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1 Introduction 
The main objective of this note is a review of PMP with a specific focus on the determination of 

dual values of resource constraints in this approach. Based on analytical derivations it is shown that 
the shadow prices implied by the first phase of PMP are not consistent with the assumption that the 
resulting calibrated model is the data generating process. Apart from creating reservations about the 
interpretability of the calculated shadow prices in general, this has more serious consequences for the 
estimation of parameters in the multiple observation context. An alternative approach simultaneously 
estimating parameters and shadow prices based on a complete set of optimality conditions is suggested 
based on Heckelei 2002 and Heckelei and Wolff 2003. A short outlook on more general applications 
of these bi-level estimation problems is given at the end. 

2 Using dual values of calibration constraints: the PMP approach  
As the word “positive” in PMP implies, the original motivation of PMP was to increase the 

reliability of a constrained optimisation model by using observed behaviour in the specification phase. 
Calibration constraints were introduced for observed levels of endogenous variables, and their dual 
values impacted on the specification of appropriate non-linear functions. The resulting model then 
reproduced these endogenous variables without the calibration constraints. The following paragraphs 
review that approach in detail. 

The starting point of PMP is a profit maximising linear programming problem: 

 
[ ]
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where 
Z = objective function value 
p = (N×1) vector of product prices 
x = (N×1) vector of production activity levels 
c = (N×1) vector of accounting cost per unit of activity 
A = (M×N) matrix of coefficients in resource constraints 
b = (M×1) vector of available resource quantities 
λλλλ = (M×1) vector of dual variables associated with the resource constraints 

The general idea of PMP is to use information contained in dual variables of calibration 
constraints, which bound the LP-problem to observed activity levels (Phase 1). These dual values are 
used to specify a non-linear objective function such that observed activity levels are reproduced by the 
optimal solution of the new programming problem without bounds (Phase 2).  

Phase 1 of this procedure is formally described by extending model (1) in the following way:   
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where:  
xo = (N×1) vector of observed activity levels 
εεεε = (N×1) vector of a small positive numbers  
ρρρρ = dual variables associated with the calibration constraints 

The addition of the calibration constraints will force the optimal solution of the linear 
programming model (2) to exactly reproduce the observed base year activity levels xo, given that the 
specified resource constraints allow for this solution (which they should if the data are consistent, see 
Hazell and Norton 1986: 266f). 'Exactly' is accurately understood to mean within the range of the 
positive perturbations of the calibration constraints, εεεε, which are included to guarantee that all binding 
resource constraints of model (1) remain binding here and thus avoid a degenerate dual solution. 

We can partition the vector x into two subsets, an ((N-M)×1) vector of 'preferable' activities, xp, 
which are bounded by the calibration constraints, and a (M×1) vector of 'marginal' activities, xm, 
which are constrained solely by the resource constraints. To simplify notation, without loss of 
generality, we assume that all elements in xo are nonzero and all resource constraints are binding. 
Then, the Kuhn-Tucker conditions imply that 

 p p p p '= − −p c A �ρρρρ  (3) 

 [ ]m = 0ρρρρ  (4) 

 ( ) ( )1m m m'
−

= −� A p c  (5) 

where the superscripts p and m indicate subsets of original vectors and matrices corresponding to 
preferable and marginal activities, respectively. Whereas the dual values of the calibration constraints 
are zero for marginal activities (ρρρρm) as shown in (4), they are equal to the difference of price and 
marginal cost for preferable activities (ρρρρp) as seen in (5), latter being the sum of variable cost per 
activity unit (c) and the marginal cost of using fixed resources (Ap'λλλλ). It should be noted here, that the 
dual values of the resource constraints (λλλλ) only depend on objective function entries and coefficients 
of marginal activities.  

In Phase 2 of the procedure, the dual values of the calibration constraints ρρρρp are employed to 
specify a non-linear objective function such that the marginal cost of the preferable activities are equal 
to their respective prices at the base year activity levels xo. Given that the implied variable cost 
function has the right curvature properties (convex in activity levels) the solution to the resulting 
programming problem will be a 'boundary point, which is the combination of binding constraints and 
first order conditions' (Howitt 1995a: 330).  

Howitt (1995a) and Paris and Howitt (1998) interpret the dual variable vector ρρρρ associated with 
the calibration constraints as capturing any type of model mis-specification, data errors, aggregation 
bias1, risk behaviour and price expectations. 

In principle, any type of non-linear function with the required properties qualifies for Phase 2. For 
reasons of computational simplicity and lacking strong arguments for other type of functions, a 
quadratic cost function is often employed (exceptions: Paris and Howitt 1998). The general version of 
this variable cost function to be specified is then 

 v 1
C ' '

2
= +d x x Qx  (6) 

with: 
d = (N×1) vector of parameters associated with the linear term and 
Q = (N×N) symmetric, positive (semi-) definite matrix of parameters associated with the 
quadratic term. 

                                                      
1 To deal with aggregation errors in regional or sector modelling, ÖNAL and MCCARL (1991) provide the 

theoretical basis of an exact aggregation procedure based on extreme point representation under the assumption 
of full information on every farm and suggest empirical approximation procedures using the available 
aggregate information on all farms. 
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The parameters are then specified such that the linear 'marginal variable cost' (MCV) functions 
fulfil 

 
v o

V oC (x )
x

∂= = + = +
∂

MC d Qx c ρρρρ . (7) 

Note, however, that the derivatives (7) of this variable cost function do not incorporate the 
opportunity cost of fixed resources (Ap'λλλλ) which remain captured in the ultimate model by the dual 
values of the resource constraints. 

Given that we have a set of parameters satisfying (7), we obtain the final non-linear programming 
problem that reproduces observed activity levels as 
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The dual values of the resource constraints in model (8) at xo do not differ from the one in model 
(2). They are still determined by the marginal profitability of the marginal activities at their observed 
levels xom, (Am')-1 [pm – (dm + xomqm)], which remains equal to (Am')-1[pm-cm] in the specification step, 
because of (4) and (7). Consequently, the value of equation (5) remains unchanged. Apart from 
problematic consequences for the estimation of cost function parameters under certain assumption on 
the data generating process discussed below, these shadow values are unlikely to represent realistic 
land values in the context of agricultural programming models. They would only be valid if a marginal 
reduction of the land resource would lead to a reduction in marginal activities only. This however, is 
rarely realistic, as rotational effects will lead to a reduction also in preferable activities. More 
technically speaking, land values determined by marginal activities only neglect multi-output-multi-
input technology effects.  

3 Dual values and supply response of the quadratic model  
The problem of condition (7) is that it implies an underdetermined specification problem as long 

as we consider a flexible functional form. In the case of the second order flexible quadratic function 
we have N+N(N+1)/2 parameters which we try to specify on the basis of N pieces of information (the 
marginal variable cost equations (7)). There are an infinite number of parameter sets which satisfy 
these conditions, i.e. lead to a perfectly calibrating model, but each set implies a different response 
behaviour to changing economic incentives.  

In order to see the consequences of an arbitrary – apart from satisfying (7) – specification of non-
linear cost terms, we derive the supply functions implied by the PMP calibrated model (8). If we start 
from the Lagrangian formulation  

 ( ) [ ]L ' ' 0.5 '= − − + −x p x d x x Qx � b Ax  (9) 

and continue to assume that all optimal activity levels are positive we obtain the first order conditions 
in gradient format as 

 '= − − − =L p d Qx A � 0
x

∂∂∂∂
∂∂∂∂

 (10) 

and 

 = − =L b Ax 0∂∂∂∂
∂λ∂λ∂λ∂λ

. (11) 

Solving (10) for x results in  
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 ( )1 '−= − −x Q p d A �  (12) 

and substituting the right hand side of (12) into (11) allows to solve for  

 ( ) ( )( )11 1'
−− −= − −� AQ A AQ p d b . (13) 

The vector of optimal activity levels as a function of exogenous model parameter can then be 
expressed as 

 ( ) ( ) ( )( )11 1 1 1' '
−− − − −= − − − −x Q p d Q A AQ A AQ p d b . (14) 

The gradient of (14) with respect to the price vector is proportional to the marginal supply response in 
this case (since product supply is constant per activity unit) and given by 

 ( ) 11 1 1 1' '
−− − − −= −x Q Q A AQ A AQ

p
∂∂∂∂
∂∂∂∂

 (15) 

which finally reveals that the full Q-matrix is relevant for the supply response of each single product. 
This is even true when Q is diagonal (and consequently Q-1 as well), because the fixed allocable inputs 
(resource constraints) still link all production activities with each other. The second summand in (15) 
which is -Q-1A' times the gradient of λλλλ with respect to p ensures that all elements of Q-1 enter each 
element of the supply gradient. 

The different methods developed to choose among the infinite number of calibrating parameter 
sets increasingly recognised the need to introduce additional information in order to avoid arbitrary 
simulation behaviour. For an overview on different methods used see Umstätter (1999), Röhm (2001) 
or Heckelei and Britz (2005).  

4 Calibration and estimation of optimization models without dual values of 
calibration constraints 
The last section hinted at the danger of specifying models based on PMP that imply arbitrary 

simulation behaviour. One problem is the thin information base provided by just one year of 
observations on activity levels. In fact, the data in this case do not provide any information on second 
order properties (Hessian matrix) of the objective function. If a change in economic incentives and the 
resulting behaviour is not observed, then the information for parameter specification must come from 
other sources. Even if one would be able to specify the 'true' model with respect to behavioural 
assumptions and functional form, the parameters are still not identified. The only convincing use of 
PMP with just one observation is the use as a calibration method in combination with elasticities or 
other exogenous information on technology or behavioural response with respect to changes in activity 
levels.  

The main focus of this section, however, shall be the inclusion of additional data looking for the 
bridge to typical econometric models. The question we need to address first is, whether the PMP 
procedure itself is designed to make best use of additional data information. We show that the 
marginal conditions derived from the first phase of PMP are inappropriate. They represent a mis-
specified model in the sense that the inclusion of additional observations will never allow to recover 
the underlying model which is assumed to have generated the data. 

In order to see this, we will use some of the elements already introduced in the previous sections, 
but look at the methodology from an econometrician's point of view. This includes the assumption that 
the ultimate model to be specified is the 'true' model structure, or at least one that is believed to be a 
good approximation of the true model: Apparently, many PMP modellers thought that the final model 
with a non-linear objective function to be optimised under linear resource constraints is a reasonable 
representation of the behaviour of agricultural producers, otherwise it would not have made any sense 
to use this structure as the ultimate specification. The PMP procedure, however, enforces shadow 
prices and marginal cost values that differ from the ones implied by the non-linear model. 

Suppose the quadratic model (8) is the true data generating process. The derivations (9) to (13) 
have shown that the shadow prices of the resource constraints under the assumption that all activity 
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levels are positive at the optimum can be calculated as ( ) ( )( )11 1'
−− −= − −� AQ A AQ p d b . This is 

clearly different from the dual values of the resource constraints obtained in the first phase of PMP 
(see equation (5)) which only depend on quantities related to the marginal activities and were given by 

( ) ( )1m m m'
−

= −� A p c . The second phase of PMP then uses these dual values at the observed activity 

levels through enforcement of the 'marginal cost' equations (7), thereby implicitly imposing wrong 
values for the marginal variable cost as well. Given this discrepancy, it is impossible to recover the 
true non-linear objective function no matter how many observations on activity levels are used. The 
use of the biased marginal cost equations as estimating equations in some econometric exercise with 
multiple observations generally leads to inconsistent estimates. The PMP approach in this context is 
fundamentally flawed in the sense that it imposes first order conditions which are incompatible with 
the non-linear model it ultimately tries to recover. 

A remedy is to directly use the first order conditions of the quadratic programming problem (10) 
and (11) for parameter specification allowing simultaneously estimating parameters and shadow prices 
of limiting resources. After adding error terms, the first order conditions serve as estimating equations 
which are fitted by some econometric criterion to the observations on activity levels. A general 
formulation for the quadratic model is given by  

 ( )
,

Min H
d Q

e  subject to (16) 

 ( )o '− − − − =p d Q x e A � 0  (17) 

 ( )o− − =b A x e 0 . (18) 

The objective function H(e) could be for example generalized least squares or maximum entropy being 
minimized by adjusting error terms and parameter values. The shadow prices are direct implicit 
functions of the parameters as can be seen by equation (13) above. Although not illustrated here, this 
approach can also accommodate observations (and error terms) on shadow prices of resource 
constraints to make best use of all available information (see). 
In the PMP approach, equation (17) – without error terms – also basically ensures the calibration of 
the model solution to one base year observation on activity levels.2 The fundamental difference is that 
the shadow values λλλλ are set a-priori in the first phase of PMP and are not determined simultaneously 
with the parameters. 

The estimation problem characterized by equations (16)-(18) can be seen as a special case of bi-
level programs designed to estimate parameters of (non-) linear programming models. We can 
distinguish between an “outer” optimization problem, the econometric criterion, and the “inner” 
problem, the optimality conditions of the economic model. The outer problem can only choose 
parameters and fitted values that constitute an optimal solution to the inner problem. Heckelei and 
Wolff (2003) go beyond the typical quadratic PMP model and use the same type of approach to 
estimate parameters of crop-specific production and profit functions in the context of an explicit land 
allocation model. They also show for a small illustrative model, that complementarity conditions, i.e. 
the potential non-binding status of inequality restrictions, can also be accommodated with this 
approach. For a more realistic model, Jansson and Heckelei (2004) estimate transport cost, prices and 
trade flows in the context of a transport cost minimisation problem, where observations on prices and 
transport costs are available.  Trade flows, however, are not. The estimation not only recovers a set of 
transport cost and prices consistent with cost minimisation, it also provides corresponding estimates of 
trade flows satisfying regional market balances. Whether a trade flow is positive or zero cannot be 
determined a-priori. 

One drawback of these bi-level problems is of numerical nature. There are different approaches 
available for solving them, all of which have in common that they do not work equally well for all 
types of problems in this class. The difficulties in numerically finding a solution are especially severe 

                                                      
2 For application of this calibration approach without the first phase of PMP see JUDEZ et al. 2001; BUYSSE et al. 

2004, HENRY DE FRAHAN et al. 2005 
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for gradient solvers if the optimality conditions of the inner problems comprise complementary 
slackness conditions, because gradients of these restrictions are not continuously differentiable. To 
mitigate this problem somewhat, one could decide a-priori, for example by data inspections, which 
resource and non-negativity constraints are binding and which are not. For the former, we can then 
formulate equality restrictions with a nonzero shadow price and for the latter we can simply leave out 
the restrictions as they do not matter for the data generating process. However, this approach is not 
always applicable, as we often do not know whether constraints are binding or not, because of lacking 
data or variables measured with errors.  

Consequently, bi-level estimation problems will often require the development of case specific 
solution algorithms or at least the necessity to “play” with parameters of existing solvers for this type 
of problems. This will probably limit for a while the use of this general methodology for estimating 
complex programming models to the methodologically interested analyst. This and constraints on data 
availability will most likely lead to continuing use of more simple methods of programming model 
calibration, hopefully avoiding arbitrary specification of non-linear parameters and shadow prices as 
in early PMP approaches. However, Jansson (2005) shows that the investment in the direction of 
programming model estimation may pay off under certain conditions. In this case, the estimator’s 
properties in the context of a transportation models are superior to the performance of previous 
methods calibrating these models.  

5 Conclusions 
Using non-linear terms in the objective function, the original PMP approach calibrated 

programming models to observed base year activity levels and guaranteed a smooth supply response 
behaviour relative to previously used linear programming models. This feature was especially 
important for aggregate programming models at regional or sectoral level. Later, the issues of supply 
response behaviour of the resulting model and the determination of the shadow prices of limiting 
resources based on dual values of calibration constraint in the PMP approach came to the centre of 
attention.  

In the context of using multiple observations, it could be shown that phase 1 of the original PMP 
approach with calibration constraints leads to inconsistent parameter estimates. Fortunately, there 
exists a conceptually simple alternative to use first order conditions of the programming problem as 
estimating or calibrating equations directly. This approach allows simultaneously estimating 
parameters of the cost function with dual values of resource constraints while treating the decision 
variables as stochastic. It is certainly a straightforward idea to estimate parameters in the framework 
later used for simulation, and this has been successfully applied in many standard applications of 
profit, cost, or indirect utility functions. However, the combination of, for example, dual profit 
functions and a model with an explicit primal representation of parts of the technology in form of 
inequalities leads to a more challenging model class. Such a situation defines a so-called bi-level 
program, where an outer objective function is optimized under constraints representing first order 
conditions of an inner optimization problem. These approaches require specific algorithms to be 
solved for large scale models. It is therefore not astonishing that so far, few consistent parameter 
estimations in a primal/dual framework are documented for real world application. Indeed, application 
to larger models just started and the development of algorithm suitable for bi-level problems for 
agricultural economic model promises to be a fruitful exercise.  

Generally, we conclude that there is no need for the PMP approach with calibration constraints in 
phase 1 anymore. It has served its purpose of providing shadow prices of resource constraints as long 
as the method and its implication for supply response behaviour had not been fully understood. Now, 
calibration and estimation of programming models proceeds and should proceed using simultaneously 
explicit prior or data information on shadow prices and decision variables. 
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