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Abstract 

Climate change and climate variability is perhaps one of the major challenges facing the world 

today. There is an equivocal agreement that climate change is not only a threat to the economies 

of developing world, but also to those of the developed economies. One of the key drivers of 

global warming is the greenhouse gas (GHG) emissions. Even though several studies have  in the 

recent past evaluated various sources of GHG emissions and their associated impacts, little 

empirical information exists on the role played by burning savanna grasslands  as far as global 

warming is concerned. This study is an attempt to determine the emission pattern over time and 

consequently forecast the linear trend in GHG emissions from the Kenya’ Savanna. Using 

Autoregressive (AR) modelling, the study analyzes and forecasts time series data ranging from 

the year 1993 to 2012. The key finding of the study indicate that emissions resulting from 

continual burning of Savanna grasslands will continue in an upward trend if no serious mitigation 

measure is put in place to revert the statusquo. Averting the current state of affairs requires 

policies aimed at reducing the levels of GHGs in the atmosphere for instance promotion of 

Climate Smart Agricultural (CSA) Practices.  
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1. Introduction 

Ending poverty and addressing climate change are perhaps the two defining challenges facing the 

world (World Bank 2016). The recent twenty-first session of Conference of Parties commonly 

dubbed Paris agreement report that climate change represents an urgent and potentially 

irreversible threat to human societies and the planet and therefore requires countries to cooperate 

in terms of adaptation and mitigation (UNFCCC, 2015). There is unequivocal evidence that 

climate change and climate variability is real and its negative effects are already manifested in 

different parts of the world (Jianjun et al., 2015). According to the United Nations Convention to 

Combat Desertification (UNCCD 2009), climate crisis is one of the greatest challenges facing the 

world with indications depicting change as occurring faster compared to previous predictions. 

The threats posed by climate change are likely to change the food security equation particularly 

in developing countries where its impacts are more prominent. According to Pandey and Jha 

(2012), climate change and extreme events has adversely impacted on the functioning of the 

ecosystems and provisions of environmental goods and services critical for livelihoods.  

It is common knowledge that climate change and climate variability impacts are more rampant in 

developing nations (Ndegwa et al., 2011). Moreover, it has now emerged that the impacts of 

climate variability are likely affect livelihoods living in fragile environments such as the Arid and 

Semi-Arid (ASALs) regions of the world (Jat et al., 2012). Similarly, Ngigi et al. (2016)  and 

Knaepen et al. (2015) argue that severe impact of climate variability will be felt in Sub-Saharan 

Africa where a significant portion of land fall under ASALs. This is likely to be exacerbated by 

the fact that Africa’s agricultural systems are highly climate dependent.  

In the Kenyan context, empirical evidence such as that done by Mwenzwa (2011) point out that 

four-fifths of Kenya’s is classified as ASALs. Indeed, this current state of scenario has negative 

implications of agricultural transformation agenda. Specifically, the Kenya’s Vision 2030 and the 

second Medium term Plan (MTP II) recognizes agriculture as one of the flagship project under 

economic pillar. According to the second Republic of Kenya (2013), agricultural sector employs 

approximately 3.8 million Kenyans directly on the farm, livestock production as well as fishing. 

Additionally, statistics indicate that about 4.5 million Kenyans are employed in off-farm informal 

sector activities. However, despite the positive progress made by agricultural sector in creation of 

employment opportunities, climate change and climate variability is posing a serious threat to this 

positive progress.  

Climate change and variability in Kenya’s drylands has manifested in various forms. For 

instance, land degradation is a major impediment to building resilience among dryland 

livelihoods (Wasonga et al., 2009). In addition, deforestation, loss of soil nutrient as well as 

reduction in ecosystem services resulting from declining ecological integrity are some of the 

impediments to agricultural productivity in the Kenyan ASALs. Consequently, building resilient 

livelihoods capable of combating the inevitable climate variability has drawn a lot of interest 

among Governments all over the world. For instance, Kenya’s National Climate response 
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Strategy aims at strengthening and focusing nationwide actions towards climate change 

adaptation and Green House Gas (GHG) emission (GoK 2010).  

Climate change and climate variability jeopardizes economic and social progress in many sectors 

of the economy. For instance, IPCC (2014) indicate that Africa is the most vulnerable continent 

globally and climate change and climate variability is already impacting the agricultural sector 

negatively. The reduction in viable agricultural land and food production is likely to impact the 

poor and marginalised groups such as subsistence farmers in rural areas as well as the urban poor 

(CUTS,  2014). Interestingly it has been shown that climate change also impacts trade 

particularly in agricultural products. This emanates from the fact that it impedes the supply side 

thus hampering farmers’ ability to have the surplus for sale.  

In the phase of climate change and climate variability, the consequence of global warming has 

drawn a lot of interest among policy makers and government world over. For instance, the  

Intergovernmental Panel on Climate Change (IPCC, 2007) synthesis report argue that warming of 

climate system is unequivocal with indications of increases in global average air and ocean 

temperatures, widespread melting of snow and ice accompanied by rising average sea levels. 

Further, IPCC (2007) posit that some of the key drivers of climate change are the increase in 

global GHG emissions. In regard to this, the recently adopted Paris agreement takes into 

cognizance the fact that reducing global emissions will play a key role in achieving the goal of 

the convention while at the same time emphasizing the need for addressing climate change 

(UNFCCC, 2015).  

According to Nhemachena and Hassan (2008), mitigation efforts to combat climate change  by 

reducing sources of GHG’s and enhancing sinks is usually a progressive process. The GHG 

emissions are attributed to anthropogenic activities that have grown since pre-industrial era. 

According to Thomas et al.( 2009), global warming observed over the past fifty years is primarily 

due to human-induced emissions of heat trapping gases in the atmosphere. Moving away from the 

Millennium Development Goals (MDGs) and embracing the Sustainable Development Goals 

(SDGs) requires countries to incorporate climate change programmes into their development 

strategies and policies. According to the study done by Osborn et al. (2015) where developing 

countries ranked SDGs by level of transformational challenge, SDG thirteen (13) namely taking 

urgent action to combat climate change and its impacts was ranked number one with an average 

target score of 7.1. This suggests that climate change should be given priority by developing 

countries as they come up with plans and strategies to implement the SDGs in their countries.   

In the Kenyan context, issues of climate change and whether variability continues to surface the 

government’s top agenda as far as economic development and prosperity is concerned. According 

to the Kenya National Climate Change Action Plan 2013-2017, changes in climate presents one 

of the most serious global challenges (GoK, 2013).  The key aim of the aforementioned plan is to 

address the unprecedented challenge of climate change impacts as well as reducing the socio-

economic losses (GoK, 2013).  
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According to Kenya’s  National Climate Change Response Strategy, climate change is a key 

threat to sustainable development globally (GoK, 2010).  A study by Parry et al.(2012) argues 

that Kenya is characterized by a complex climate that varies significantly between the coastal, 

interior and highland regions. In addition, Climate change and weather variability have in the 

recent past manifested in terms of seasonality in both temperature and rainfall patterns (GoK 

2010). There is a unanimous agreement that one common cause of climate change is GHG 

emissions. For instance, IPCC (2014) acknowledges that the recent anthropogenic emissions of 

GHGs is the highest in history. This evidence reinforces that of IPCC (2007) indicating that 

global GHG emissions grew by 70 percent between 1970 and 2004. Generally, one of the key 

anthropogenic GHG is Carbon Dioxide (CO2). Other known GHGs arising from human activities 

are methane (CH4) and Nitrous Oxide (N2O).This calls for the need for adaptation particularly in 

Africa where a majority of the population are vulnerable to climate shocks (Nhemachena and 

Hassan, 2008). 

Even though emission of GHGs into the atmosphere is historically known to result to global 

warming, there is limited empirical information on sector specific evolution of GHG emissions 

over the years in many countries. It is common knowledge that GHGs cause global warming 

phenomenon. Global warming is the continuing rise in the average temperature of earth’s climate 

system. Generally, GHG emissions brought about by combustion of fossil fuels in industries have 

significantly contributed to global warming. According to IPCC (2007), global increases in CO2 

are attributed to fossil fuel and land use change that provides a smaller amount though a 

significant driver of climate change in the long-term. Agricultural sector is believed to contribute 

to global warming through emissions of methane (CH4) and Nitrogen Dioxide (N2O) (IPCC 

2007). Other GHGs include water vapor (H2O (g) as well as Ozone (O3).  

It is now clear that the activities of human beings are perhaps the major cause of global warming. 

The most obvious and visible impact of global, warming has been witnessed in the rising earth’s 

average temperatures since the genesis of industrial age. Other impacts are manifested in the 

reduction in quality of atmosphere, longer summers, shorter and warmer winters, inconsistent 

rainfall patterns in the tropics, irregular floods and storms among others.  

Even though GHG’s are largely attributed to industrial emissions, it is increasingly becoming 

clear that burning of Savanna Grasslands significantly contributes to global warming through 

emission of CO2 (g). This is what we term as the “unforgotten contributor of global warming”. In 

addition, Savanna fires cause disturbance to fauna as well as pollution through the smoke. 

Importantly, Savanna fires if not well managed would significantly contribute to global warming. 

According to Trollope (2007), there is a serious deficiency of knowledge concerning the behavior 

of fires particularly in the context of Savanna grasslands.  
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In the Kenyan context, burning of Savanna grasslands is an indigenous practice aimed at 

regenerating new grass with uniform and good growth. This is done with less consideration on 

the role it plays as far as global warming is concerned. This problem is enhanced by the fact that 

over the years, marginalization of such regions has taken root. Even though a plethora of 

empirical research has been done in the Kenya’s Savanna grassland, there is limited empirical 

evidence on time series emission patterns and future projections as well as the likely contribution 

to global warming. To understand how fires influence and interact with Savanna ecosystem, 

quantitative information on time series patterns and forecasting of GHG emissions resulting from 

burning of Kenya’s Savanna grassland is vital.  

2. Overview of Savanna Grassland GHG emissions 

The drylands of Africa, exclusive of hyper-arid zones occupy 43 percent of the continent, and are 

a home to a rapidly growing population of approximately 325 million (UNCCD, 2009). A 

majority of people inhabiting the drylands are mainly pastoralists and agro-pastoralists. Even 

though the key livelihood activity is pastoralism, dryland agriculture is gaining recognition. With 

the evolution of Climate Smart Agriculture (CSA) concept, a lot of interest is focused on building 

resilience of livelihoods through adoption of CSA practices. According to the Food and 

Agricultural Organization of the United nations, CSA refers to agriculture that sustainably 

increases productivity, resilience, reduces GHGs, and enhances the attainment of national food 

security and development goals (FAO, 2010).  

Generally, a majority of dryland livelihoods live under conditions of abject poverty owing to 

resource limitation as well as fragility of the environment to both endogenous and exogenous 

shocks. As pointed out by Olila et al. (2015), risk and uncertainty are ubiquitous in Kenya’s 

agricultural system thereby calling for appropriate risk management mechanisms such as crop 

and livestock insurance. However, amidst these challenges, agro-pastoralists have an opportunity 

of reducing potential damage by making tactical responses to the inevitable climate change and 

climate variability (Nhemachena and Hassan (2008).  

Savannas grasslands are tropical ecosystems having a continuous grass layer and discontinuous 

canopy of trees and shrubs. According to O’Higgins (2007), population growth in the savannas 

have led to the intensification of land use thus threating livestock production besides impacting  

negatively on the livelihoods. In addition, managing savanna grasslands resources places a huge 

challenge among resource managers. The existence of equilibrium and non-equilibrium 

paradigms within the ASALs further present management challenges (Nyangito et al., 2015). For 

instance, the stock of grass and the rate of harvest (usage by cattle) may exhibit dynamic behavior 

including deterministic chaos where steady state equilibrium is never reached.   
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One of the key contributors of GHG emissions in the context of Savanna grassland is the 

inevitable fires. According to the Global Fire Monitoring Center (GFMC, 2004), fire is a 

widespread seasonal phenomenon in Africa with Savanna burning accounting for 50 percent. 

Generally, fires are started by lightening, volcanoes as well as anthropogenic factors (FAO, 

2001).  The burning of Savanna grasslands by humans contributes to global warming. In the 

context of pastoral livelihoods, burning of savanna grassland is known to possess merits such as 

stimulating grass growth for livestock while subsistence agro-pastoralists use fire to clear 

unwanted biomass as well as eliminating unused residues after harvest (GFMC, 2004). According 

to the Global Forest Fire Assessment Report of 1990 – 2000, indicate that fires play a myriad of 

roles including regulating plant succession, regulating fuel accumulations, controlling age, 

structure of species composition of vegetation, as well as influencing nutrient cycles and energy 

flow among others (FAO, 2001).  

Other studies by Sheuyange et al. (2005) point out that anthropogenic fires in the African 

continent is an antiquity form of environmental disturbance. The burning have shaped savanna 

vegetation more than any other human induced disturbance (Sheuyange et al., 2005). This 

implies that burning of savanna grasslands dates back to many centuries in Africa. The 

indigenous people used indigenous knowledge to determine when to set the grasses on fire for the 

reasons that confer benefits to the communities. For instance Walters et al. (2010) report that in 

some parts of the world, fires was the primary tool used to subsist; used as hunting technique, 

grazing, gathering, agriculture and thus linked to survival of humanity. Interestingly, despite the 

benefits conferred by burning, currently, emphasis on ecosystem management calls for the 

maintenance of interactions between fire disturbance processes vis a vis ecosystem functions 

(FAO, 2001).    

Over the years, savanna grasslands have evolved with fires creating a unique adaptation. Walters 

et al. (2010) argue that there exists a strong nexus between anthropogenic fire regimes and 

society. In other words, social change is a key driver on how fire is used in the savanna. One of 

the most common justification for continual use of fire is that it contributes positively to 

biodiversity as well as enhancing forage growth. For instance Walters et al. (2010) posit that 

burning particularly during dry season plays a significant role in maintaining biodiversity. 

Similarly, FAO (2001) indicate that fire is key in regulating biotic productivity, diversity and 

stability as well as  determining the habitat for wildlife.  

The evolution of Savanna ecosystems with fires has indeed a plethora of benefits as outlined in 

the various empirical literatures. Indeed, past scholars have played a vital role in unveiling the 

significance of fires in the context of grassland burning. Despite the benefits derived from 

ecosystem management using fires, little attention seems to focus on the negative impacts posed 

by Savanna fires. Some of the negative benefits of fire within savannas are livelihood disruption, 

mortality among livestock and destroying soil organisms. The little focus on the demerits of 

savanna fires is pegged on the marginalization of such drylands in many regions of Africa, Kenya 

included. 
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According to FAO (2001), understanding of fire effects is increasingly becoming important to 

land managers since the disturbance caused by fires is closely linked to the concept of ecosystem 

management. In simple terms, ecosystem management refers to conservation of environmental 

goods and services with an objective of ensuring delivery of goods and services for the benefit of 

current and future generations.  

This study attempts to understand the evolution pattern of GHG emissions from Kenya’s’ 

grassland. Second, the study forecasts the time series emissions data to give a glimpse of how the 

situation will be under business as usual scenario. Ultimately, we unpack the nexus between such 

emissions and the current policy debate on global warming. Although there have been a growing 

attention among researchers, policy makers, as well as governments on the importance of 

reducing GHG emissions (UNFCCC, 2015), linking Savanna grassland fires and global warming 

has been given limited attention.  

Therefore, the contributions of this study are three fold as far as the on-going global debate on 

climate change and climate variability is concerned. First, it establishes the dynamic pattern of 

carbon emissions within the Savanna grassland ecosystem. Second, simulating carbon emission 

pattern is imperative for ex-ante formulation of relevant policy to reduce the levels of emission. 

Finally, the study contributes to the thin body of existing on the role of fires in shaping Savanna 

grassland in Kenya.  

3. Methodology 

3.1 Data 

In this study, we use time series secondary data of emissions from Kenya’s Savanna grassland 

during the period 1993 - 2012. The data was retrieved from the Food and Agricultural 

Organization of the United Nations statistics website (FAOSTAT). The emissions are measured 

in Gigagrams (Gg). A Gg refers to a decimal multiple of the base unit of mass in the international 

System of Units (SI) kilogram, which is defined as being equal to the mass of the international 

prototype Kilogram. Note that 1 Gg is equal to 10
6
 Kg.  

3.2 Model specification 

A time series is a collection of observations made sequentially through time (Chatfield, 2000). 

Similarly, Maddala (1992) refers to time series as sequence of numerical data in which each item 

is associated with a particular instant in time. Generally, these observations are spaced at equal 

time intervals. Some examples of time series data comprise rainfall and temperature data over 

time, greenhouse gas emissions over time, sales of a product in successive months, and trade data 

among others. The main objective of analysis of time series data is to find a mathematical model 

capable of explaining data behavior. Following Nemec (1996), the objective of time series 

analysis range from data summary and prediction, model development and parameter estimation, 

prediction of future values, as well as detection description or removal of trend and cyclic 

components.  
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A growing interest in comprehending the behavior of time series data emanates from the need to 

predict the future values of the series.  Understanding the future values (forecasts) of time series 

data is vital for ex-ante policy formulation and planning. According to Chatfield (2000), time 

series data provides an excellent opportunity to look at out of sample behavior (forecasted 

values), thus providing an opportunity to benchmark with the actual observations. For instance, 

forecasting of GHG emissions enables formulation of appropriate policies aimed at reducing 

emissions thus enhancing efficient decision-making process.  

From econometric context, we use an autoregressive (AR) model. An AR model is one where a 

variable is regressed on itself by one lag period. Chatfield (2000) stipulates that a process  xt
 is 

said to be an autoregressive process of order p (abbreviated  pAR ) if it is a weighted linear sum 

of the past p values plus a random shock formulated as: 

zxxxx tptpttt


  ...
2211

........................................................................................ (1) 

Where zt
denotes a purely random process with zero mean and variance

2

z
. If the backward 

shift operator B such that xBx tt 1
 . It is important to note that the backward shift operator has 

the effect of changing the period t to a period 1t . The  pAR model is formulated as follows: 

  zx tt
B  .................................................................................................................................. (2) 

Where     BB
p

p
B   ...1

2

21
 is polynomial in B of order .p According to Chatfield 

(2000), the properties of AR processes defined by equation (1) is examined by focusing on the 

properties of the function  . Since B is an operator, the algebraic properties of  have to be 

investigated by examining the properties of  x , where x denotes a complex variable rather than 

by looking at  B .  

It can be shown that equation (2) has a unique causal stationarity solution if the roots of   0x

lie outside the unit circle. The solution is follows the following formulation: 

zx jt
j

jt 






0

 ........................................................................................................................... (3) 

Taking into cognizance that for some constants 
j
should conform to .

j
 Equation (3) 

above simply postulates that AR process is stationary provided the roots of   0x lie outside the 

unit circle.  

Generally, the simplest is the first order formulated as: 



10 | P a g e  
 

zxx ttt


1
 .............................................................................................................................. (4) 

It is imperative to note that the stationarity of AR times series is crucial as far as time series 

analysis is concerned. This is possible if the following condition if 1  is satisfied. One way to 

test for stationarity is the use of Autocorrelation Function (ACF)  

According to Chatfield (2000), the ACF of stationarity  1AR process is given by 
k

k
 for 

nk ,...2,1 . The ACF is a convenient way of summarizing the dependence between observations 

in a stationary time series (Nemec, 1996). It is vital to note that when it comes to higher order 

stationarity AR processes, the ACF is a mixture of terms which cline exponentially. In order to 

obtain ACF, a set of difference equations commonly referred to as Yule-Walker equations are 

applied. Yule-Walker equation is formulated as: 


pkkkkk 

 ...
2211

......................................................................................... (5) 

Where ,,...2,1 nk  0
0
 . One of the important useful property of  AR process is the ability to 

show that the partial ACF is zero at all lags greater than ; implying that the sample ACF can be 

used to determine the order of an AR process. This is done by focusing the lag value at which the 

sample’s partial ACF “cuts-off” i.e. should be approximately zero or at least not significantly 

different from zero for higher lags (Chatfield, 2000). 
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4. Results and discussions 

4.1 Graphical representation of GHG emissions 

 

Figure 1: Savanna grassland GHG emissions from 1993 – 2012 in Kenya. 

Data source: FAOSTAT 

Figure 1 shows the pattern of GHG emissions from Kenya’s Savanna grassland. The graph 

indicates that there has been variability in the level of emissions. For instance, between 1993 and 

1997, there was no significant variation in emissions. However, it is evident that much 

fluctuations began during after 1997. During the year 1998, emissions level increased 

significantly from 221 to 832 gigagrams (Gg). Interestingly, between 1999 and 2002, there 

emission levels reduced significantly. Other peaks in emission level are evident during 2003, 

2007 and 2012. During the year 2012, the emission level rose to 916 Gg. representing the highest 

ever under the period of study. For a summary of descriptive statistics (see table 1).   

Table 1: Descriptive statistics of emissions from Kenya’s Savanna grassland 

Minimum Maximum Range Mean Median Variance Skewness Kurtosis 

99.2723 916.298 817.026 311.211 232.155 54897.2 1.01222 3.74187 

N=20               
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4.2 Results of AR model 

Table 1 shows the results of the AR model. The estimation of the AR model follows the 

regression of the emission variable y
t
 over its lags. Specifically, the AR model was formulated 

in Eviews version 9 statistical software as y
t

c y
t
(-1 to -3)...................................................... (6) 

Where y
t
is the dependent variable, c is the constant term y

t
(-1 to -3) represents the lags of the 

dependent variable by periods one, two and three respectively. 

Table 2: AR model results 

Variable Coefficient Std. Error t-statistic Prob. 

Constant 742.247 178.688 4.154 0.001 

YT(-1) -0.375 0.295 -1.272 0.226 

YT(-2) -0.509 0.289 -1.760 0.102* 

TT(-3) -0.629 0.303 2.077 0.058** 

     R-Squared 

 

0.344 

  Adjusted R-Squared 0.193 

  S.E Regression 229.335 

  Log likelihood -114.240 

  F-statistic 

 

2.277 

  Prob (F-statistic) 0.128* 

  Durbin-Watson stat 1.977     

 

Table 2 shows the results of the AR (dynamic) model. Data analysis was done by using The Least 

Squares Method (LSM). The AR model is the preliminary model estimated before forecasting is 

done. The existence of a relatively high R-squared value (34%) in the estimated model is an 

important pre-condition for forecasting of time series data. The value of R-squared is an indicator 

of model fitness. In simple terms, 34 percent of the variation in the dependent variable y
t
is 

accounted for by the lags i.e. the three lags as indicated in equation six (6). However, Greene 

(2008) point out that R
2
 as a measure of goodness of fit suffers from challenges relating to 

degrees of freedom used in estimating the parameter. In regard to this, R
2
 does not decrease as 

one adds additional variable thus resulting in improper goodness of fit. This implies that one can 

push R-squared value higher simply by adding more regressors (Greene, 2008). Further, our 

regressors are statistically significant at ten and one percent thereby conforming to the normal 

guideline that at least 50 percent of the variables should be statistically significant for the model 

to be acceptable. Interestingly, the F-statistic and the corresponding probability value is 

statistically significant at 10 percent.  
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Even though the results of the AR preliminary model are acceptable, the model has to be tested 

further for serial correlation. We therefore use Breusch-Godfrey Serial Correlation LM test to 

determine whether seral correlation exists of not. The results are as indicated in Table 2 below. 

Table 3: Results of serial correlation test 

Breusch-Godfrey Serial Correlation LM Test   

F-statistic 

 

1.528 Prob. F(2,11) 0.260 

Obs*R-squared 3.696 Prob.Chi-square (2) 0.158 

Results show that the probability value of the observed R-squared (0.158) is statistically 

insignificant. This implies non-existence of serial correlation thus leading to failure to reject the 

null hypothesis. The existence of no serial correlation in the model is indeed a good indicator as 

far as the usefulness of the model is concerned in time series forecasting.   

In order to validate the finding of non-existence of serial (autocorrelation), the study uses the 

correlogram approach. Drawing from the work of  Nemec (1996), the correlogram or sample 

autocorrelation function is obtained by replacing  yy
ktt

COV


,  and  y
t

Var  in the true 

autocorrelation function with the corresponding sample covariance formulated as: 

  r
y

yy
kn

t
t

kn

t
ktt

y

yy

kACF 




















































1

1

2

………………………………………………………… (7) 

Thereafter, the autocorrelation coefficient r k
is plotted against k . If the estimates are reliable, 

then the sample size n should be large relative to k with the assumption of non-existence of 

outliers in the data set. The correlogram results are as presented graphically (see figure 2), the AC 

values above are close to zero.  

 

Figure 2: AC and PAC functions respectively. 
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According to Nemec (1996), the sample ACF for a purely random or “white noise: series should 

be zero for all non-zero lags. In addition, a time series with a trends, the ACF should fall slowly 

as the number of lags increase. Conversely, a time series with seasonal or cyclic component 

exhibits a correlogram with oscillatory pattern (Nemec, 1996).  This is the case of the 

aforementioned correlogram in the context of this study.  However, even though the correlogram 

indicate no serial correlation, we confirm the results using Q-statistic values. Focusing on the p-

values of the Q-statistics, it is evident that they are greater than 5 percent degree of statistical 

significance. Therefore, we fail to reject the null hypothesis of no serial correlation in the model. 

The existence of no serial correlation therefore implies that our model is fit for forecasting.  

Table 4: Correlogram results 

Lag AC PAC Q-stat. Prob. 

1 -0.092 -0.092 0.172 0.678 

2 0.171 0.164 0.805 0.669 

3 -0.045 -0.017 0.852 0.837 

4 -0.183 -0.224 0.682 0.794 

5 0.101 0.088 0.955 0.855 

 

4.3 Forecastig results 

The study used both dynamic and static forecasting techniques. The actual GHG emissions data 

was from the year 1993 to 2012. The out of sample forecasting covers the period of 2009 to 2021. 

This implies that the forecasting will cover twelve years. Figure 3 shows some values of 

forecasting evaluation.  

Figure 2: Forecast of equation YTF_Dynamic 
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The values on the right side of the graph are known as forecasting evaluation. One of the most 

critical values is the Root Mean Square Error (RMSE) and the smaller the value the better the 

predictability of model. In other words, the RMSE offers the basis for benchmarking the 

forecasted model since it measures the gap between the actual value and the forecasted value. 

The blue line is the forecasted value of the dependent variable YT sandwiched between the 95 

percent confidence interval. The fact that the forecasted equation passes through 95 percent 

confidence interval is important aspect of forecasting. Figure 4 presents the values of forecasting 

using a static model. 

 

Figure 3: Forecast of equation YTF_Static 

 

The values of the static model also indicate that the forecasted equation lies between the 95 

percent confidence levels with a RMSE of 237.08. The static model has a smaller RMSE as 

compared to the dynamic model meaning that a static model has exhibits a greater predictive 

power. Figure 5 shows a combination of both dynamic and static forecasting. 

 

Figure 4: Dynamic and static forecasting. 
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It is evident from the results of figure 5 that both static and dynamic forecasting are moving 

towards a similar trend. However, it is worth pointing out that static forecasting only allows to 

prediction by one year ahead while dynamic forecasting allows several years. However, one has 

to be careful how far to project since as you proceed much into the future, the values may not be 

accurate owing from the uncertainty.   

Table 5: Trend analysis Model Summary for Savanna emissions 

R 

R-

Squared 

R-Squared 

Adjusted 

Sum Squared Error 

(SSE) Mean Squared Error (MSE) 

0.06195 0.999023 0.999023 1039044.834 57724.71298 

N = 20             

 

 

Figure 5: Actual and predicted graph 
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Figure 6: Actual and forecasted graph (No differencing) 

When we carry out seasonal differencing with logarithm base 10, the following results are gotten.  

 

Figure 7: Actual and predicted after differencing 
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Figure 8: Actual and forecasted after differencing 

 

The figure below presents the results of neural network with sigmoid and bipolar sigmoid as 

activation functions respectively. 

Table 6: Results of the neural network 

 Activation function Iteration Error MAE MSE 

Sigmoid 10,000 0.006 35.93 3174 

Bipolar Sigmoid 10,000 0.001 5.568 103 

Semi Linear 10,000 0.0078 51.693 3628.6 
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Table 7: Neural Network Model summary 

Input layer neuron      9 

Network architecture 

   Hidden layer neurons 

  

12 

Output layer neurons 

  

1 

Back propagation 

learning       

Learning rate 

   

0.05 

Momentum 

   

0.5 

Criteria         

Error 

   

0.0078 

MSE 

   

3628.6 

MAE 

   

51.693 

     Included observation 

(after adjusting 

endpoints)       10 

 

 

Figure 9: Actual and predicted neural network model 
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Figure 10: Actual and forecasted Neural Network model 

5. Conclusions and policy recommendation 

Following the findings of this study, it is evident that under business as usual scenario, GHG 

emissions from Savanna grasslands will continue posing threat not only to the dryland livelihoods 

but also to the global arena at large. This is due to the fact that GHG emission is an international 

negative externality with no boundaries. The study envisages that if the worrisome trend is not 

addressed, it is likely to reinforce poverty among pastoralists and agro-pastoralists. In terms of 

the policy, the government should take acute measures to ensure that GHG emission from such 

vulnerable environments is reduced significantly. Further, promotion of the adoption of Climate 

Smart Agriculture (CSA) technologies will play a key role in reducing the impact of emissions. 

Such CSA technologies include conservation agriculture, agroforestry among others.  
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