

  

Wald Chi2 34.17**   

AIC 1035.986   

BIC 1080.848   

No of Obs 656   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10: Maize estimation result 

 

 Cob douglas  Linear  

 Coef. Std. Err. Z Coef. Std. Err. Z 

       

Mean       

Heat index -0.010** 0.005 -2.04 0.307** 0.081 3.8 

Rain index -0.016 0.025 -0.63 0.046 0.048 0.97 

Rainfall 0.040 0.045 0.89 -0.037 0.043 -0.86 

Trend 0.007** 0.002 2.82 0.022** 0.004 5.08 

_cons 0.178 0.306 0.58 -2.329** 0.528 -4.41 
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Std Dev       

Lh 0.019** 0.00404 4.7 -0.071 0.062811 -1.13 

Lr 0.113** 0.017843 6.33 -0.027 0.035804 -0.77 

Lrn -0.162** 0.033712 -4.83 -0.072** 0.030663 -2.36 

Trend 0.0124** 0.001362 9.17 -0.0008 0.00313 -0.27 

_cons 1.179** 0.235673 5.01 1.345** 0.383785 3.51 

Log 

Likelihood 

-

521.867** 

  -

341.646** 

  

Wald Chi2 17.66**   49.66**   

AIC 1063.734   703.2921   

BIC 1110.467   743.9531   

No of Obs 791   791   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11: Melon estimation result 

 

 Cobb Douglas  

    

 Coef. Std. Err. Z 

    

Mean    

Heat index 0.307** 0.081** 3.8 

Rain index 0.0467 0.048 0.97 

Rainfall -0.037 0.043 -0.86 

Trend 0.021** 0.0043** 5.08 

_cons -2.329** 0.527** -4.41 

    

Std Dev,    

Heat index -0.071 0.062811 -1.13 
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Rain index -0.027 0.035804 -0.77 

Rainfall -0.072** 0.030663 -2.36 

Trend -0.0008 0.00313 -0.27 

_cons 1.345** 0.383 3.51 

Log 

Likelihood 

-

341.646** 

  

Wald Chi2 49.66**   

AIC 703.2921   

BIC 743.9531   

No of Obs 431   

 
 

 

 

 

 

 

 


