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Adoption of Drought Tolerant Maize Varieties under Rainfall Stress in Malawi 

Abstract 

This paper examines adoption of drought tolerant maize varieties under rainfall stress in Malawi 

using correlated random effects Probit and Tobit models with control function approach. 

Drought tolerant maize is a promising technology that has the capacity to help smallholder 

farmers adapt to drought risks. Using 2009, 2012 and 2015 data from six districts, results show 

adoption has increased from 46% in 2009 to 59% in 2015. The likelihood of adoption is 

significantly increased by drought with early droughts having greater impact (31%) than late 

droughts (20%). Early droughts are also associated with an increased acreage of land allocated 

to drought tolerant maize and quantity of seed planted. However lagged drought variables 

appear to negatively affect adoption. The possible explanation is that the years preceding the 

surveys were associated with good rains such that farmers responded by buying less of drought 

tolerant maize anticipating similar rainfall pattern. Another important driver of adoption is the 

farm input subsidy programme. However, while access to subsidised seed increases both 

adoption and intensity of adoption, previous year’s access has a negative impact. This suggests 

that the increased adoption is due to availability of cheap seed as opposed to farmers’ previous 

exposure to the varieties. This may indicate limited awareness on the benefits of drought tolerant 

maize varieties. This is also consistent with extension visits positively affecting adoption. Good 

extension messages and promotion of drought tolerant maize varieties should be improved to 

allow farmers make informed decisions.  

Key words: Drought tolerant maize, drought exposure, farm input subsidy programme, 

correlated random effects, Malawi  
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Introduction 

Recurrent extreme weather events such as droughts and floods undermine crop yields and 

aggregate production thereby reducing food availability and agricultural incomes especially 

among smallholder farmers in developing countries (Davies et al., 2009; Kassie et al., 2009; 

Kato et al., 2011; Pauw et al., 2011). Failure by farm households to adapt to such weather shocks 

worsens negative effects of these extreme weather events and inhibits further investment and 

economic growth both by households and national level (Kassie et al., 2014; Kassie et al., 2009; 

Kato et al., 2011; Nangoma, 2007). The extreme weather events kick start a knock-on effect that 

start from low production to food insecurity and local and national economic shock (Devereux, 

2007). Malawi is one of many countries in developing world greatly affected by negative 

impacts of weather extremes. In past two decades, the country has experienced several adverse 

climatic hazards that have led to severe crop losses, infrastructure damages and occasional 

displacement of people (Nangoma, 2007; Pangapanga et al., 2012; Pauw et al., 2010). The most 

recent shocks include droughts of 2004/05 and 2011/12 (Holden & Fischer, 2015; Holden & 

Mangisoni, 2013) and 2014/15 flash floods early in the growing season and droughts thereafter. 

 

Investing in agricultural production methods that boost farmers’ resilience against weather 

shocks through climate change adaptation and disaster risk reduction approaches is a key 

strategy to reduce negative impacts (Davies et al., 2009; Pangapanga et al., 2012). In a country 

with poor or missing markets for insurance and credit and little off-farm activities, adoption of 

agricultural management strategies that reduce production risks is the only realistic option for 

smallholder farmers (Kassie et al., 2014). Drought tolerant (DT) maize variety is one potential 

technology that has the capacity to help smallholder farmers adapt to drought risks. It is 

estimated that DT maize can produce up to 30% of their potential yield after six weeks of water 

stress, before and during flowering and grain-formation (Magorokosho et al., 2009; Mangisoni et 

al., 2011). In Malawi maize is life such that the absence of the commodity is synonymous to food 

insecurity (Katengeza et al., 2012). Production is predominantly rain fed and prone to frequent 

droughts which may result in 50% yield loss (Fisher et al., 2015).  

 

The government of Malawi has consequently taken a leading role in promoting and 

disseminating DT maize varieties through the farm input subsidy programme (FISP) and the 
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Agricultural Sector Wide Approach programme (ASWAp). Through the ASWAp, the 

government's long-term objective is to promote sustainable and climate-smart agriculture 

development (Asfaw et al., 2014) and shift from drought and flood prone farming systems to 

methods that improve farmers’ adaptive capacity, enhance resilience and resource use efficiency, 

increase crop yield and reduce yield variability in the face of weather extremes (Garrity et al., 

2010; Lipper et al., 2014). FISP has consequently been reported as a major determinant of DT 

maize adoption in Malawi (Holden & Fisher, 2015). Fisher et al. (2015) cited unavailability of 

seed and high seed price as barriers to adoption of DT maize emphasising the importance of farm 

input subsidy program in enhancing accessing to DT maize seed. 

 

Adoption of DT maize varieties has been previously studied (Fisher et al, 2015: Holden and 

Fisher, 2015).  Fisher et al. (2015) used cross sectional data from six countries in Africa where 

Drought Tolerant Maize for Africa (DTMA) project is promoting dissemination of drought 

tolerant maize varieties including Malawi while Holden and Fisher (2015) used three year panel 

data (2006, 2009 and 2012) for Malawi. These studies looked at general adoption of the DT 

maize varieties. We build on these two studies using three year panel data (2009, 2012 and 2015) 

for Malawi to examine adoption of DT maize varieties under rainfall stress conditions. We 

believe that exposure to drought condition and knowledge of the benefits of the DT maize 

varieties may trigger a change in farmers’ behaviour to adopt to the new varieties. Our data 

covers three important weather variations namely normal rainfall in 2009, early droughts in 2012 

and a combination of flash and riverine floods and late droughts in 2014/15. The paper addresses 

the following hypotheses: (1) Exposure to drought increases farmers’ likelihood of adopting 

drought tolerant maize varieties; (2) access to farm input subsidy program increases adoption of 

drought tolerant maize varieties; (3) past exposure to drought tolerant maize varieties increases 

adoption in the following years. 

 

Model Specification and Estimation Strategy  

Adoption methods 

Farmers’ adoption decision of DT maize is modelled as in Holden and Fisher (2015) based on 

three year panel data (2009, 2012 and 2015). The model is specified as follows: 
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𝐷𝑇𝑖𝑝𝑡 = 𝛼0 + 𝛼1𝑅𝑑𝑡 + 𝛼2𝐷𝑟𝑖𝑡 +  𝛼3𝑆𝑖𝑝𝑡 + 𝛼4𝐻𝑖𝑡 +  𝛼5𝑃𝑖𝑝𝑡 + 𝛼6𝐷𝑠𝑖𝑡 + 𝛼𝑖 + 𝜀𝑖𝑝𝑡  1 

 

where DTipt is the dependent variable and is a dummy on whether household i grew DT maize 

on plot p in year t or not. The explanatory variables captured as 𝑋𝑖𝑝𝑡 are defined as follows: Rdt 

is a vector of variables capturing rainfall stress (times of dry spells, times of early and late dry 

spells) in the farmer’ district d in year t. Drit is farmer i perception on exposure to drought in 

year t. Sipt is a vector of institutional variables such as a dummy for access to subsidized inputs 

and used them on the plot, visits by extension workers and whether farm household accessed 

input credit. Hit denotes household characteristics. Pipt controls for observable farm plot 

characteristics such as soil type, slope, fertility status, plot size and distance to plot from home 

while Dsi𝑡 controls for location variables (survey districts). αi captures unobservable time-

invariant characteristics of households and farms such as managerial ability and unobservable 

land quality. εipt is normally distributed error term and we assume is independent of 𝑋𝑖𝑝𝑡. 

Parameters in equation (1) can be estimated by either fixed effects (FE) Probit or correlated 

random effects (RE) Probit. The FE method removes the unobserved effect (𝛼𝑖) by time 

demeaning the data. The fixed effects Probit thus sweeps away all explanatory variables that are 

constant over time (Wooldridge, 2014). Again fixed effects estimation may cause incidental 

parameters problem especially when unobserved effects (αi) are taken as parameters to be 

estimated (Wooldridge, 2009). The alternative method is the random effects estimator. The 

traditional RE Probit model assumes that unobserved effects (αi) and explanatory variables (𝑋𝑖) 

are independent, i.e. 

𝐶𝑜𝑣(𝑋𝑖𝑡 , 𝛼𝑖𝑡) = 0, 𝑡 = 1, 2, … , 𝑇, & 𝑖 = 1, … , 𝑛      2 

and that αi is normally distributed, i.e.:  

𝛼𝑖|𝑋𝑖~𝑁(0, 𝜎𝛼
2)          3 

The validity of this unconditional normality depends on some restrictive assumptions but 

becomes more reasonable as T gets large (Wooldridge, 2009). Thus, Arslan et al. (2014) 

proposes testing the unconditional normality within conditional maximum likelihood (CMLE) 
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framework. The CMLE approach allows 𝛼𝑖 and 𝑋𝑖 to be correlated (Chamberlain, 1980; 

Wooldridge, 2010) assuming that 

𝛼𝑖|𝑋𝑖~𝑁(𝜑 + 𝛿𝑋̅𝑖 , 𝜎𝛾
2)         4 

where σα
2  is the variance of αiin the equation αi = |(φ + δXi̅ + γi)     

and  𝑋̅𝑖 ≡ 𝑇−1 ∑ 𝑋𝑖𝑡
𝑇
𝑡=1  is the 1 × K vector of time averages.  

This approach enables the paper to estimate partial effects of 𝑋𝑖 on response probability at the 

average value of 𝛼𝑖 (𝛾𝑖= 0). The approach also avoids incidental parameters problem. Assuming 

possible interdependency on adoption decisions of different technologies.  

 

Intensity of adoption 

We define intensity of adoption as the size of the plot in hectares (ha) under DT maize variety 

and the quantity of DT seed planted. With the possibility of a censored plot size and DT maize 

seed at plot level, we use correlated random effects Tobit to analyse the intensity of adoption. 

 

Let the size of land that is allocated to a DT maize variety by farmer i at time t be 𝐿𝑖𝑡. The 

unobserved effects Tobit model for a corner at zero for Lit can be specified as: 

𝐿𝑖𝑡
∗ = 𝑚𝑎𝑥 (0, 𝛼𝑋𝑖𝑡 + 𝜀𝑖𝑡 + 𝛼𝑖)       5 

𝐷(𝜀𝑖𝑡|𝑋𝑖𝑡 , 𝛼𝑖) = 𝑁(0, 𝜎𝜀
2)       6 

where the dependent variable (𝐿𝑖𝑡) is the size of the plot in ha (and quantity of DT maize seed 

planted on the plot) and the explanatory variables are as defined in equation 1(Wooldridge, 2010 

pp; 540-542). 

 

Study Areas, Data and Sampling Procedure 

The paper uses three-year panel data from six districts in Malawi namely Lilongwe, Kasungu, 

Chiradzulu, Machinga, Thyolo and Zomba. Agro-ecologically, Chiradzulu, Kasungu, Lilongwe, 

Machinga, and Zomba districts are located in medium altitude zone which enjoys high average 

rainfall ranging from 800 – 1,200 mm annually with an altitude of 1,000 to 1,500 metres above 

sea level although Machinga is partly drought-prone district (Katengeza et al., 2012; Mangisoni 
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et al., 2011). Thyolo district on the other hand belongs to the high plateaux and hilly areas which 

lie in an altitude over 1,500 above sea level and receives over 1,200 mm of rainfall annually. 

Agro-ecological and location variables affect adoption of agricultural technologies such as DT 

maize. Such variables capture variations in rainfall, soil quality, production potential, 

infrastructure development as well as availability of input and output markets (Doss & Doss, 

2006).  

 

The data is based on an original sample of 450 households surveyed in 2006 and 2007 and 376 in 

2009, 350 in 2012 and 2015 (Table 1). The initial sample was randomly selected following the 

2004 Integrated Household Survey Two (IHS 2). Data collection involves detailed farm plot 

level information measured with GPS on plot sizes of which a total of 1076, 1387 and 1281 plots 

are reported in 2009, 2012 and 2015, respectively. The plot is defined in this paper by Holden 

and Lunduka (2012) as a “uniform crop stand that received homogenous input treatment”. The 

quality of the data is better with minimal measurement errors because (1) data is collected from 

all farm households’ plots unlike larger surveys which normally collect data from one plot (2) all 

plots are measured with GPS as opposed to relying on farmers’ estimates which are prone to big 

errors (Holden & Mangisoni, 2013). This data is also of interest as it captures weather extremes 

namely, 2009 with good rains, 2012 early drought and 2015 flood and late drought. 

 

Table 1: Study areas 
District 2009 2012 2015 Total 

  Households Plots Households Plots Households Plots Households Plots 

Thyolo 50 145 47 162 47 168 144 475 

Zomba 41 115 76 264 79 272 196 651 

Chiradzulu 79 117 37 163 34 120 150 400 

Machinga 45 146 47 185 45 161 137 492 

Kasungu 90 356 82 388 80 331 252 1,075 

Lilongwe 71 197 61 225 65 229 197 651 

Total 376 1,076 350 1,387 350 1,281 1,076 3,744 

 

Descriptive Statistics: Dependent and Explanatory Variables 

The dependent variables: Drought tolerant maize varieties  

Presented in Table 2 are descriptive statistics for the variables. Plot level data was collected on 

maize varieties planted on the plot. Adoption is measured by whether an individual farm 
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household planted DT maize variety in at least one of the plots while intensity is measured by the 

area allocated to DT maize. Also included in intensity of adoption is the quantity of DT maize 

seed planted. We expect an increase in level of adoption over time especially after 2011/12 

drought, farmers should adopt more of DT maize as a response to drought shock. The continued 

implementation of farm input subsidy programme is also expected to further increase adoption. 

The issue of adoption is however subjective as it may depend on farmers’ perceptions. If farmers 

perceive drought tolerant maize as climate-smart then adoption may increase in response to 

drought shocks. Contrary, farmers may view DT maize as low yielding compared to other 

improved maize (OIM) varieties hence adoption may decrease over time. Availability and 

development of institutions such as agricultural extension services and credit markets also plays 

important roles in adoption decisions.  

Our results show 46% adoption of DT maize in 2009, 54% in 2012 and 59% in 2015. The results 

are as expected with an upward sloping over the survey years. The question however is whether 

the increase is due to farmers’ response to drought or other factors. Holden and Fisher (2015) 

reported that the increase in adoption is mainly due to farm input subsidy programme which has 

over the years disseminated DT maize varieties. The DT maize seed has been an integral 

component in the FISP package and this has made it easy for farmers to access the seed. In terms 

of plot area allocated to DT maize there is an increase from 0.224 ha in 2009 to 0.272 ha in 2015. 

For seed there is also a slight increase from 5.0 kilograms in 2009 to 5.6 kilograms in 2015.  
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Table 2: Definitions and summary statistics of variables by year 

Variables Description Year 

    2009 2012 2015 Mean 

Dependent variables 

DTmaize 1 if household adopted drought tolerant maize variety 0.456 0.538 0.587 0.531 

DTarea Area in ha under DT maize  0.224 0.257 0.272 0.253 

DTseed Quantity of DT maize seed in Kg 4.969 4.837 5.607 5.139 

Independent variables 

Drought variables 

Drought1yrFmr 1 =Farmers perceive drought occurred previous year 0.082 0.273 0.239 0.207 

Drought0yrFmr 1 =Farmers perceive drought occurred survey year 0.091 0.441 0.740 0.446 

Drought1yr  Times dry spells occurred (actual rainfall) previous year 2.219 1.280 2.736 2.048 

Drought0yr  Times dry spells occurred (actual rainfall) survey year  0.757 2.130 3.035 2.045 

Earlydrought Times early dry spells (actual rainfall) previous year 0.000 0.794 0.869 0.591 

Latedrought Times late dry spells (actual rainfall) in survey year 0.000 0.000 0.391 0.134 

Institutional variables 

Seedfisp1yr 1=Household received seed subsidy coupon previous year 0.337 0.598 0.696 0.561 

Seedfisp0yr 1=Household received seed subsidy coupon survey year 0.370 0.555 0.649 0.538 

Extension 1=Household was visited by an extension worker 0.474 0.149 0.290 0.290 

Creditinput 1=Household accessed farm input credit 0.105 0.063 0.091 0.085 

Plot characteristics 

Logplotdist Log(plot distance in km + 1) 5.455 5.755 6.278 5.848 

Landtenure 1 if operated by plot owner 0.913 0.947 0.931 0.932 

Sandy soil 1=Farmers perceive sandy soil 0.244 0.198 0.206 0.214 

Loam soil 1=Farmers perceive loam soil 0.479 0.542 0.673 0.569 

Clay soil 1=Farmers perceive clay soil 0.273 0.255 0.121 0.214 

Flat slope 1=Farmers perceive flat slope on plot 0.582 0.648 0.518 0.584 

Moderate slope 1=Farmers perceive moderate slope on plot 0.363 0.297 0.415 0.356 

Steep slope 1=Farmers perceive steep slope on plot 0.050 0.048 0.068 0.056 

High fertility 1=Farmers perceive high soil fertility on plot 0.178 0.208 0.087 0.158 

Medium fertility 1=Farmers perceive medium soil fertility on plot 0.612 0.679 0.705 0.669 

Low fertility 1=Farmers perceive low soil fertility on plot 0.204 0.102 0.208 0.167 

Plotsize(gps) Plot size measured by GPS (ha) 0.338 0.296 0.301 0.310 

Logplotsize Log(Plot size in ha) -1.424 -1.582 -1.592 -1.540 

Plotsize(farmer) Plot size (reported by farmer) (ha) 0.623 0.341 0.366 0.430 

Household demographic characteristics 

Age Age of household head (years) 46.88 51.06 48.94 49.15 

Education Education of household head (years) 4.572 4.983 4.838 4.817 

Family size Total family size (number) 5.554 5.468 5.715 5.578 

Sex 1 = If gender of household head is male 0.809 0.763 0.731 0.765 

Marital status 1 = If household head is married 0.765 0.731 0.679 0.722 

Flabour Family labour (no of persons) 2.614 2.870 2.623 2.706 

Hlabour Hired labour (no of persons) 0.915 0.817 1.297 1.023 
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Explanatory variables 

The choice of explanatory variables is based on our hypotheses, previous studies and available 

data. Such variables include (1) rainfall stress variables, (2) plot-level factors (e.g. plot size, 

perceived soil fertility, slope, soil type, and distance from home. (3) Household level factors (e.g. 

sex of household head, age, education, family size, family labour, hired labour, and marital 

status). (5) Institutional factors (e.g. access to extension, input credit, and farm input subsidy 

programme). 

Rainfall stress variables    

We define rainfall stress variables in this analysis as those capturing dry spells. Exposure to dry 

spells is a key variable in the analysis and we assess the extent to which the sampled households 

were exposed to dry spells in each of the survey years (2009, 2012, and 2015) as well as lagged 

variables. 74% of the farm households reported drought shock in 2015 while 44% reported 

drought shock in 2012. This represents severity of drought shock in 2015 and 2012 than in 2009. 

There is however an element of subjectivity in assessment of dry spell exposure using farm 

household perceptions (Holden & Quiggin, 2015; Holden & Fisher, 2015). This may result in 

endogeneity because more pessimistic farmers tend to overestimate the probability of a negative 

outcome and therefore perceive higher probability of drought shocks. These farmers might also 

be more risk-averse and more likely to adopt. We therefore constructed an objective drought 

measure using daily rainfall data from meteorological services department to test whether 

drought impact adoption of DT maize varieties. In 2015 dry spells occurred at least three times. 

A dry spell is defined as a period of 10 – 15 days with a total rainfall of less than 20mm 

following a rainy day of at least 20mm.  

Institutional variables 

Key institutional variables considered are agricultural extension services, credit access, and 

access to the Farm Input Subsidy Programme (FISP). Agricultural extension services may 

remain an important channel for agricultural technologies in Malawi. We measure access to 

extension services as a dummy variable on whether farm households were visited by an 

extension officer or not. On average 29% reported being visited by an agricultural extension 
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worker at least once in a growing season. In defining the credit access variable we used the Feder 

et al. (1990) approach which distinguishes between farmers who choose not to participate in 

credit markets and those who do not have access to credit. Credit-constrained farmers are those 

who need credit but are unable to get it while credit-unconstrained farmers are those who decide 

not to participate as well as those who need and are given. Only 35% are credit unconstrained. 

We, however, note that credit unconstrained may not be enough as farmers may access credit for 

different reasons, hence we consider only those who accessed credit for farming reasons (e.g. 

buying inputs). Only 8% accessed input credit. On subsidy, we find that the share of households 

receiving seed subsidy coupon increased from 37% in 2009 to 65% in 2015. We also included 

the lagged seed subsidy variable to assess whether previous access to DT maize seed can 

enhance adoption of the same in the following years. 

Plot level variables 

Plot-specific variables include, perceived soil fertility, slope, soil type, plot size, fertiliser used 

on plot, and distance from home. Plot distance from household residence is an important factor 

that can influence adoption of CSA practices. Longer distances increase transaction costs, for 

walking and monitoring hence less adoption (Kassie et al., 2015).  

Household characteristic variables 

Household level factors control for household heterogeneity and these include education of 

household head, age, sex, marital status, family size, family and hired labour. These variables 

may influence adoption decisions in countries such as Malawi which have high market 

imperfections and institutional failures (Kassie et al., 2015). Education increases understanding 

of shocks such as droughts and floods and the adaptive measures hence increases adoption 

(Katengeza et al., 2012; Mangisoni et al., 2011). The average educational attainment of 

household heads is 4.8 years of education in the sampled districts. The average age of the 

household head is 49 years while about 72% of the sample households are male-headed. In terms 

of family size, on average, there are five members in each of the sampled households with an 

active labour force of 2.7. An active labour force is an important variable to explain adoption 

decisions as some production activities require more labour. 
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Results and discussion 

DT maize adoption 

Table 3 are results of determinants of adoption of drought tolerant maize varieties. Our primary 

objective is to examine whether exposure to drought enhances adoption of DT maize. Farmers in 

Malawi were exposed to early droughts in 2012 and late droughts in 2015 in addition to dry 

spells in other years. The first Probit model (probit 1) uses two drought variables, namely, farmer 

perception dummy variable given a value of one if a farmer perceives drought occurred in a 

given year and a variable capturing number of times dry spells occurred in each of the three 

years and their lagged variables. Although the coefficients of the probit model were not different 

from the marginal effects, presented here are marginal effects. The results show a positive and 

significant relationship between farmers’ exposure to drought and adoption of drought tolerant 

maize varieties. Both the subjective (farmers’ perception) and objective drought variables 

increase the probability of adopting DT maize. This result is consistent with our expectation and 

the findings of Holden and Fisher (2015) that farmers who previously were exposed to drought 

are more likely to adopt DT maize as an adaptive mechanism. Ding et al. (2009) also reported 

that farmers’ experience with drought increases their likelihood of adopting conservation tillage 

systems.  

However lagged drought variables for both farmer perception and rainfall data are associated 

with negative impact on adoption. The possible explanation is that the years preceding survey 

years were normal years with no serious reported droughts. Therefore the drought tolerant maize 

varieties would not have been necessary as farmers expected a normal year as previous.    

The second probit (probit 2) expand the first model by replacing the aggregate drought variable 

with early and late dry spells. We define early drought as a period between December and early 

January which is planting time while late drought is a period between February and early March 

which is a period of maize flowering and grain formation. The early drought appears to have a 

greater impact on DT maize adoption than late drought. Farmers who are exposed to early and 

late drought are 31% and 20% more likely to adopt DT maize, respectively. The possible 

explanation is that early drought acts as early warning to farmers such that farmers are more 

likely to buy and plant maize varieties which are drought tolerant. Another explanation is that 
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early drought affects germination of maize forcing farmers to replant. Replanting implies farmers 

buying more of early maturing varieties to fit into the growing season as Malawi has a unimodal 

type of rainy season which ends by late March or early April. Although other hybrids are also 

early maturing, the 2012 experience shows that most farmers opt for DT early maturing maize 

varieties (Holden & Fisher, 2015) e.g. SC403 (Kanyani). The impact of drought on adoption of 

DT maize is also supported by the district dummy variables. Farmers in Machinga a drought 

prone district (Katengeza et al., 2012) are 35% more likely to adopt drought tolerant maize and 

likely to increase plot size planted with DT maize seed by 58% than farmers in Thyolo who 

receive more and stable rainfall.  

Tobit models are for intensity of adoption using land sizes (in hectares) allocated to drought 

tolerant maize and quantity of DT maize seed planted. In Tobit 1 we use the farmer perception 

variable of drought as well as early and late drought variables on land under DT maize. Tobit 2 

and Tobit 3 uses the control function approach on proportion of land and quantity of seed, 

respectively. The results are consistent with the probit results where exposure to drought is 

associated with likelihood of increasing acreage of land under DT maize as well as increasing 

quantity of seed planted. Early droughts are more likely to increase acreage of land allocated to 

drought tolerant maize by 33% and the quantity of drought tolerant maize seed bought by 86%. 

The paper also tests the impact of access to farm input subsidy programme on adoption of DT 

maize varieties. Access to FISP increases adoption by 34-37%. The results are in agreement with 

Holden and Fisher (2015) who reported FISP as a strongest driver of adoption of DT maize. 

However while access to seed subsidy input increases both adoption and intensity of adoption, 

previous year’s access has a negative impact on adoption. This suggests that the increased 

adoption is due to the availability of cheap seed as opposed to farmers’ previous exposure with 

the drought tolerant maize varieties. A plausible explanation is the lack of information on the 

benefits of the DT maize varieties. Fisher et al. (2015) reported that about 40% of small holder 

farmer did not grow DT maize varieties because of poor labelling of DT maize packages. There 

is yet to be a very clear labelling of DT maize varieties that provide enough information to 

farmers to make informed decision. This has been achieved in early maturing varieties like 

SC403 by SEEDCO that have used a symbol of a monkey to show speed and fast maturity of the 

early maize variety. 
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Visits by agricultural extension workers, flat slope, high soil fertility, are also associated with 

high adoption while distance to plot and plot sizes reduces the likelihood of adoption. The 

positive significance of extension visits confirms the importance of increased awareness of the 

varieties to enhance adoption. Controlling for household heterogeneity, the results show that 

education, age and being married are associated with less probability of adoption while 

household size and family labour increases the likelihood of both adoption and adoption 

intensity. Hired labour is also associated with the increased probability of allocating more land to 

DT maize cultivation as well as increasing DT maize seed. 
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Table 3: Correlated Random Effects Probit (marginal effects) and Tobit Models with Control Function Approach 

Variables 

Probit 1 

(b/se) 

Probit 2 

(b/se) 

Tobit (Plot size) 

(b/se) 

Tobit with CFA 

(b/se) 

Tobit with CFA 

(Quantity dt seed) 

(b/se) 

Drought variables 

Drought1yr (Times of dry spell occurrence previous year) -0.044* 

   

                

 

-0.020 

   

                

Drought0yr  (Times of dry spell occurrence survey year) 0.065*** 

   

                

 

-0.020 

   

                

Drought1yrFmr (1 if farmer perceives drought occurred previous year) -0.070 -0.170*** -0.103*** -0.246*** -0.440*** 

 

-0.060 -0.060 -0.030 -0.030 -0.060 

Drought0yrFmr (1 if farmer perceives drought occurred survey year) 0.353*** 0.211*** 0.158*** 0.385*** 1.009*** 

 

-0.050 -0.050 -0.030 -0.030 -0.050 

Early drought (Dec to early Jan) 

 

0.309*** 0.102*** 0.329*** 0.863*** 

  

-0.060 -0.030 -0.030 -0.060 

Late drought (Feb to early March) 

 

0.199** 0.100** 0.313*** 0.823*** 

  

-0.090 -0.050 -0.040 -0.080 

Institutional variables 

Access to seed subsidy previous year -0.101* -0.101* -0.058* -0.145*** -0.471*** 

 

-0.060 -0.060 -0.030 -0.030 -0.060 

Access to seed subsidy in survey year 0.375*** 0.341*** 0.130*** 0.399*** 1.099*** 

 

-0.060 -0.060 -0.030 -0.030 -0.060 

Extension visits 0.159*** 0.187*** 0.116*** 

 

                

 

-0.050 -0.050 -0.030 

 

                

Input credit -0.029 0.003 -0.088* -0.159*** -0.139*   

 

-0.080 -0.080 -0.050 -0.040 -0.080 

Plot characteristics 

Moderate slope -0.226*** -0.170*** -0.123*** -0.242*** -0.502*** 

 

-0.050 -0.050 -0.030 -0.020 -0.050 

Steep slope -0.403*** -0.240** -0.197*** -0.407*** -0.999*** 

 

-0.100 -0.110 -0.060 -0.050 -0.110 

Medium fertility -0.154** -0.149** -0.017 -0.160*** -0.492*** 

 

-0.070 -0.070 -0.040 -0.030 -0.060 

Low fertility -0.087 -0.096 -0.054 -0.130*** -0.331*** 

 

-0.090 -0.090 -0.050 -0.040 -0.080 

Loam soil -0.015 0.049 0.048 0.119*** 0.391*** 

 

-0.060 -0.060 -0.030 -0.030 -0.060 

Clay soil -0.048 0.018 0.099** 0.148*** 0.105 

 

-0.070 -0.070 -0.040 -0.030 -0.070 
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Log plot distance -0.050*** -0.051*** -0.019** -0.074*** -0.210*** 

 

-0.010 -0.010 -0.010 -0.010 -0.010 

Log plot size 0.002 -0.003 0.064*** 0.091*** 0.061**  

 

-0.030 -0.030 -0.010 -0.010 -0.030 

Household characteristics 

Education -0.020*** -0.019*** -0.004 

 

                

 

-0.010 -0.010 0.000 

 

                

Sex of household head (1=male) 0.507*** 0.483*** 0.216*** 

 

                

 

-0.100 -0.100 -0.050 

 

                

Household size 0.041*** 0.045*** 0.036*** 

 

                

 

-0.010 -0.010 -0.010 

 

                

Age  -0.012* -0.011 -0.004 

 

                

 

-0.010 -0.010 0.000 

 

                

Age squared 0.000** 0.000* 0.000 

 

                

 

0.000 0.000 0.000 

 

                

Marital status (1=married) -0.480*** -0.464*** -0.232*** 0.000                 

 

-0.090 -0.090 -0.050 0.000                 

Family labour 0.038** 0.048*** 0.032*** 0.075*** 0.171*** 

 

-0.020 -0.020 -0.010 -0.010 -0.020 

Hired labor 0.024** 0.020** 0.009* 0.027*** 0.075*** 

 

-0.010 -0.010 -0.010 0.000 -0.010 

Location variables (district dummies) 

Zomba 

 

-0.021 0.034 0.026 0.274**  

  

-0.120 -0.070 -0.060 -0.120 

Chiradzulu 

 

0.127 0.024 0.210*** 0.681*** 

  

-0.100 -0.060 -0.050 -0.100 

Machinga 

 

0.354*** 0.165*** 0.581*** 1.887*** 

  

-0.110 -0.060 -0.050 -0.110 

Kasungu 

 

0.051 0.159*** 0.301*** 0.770*** 

  

-0.090 -0.050 -0.040 -0.090 

Lilongwe 

 

-0.103 -0.006 -0.081 -0.238*   

  

-0.120 -0.070 -0.060 -0.120 

Error from adoption equation 

   

1.287*** 3.437*** 

    

-0.030 -0.070 

Constant 0.330 0.171 -0.147 -0.808*** -1.436*** 

 

-0.240 -0.250 -0.140 -0.100 -0.200 

Prob > chi2 0.000 0.000 0.000 0.000 0.000 

Number of household (plot) observations 3300 3300 3300 3300 3300 
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Conclusions and implications 

Weather extremes especially recurrent droughts threaten agricultural productivity and food 

security in Malawi whose population largely depend on maize for food. Drought tolerant maize 

is one promising technology to minimise the grinding impact of drought. In recent times several 

drought tolerant maize varieties have been developed by national research institutions in 

collaboration with CIMMYT researchers and have been disseminated across the country. 

Examining determinants of adoption of this promising technology is increasingly becoming 

important. Following the work of Holden and Fisher (2015) and Fisher et al. (2015) this paper 

has used correlated random effects probit and tobit models with control function approach to 

understand adoption of DT maize in Malawi under rainfall stress. The data is from farm 

households in six districts collected in 2009, 2012 and 2015 using a sample size of 376 in 2009 

and 350 for 2012 and 2015. The year 2009 is used as control since no serious drought shock was 

reported.  

Holden and Fisher (2015) reported a substantial increase in adoption of DT maize from 2006 to 

2012, and this study also finds a significant increase from 46% in 2009 to 59% in. The paper has 

found strong evidence of the impact of drought on increased adoption. This implies that farmers 

learn from exposure to drought and respond by adopting risk reducing technologies such as DT 

maize varieties. Farmers in drought prone districts such as Machinga are more likely to adopt DT 

maize varieties than their counterparts in districts with high and stable rainfall such as Thyolo. 

Lagged variables of drought are however associated with less likelihood of adoption. This could 

be due to the fact that the years preceding the surveys were associated with normal rains such 

that farmers responded by adopting less of DT maize in anticipating of similar good rains. 

Farmers may thus respond by adopting more of improved hybrids as opposed to DT maize.  

Another important driver of adoption also reported by Holden and Fisher (2015) is the farm input 

subsidy programme. However while access to seed subsidy input increases both adoption and 

intensity of adoption, the lagged variable of access to seed subsidy has a negative impact on 

adoption. This suggests that the increased adoption is due to the availability of cheap seed as 

opposed to farmers’ previous exposure with the drought tolerant maize variety. This may 
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indicate limited awareness on the benefits of drought tolerant maize varieties. This is also 

consistent with extension visits positively affecting adoption.  

The understanding that farmers respond to exposure to weather shocks is an important 

observation to maize seed breeders, agricultural extension workers and other development 

partners to further promote the climate risk reducing technologies. Promotion of technologies 

which are perceived by farmers themselves as climate-smart based on their experience are more 

likely to receive high adoption rates and make an impact to the general livelihood. In Malawi 

with FISP contributing significantly to the adoption, extension messages should be intensified 

with empirical evidence so that farmers can continue using the DT seed even after FISP. It is 

imperative however to understand that farmers in Malawi respond more to early droughts which 

acts as early warning by adopting more of early maturing varieties. Breeders should thus respond 

by breeding and disseminating more early maturing DT maize as opposed to late maturing DT 

maize seed. More importantly good extension messages and promotion of drought tolerant maize 

varieties should be improved to allow farmers make informed decisions.  

References 

 

Arslan, A., McCarthy, N., Lipper, L., Asfaw, S., & Cattaneo, A. (2014). Adoption and intensity of 

adoption of conservation farming practices in Zambia. Agriculture, Ecosystems & Environment, 

187, 72-86. doi: 10.1016/j.agee.2013.08.017 

Asfaw, S., McCarthy, N., Lipper, L., Arslan, A., Cattaneo, A., & Kachulu, M. (2014). Climate variability, 

adaptation strategies and food security in Malawi. ESA Working Paper No. 14-08. Rome, FAO.   

Chamberlain, G. (1980). Analysis of Covariance with Qualitative Data. The Review of Economic Studies, 

225-238.  

Davies, M., Guenther, B., Leavy, J., Mitchell, T., & Tanner, T. (2009). Climate change adaptation, 

disaster risk reduction and social protection: complementary roles in agriculture and rural 

growth? IDS Working Papers, 2009(320), 01-37.  

Devereux, S. (2007). The impact of droughts and floods on food security and policy options to alleviate 

negative effects. Agricultural Economics, 37(s1), 47-58.  

Ding, Y., Schoengold, K., & Tadesse, T. (2009). The Impact of Weather Extremes on Agricultural 

Production Methods: Does drought increase adoption of conservation tillage practices? Journal of 

Agricultural and Resource Economics, 395-411.  

Doss, C. R., & Doss, C. (2006). Analyzing Technology Adoption, Challenges and limitations of micro 

studies. Agricultural economics, 34, 207-219.  



Page 19 of 20 

 

Feder, G., Lau, L. J., Lin, J. Y., & Luo, X. (1990). The relationship between credit and productivity in 

Chinese agriculture: A microeconomic model of disequilibrium. American Journal of 

Agricultural Economics, 1151-1157.  

Fisher, M., Abate, T., Lunduka, R. W., Asnake, W., Alemayehu, Y., & Madulu, R. B. (2015). Drought 

tolerant maize for farmer adaptation to drought in sub-Saharan Africa: Determinants of adoption 

in eastern and southern Africa. Climatic Change, 133(2), 283-299.  

Garrity, D. P., Akinnifesi, F. K., Ajayi, O. C., Weldesemayat, S. G., Mowo, J. G., Kalinganire, A., . . . 

Bayala, J. (2010). Evergreen Agriculture: a robust approach to sustainable food security in Africa. 

Food security, 2(3), 197-214.  

Holden, S., & Fischer, M. (2015). Can Adoption of Improved Maize Varieties Help Smallholder Farmers 

Adapt to Drought? Evidence from Malawi: Centre for Land Tenure Studies, Norwegian 

University of Life Sciences. 

Holden, S., & Lunduka, R. (2012). Do fertilizer subsidies crowd out organic manures? The case of 

Malawi. Agricultural Economics, 43(3), 303-314.  

Holden, S., & Mangisoni, J. (2013). Input subsidies and improved maize varieties in Malawi: What can 

we learn from the impacts in a drought year? : Centre for Land Tenure Studies, Norwegian 

University of Life Sciences. 

Holden, S., & Quiggin, J. (2015). Climate risk and state-contingent technology adoption: The role of risk 

preferences and probability weighting. 

Holden, S. T., & Fisher, M. (2015). Subsidies promote use of drought tolerant maize varieties despite 

variable yield performance under smallholder environments in Malawi. Food Security, 7(6), 

1225-1238.  

Kassie, M., Teklewold, H., Jaleta, M., Marenya, P., & Erenstein, O. (2015). Understanding the adoption 

of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use 

Policy, 42, 400-411.  

Kassie, M., Teklewold, H., Marenya, P., Jaleta, M., & Erenstein, O. (2014). Production Risks and Food 

Security under Alternative Technology Choices in Malawi: Application of a Multinomial 

Endogenous Switching Regression. Journal of Agricultural Economics.  

Kassie, M., Yesuf, M., & Köhlin, G. (2009). The role of production risk in sustainable land-management 

technology adoption in the Ethiopian Highlands. rapport nr.: Working Papers in Economics 407.  

Katengeza, S. P., Mangisoni, J. H., Kassie, G. T., Sutcliffe, C., Langyintuo, A., La Rovere, R., & 

Mwangi, W. (2012). Drivers of improved maize variety adoption in drought prone areas of 

Malawi. Journal of Development and Agricultural Economics 4(14), 393-403.  

Kato, E., Ringler, C., Yesuf, M., & Bryan, E. (2011). Soil and water conservation technologies: a buffer 

against production risk in the face of climate change? Insights from the Nile basin in Ethiopia. 

Agricultural Economics, 42(5), 593-604.  

Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., . . . Henry, K. (2014). 

Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068-1072.  



Page 20 of 20 

 

Magorokosho, C., Vivek, B., & MacRobert, J. (2009). Characterization of maize germplasm grown in 

eastern and southern Africa: Results of the 2008 regional trials coordinated by CIMMYT.  

Mangisoni, J. H., Katengeza, S., Langyintuo, A., Rovere, R., & Mwangi, W. (2011). Characterization of 

maize producing households in Balaka and Mangochi Districts in Malawi. Country Report–

Malawi. Nairobi: CIMMYT.  

Nangoma, E. (2007). National adaptation strategy to climate change impacts: A case study of Malawi. 

Human Development. UNDP. Report, 2008.  

Pangapanga, P. I., Jumbe, C. B., Kanyanda, S., & Thangalimodzi, L. (2012). Unravelling strategic 

choices towards droughts and floods' adaptation in Southern Malawi. International Journal of 

Disaster Risk Reduction, 2, 57-66.  

Pauw, K., Thurlow, J., Bachu, M., & Van Seventer, D. E. (2011). The economic costs of extreme weather 

events: a hydrometeorological CGE analysis for Malawi. Environment and Development 

Economics, 16(02), 177-198.  

Pauw, K., Thurlow, J., & van Seventer, D. (2010). Droughts and floods in Malawi: assessing the 

economywide effects: International Food Policy Research Institute (IFPRI). 

Wooldridge, J. M. (2009). New Developments in Econometrics, Lecture 6: Non-linear Panel Data 

Models. Cemmap Lectures. University College London.  Retrieved from 

http://www.cemmap.ac.uk/resources/imbens wooldridge/slides 6.pdf 

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data: MIT press. 

Wooldridge, J. M. (2014). Introduction to Econometrics (Europe, Middle East & Africa ed.): Cengage 

Learning EMEA, Hampshire, UK 

 

 

http://www.cemmap.ac.uk/resources/imbens

