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Abstract 

Global demand for food and farm commodities continues to grow, while land and other natural 

resources are becoming increasingly scarce. Sustainable intensification is often seen as a new 

paradigm for increasing agricultural productivity in a socially and environmentally responsible 

way. Sustainable intensification requires a broad portfolio of technologies, including improved 

seeds, fertilizers, and various natural resource management (NRM) practices. However, possible 

synergies between different types of technologies are not yet sufficiently understood. Here, we 

address this knowledge gap. Using representative data from small farms in Kenya and a 

propensity score matching approach, we analyze income effects of various technologies and 

technology combinations. When adopted alone, some innovations produce positive effects, while 

others do not. Effects of certain technology combinations are larger. The largest income gains 
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occur when improved seeds are adopted together with organic manure and zero tillage practices. 

This points at important synergies between input-intensive and NRM technologies. Yet, the 

number of farmers that have adopted such promising technology combinations is relatively 

small, implying that synergies are not yet fully exploited. More impact studies that explicitly 

account for possible synergies can add to the knowledge that is needed for designing and 

promoting technology combinations suitable for particular contexts. 

 

Keywords: Agricultural technology; Sustainable intensification; Economic impact; Maize 

farming; Sub-Saharan Africa 

 

1. Introduction 

Global demand for food and farm commodities continues to grow, while land and other 

natural resources required for agricultural production are becoming increasingly scarce (Godfray 

et al., 2010; Hertel, 2015). In Sub-Saharan Africa, population growth is particularly strong and 

will likely remain so over the coming decades. Sub-Saharan Africa is also the region with the 

highest rates of poverty and undernutrition, and the lowest rates of productivity growth in 

agriculture. Many of the poor and undernourished people live in rural areas and depend on 

smallholder agriculture as a source of income and employment. To reduce poverty and increase 

food security in Sub-Saharan Africa will require substantial productivity and income growth in 

the small farm sector (Foresight, 2011). There is an urgent need for sustainable agricultural 

intensification, defined as producing more from the same area of land while reducing negative 

environmental impacts and increasing contributions to environmental services (Godfray et al., 

2010; Pretty, 2011). 

The development and use of improved seeds, chemical fertilizers, pesticides, and 

irrigation has contributed to large productivity gains in Asia and Latin America over the last few 

decades. These developments became widely known as the green revolution (Evenson and 

Gollin, 2003). In Africa, these input-intensive technologies have not been adopted to the same 

extent, due to various constraints. Wider use of improved seeds and agrochemicals will have an 

important role to play for increasing and stabilizing yields in the African small farm sector. 

However, in addition to the use of external inputs sustainable intensification will also require 

improved agronomy to conserve natural resources. Natural resource management (NRM) 

technologies build on integrated agronomic principles and include practices such as conservation 

tillage, intercropping, terracing of sloped land, and use of locally available organic inputs. NRM 

technologies can reduce farmers’ reliance on external inputs and thus reduce the environmental 

footprint of agricultural production (Altieri, 2002; Hobbs et al., 2008). NRM practices can also 

help to reduce resource degradation and make farming more resilient to varying climatic shocks 

(Sanchez, 2002; Di Falco and Veronesi, 2013). 
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While in the wider public debate, input-intensive technologies and NRM practices are 

often depicted as two conflicting approaches (Greenpeace Africa, 2015), recent evidence shows 

that farmers sometimes adopt combinations of both types of technologies (Wainaina et al., 2014; 

Kassie et al., 2015a). Synergistic relationships may contribute positively to agricultural 

production and incomes. For instance, Sanchez (2002) argued that green revolution varieties 

could have been more successful in Africa if they had been adopted together with improved soil 

management practices. While this is plausible, there is little concrete evidence about synergistic 

relationships in smallholder environments. This is mainly due to the fact that available impact 

studies primarily focus on single technologies or compare effects of similar types of 

technologies. For instance, recent studies have analyzed productivity and income effects of 

improved seeds, sometimes in combination with chemical inputs (Becerril and Abdulai, 2010; 

Asfaw et al., 2012; Kabunga et al., 2014; Mathenge et al., 2014; Shiferaw et al., 2014). Other 

studies have looked at the impact of organic manure, conservation agriculture, and related soil 

and water management practices (Pender and Gebremedhin, 2007; Kassie et al., 2010; Wollni et 

al., 2011; Kassie et al., 2015b). We are not aware of studies that have explicitly analyzed the 

impacts of adopting combinations of input-intensive and NRM technologies. 

We address this research gap, using representative survey data from maize farmers in 

Kenya. In particular, we analyze and compare the impacts of different types of technologies – 

such as improved seeds, chemical fertilizers, organic manure, zero tillage, and crop residue 

management – as well as various technology combinations on farm household income. 

Household income is chosen as a comprehensive welfare measure, as looking at crop yields 

alone may be misleading. A propensity score matching approach is used to reduce problems of 

selection bias. As the analysis builds on data collected in one single year and the number of 

adopters for certain technology combinations is relatively small, our intention is not to provide 

conclusive evidence about impacts and synergies. Rather, we want to highlight that important 

synergistic relationships exist, which should be accounted for more explicitly in future 

technology adoption and impact studies.  

The rest of this article is structured as follows. Section 2 provides an overview of the 

survey data and the technologies considered in the impact analysis, while section 3 introduces 

the statistical methods. Results are presented and discussed in section 4. Section 5 concludes. 

 

2. Data and technologies considered 

2.1. Farm survey 

A representative survey of maize-producing farm households was conducted in Kenya, 

covering all of the country’s six agroecological zones (AEZs) as defined by Hassan (1998). 

Maize is the main staple food crop in Kenya and is produced by almost all farm households for 

home consumption; surplus quantities are sold in local markets. To select households, we used a 

multi-stage random sampling technique, building on official statistics and census data (KNBS, 

2010). In each AEZ, we randomly selected sub-locations (Kenya’s smallest administrative units). 

The appropriate number of sub-locations was determined proportional to the maize area in each 
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AEZ. In total, 120 sub-locations were sampled. In each sub-location, 12 households were 

randomly selected, except for the coastal lowlands where only six households were selected per 

sub-location due to budgetary constraints. The total sample includes 1344 farm household 

observations. Table 1 shows a few general characteristics of the six AEZ and the regional 

distribution of the sampled households. 

 

Table 1: Agroecological zones in Kenya and regional distribution of sampled households 

 

Highland 

tropics 

Moist tran-

sitional 

Moist mid-

altitude 

Dry tran-

sitional 

Dry mid-

altitude 

Lowland 

tropics 

Elevation (meters) 1600-2900 1200-2000 1100-1500 1100-1700 700-1400 <700 

Annual rainfall(mm) >1800 1000-1800 800-1200 <800 400-800 400-1400 

Average temperature (°C) 15.2 19.7 22.1 19.7 22 25.5 

Maize area (‘000 ha) 307 461 118 118 118 33 

Share of national maize 

production (%) 
35 20 20 10 10 5 

Potential maize yield 

(t/ha) 
6.7 5.2 5.2 4.5 2.7 3.3 

Actual maize yield (t/ha) 2.0 0.7 1.1 1.1 0.5 1.0 

Share of households 

surveyed (%) 
18 26 18 15 16 7 

Source: Adapted from Hassan (1998) and Jaetzold et al. (2005).  

 

The survey was implemented between December 2012 and February 2013. Face-to-face 

interviews were conducted by a local team of enumerators who were supervised by the 

researchers. The structured questionnaire focused on maize production aspects at the individual 

plot level, technology adoption, other farm and non-farm economic activities of the household, 

as well as broader socioeconomic household and contextual characteristics. The reference period 

for all income and expenditure data was the calendar year of 2012. The average farm size in the 

sample is 5.6 acres. Households are relatively poor with a mean per capita annual income of 460 

US dollars. Further descriptive statistics are presented in section 4. 

 

2.2 Technologies considered 

We analyze the impact of seven different technologies and selected technological 

combinations that have been adopted by maize farmers in Kenya to varying extents. Out of the 

seven technologies, two can be classified as input-intensive technologies, namely improved 

maize seeds and chemical fertilizers. Improved seeds, which were adopted by 85% of the farmers 

in our sample, include both hybrids and open-pollinated varieties (OPVs). Improved hybrids and 

OPVs that are available in Kenya have higher yield potentials than traditional landraces under 

favorable environments. While breeders are currently also developing more stress-tolerant 

improved varieties of maize, such seeds are not yet commercially available in Kenya. The other 
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five technologies considered can be classified as NRM technologies, namely terracing, soil 

bunds, crop residue management, zero tillage, and use of organic manure. 

Terraces and soil bunds are both practices intended to reduce the problem of soil erosion, 

especially on sloped land (Gebremedhin and Swinton, 2003). These two practices differ in terms 

of investment costs, durability, and effectiveness of erosion abatement. Stone terraces are 

constructed walls that retain embankments of soil. Their construction involves preparing a base 

for the wall, transporting construction rocks, and carefully layering the stones. Stone terraces are 

more effective than soil bunds in preventing soil erosion on steep slopes prone to heavy runoff. 

More than 50% of the farmers in the sample have actually constructed stone terraces. Soil bunds, 

on the other hand, are embankments made by ridging soil on the lower side of a ditch along a 

slope contour (Gebremedhin and Swinton, 2003). They can be constructed by hand digging or 

plowing and are cheaper and easier to establish than stone terraces. Soil bunds are used by 20% 

of the sample farms. 

Crop residue management and zero tillage are both important elements of conservation 

agriculture (Hobbs et al., 2008), which however are not always adopted together. In our sample, 

crop residue management is practiced by 60% of the farmers, whereas zero tillage was adopted 

by only 13%. Both practices help to conserve the structure of the uppermost soil layers, thus 

reducing erosion and water evaporation. Crop residue management (mulching) also improves 

water infiltration and reduces maximum temperatures in the soil surface layers. Finally, livestock 

manure, which is used by 65% of the sample farmers, adds nutrients and organic matter to the 

soil. 

 

 

 

 

3. Methods 

3.1. Impact assessment framework  

We analyze the impact of technology adoption on farm household income. Income does 

not only refer to cash income but also includes the value of subsistence production. Agricultural 

technologies can affect income through various pathways, such as higher yields, lower 

production costs, or changes in household labor requirements that may entail time reallocation 

and higher or lower incomes from alternative economic activities. As different technologies can 

involve different pathways, we use income as a comprehensive indicator of living standard. 

The analysis is based on observational data, that is, the technologies considered were not 

assigned randomly. Instead, farmers chose themselves which particular innovations to adopt. 

Therefore, adopters and non-adopters are likely different in terms of various characteristics, and 

we cannot simply interpret observed income disparities as impacts of the technology without 

controlling for confounding factors. One common approach to deal with possible selection bias 

in impact assessment is to use instrumental variable (IV) regression techniques (Heckman and 

Vytlacil, 2005; Imbens and Wooldridge, 2009). However, IV methods require at least one valid 
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instrument that is correlated with technology adoption but not correlated with income. We were 

unable to identify suitable instruments for all seven technologies and additional technology 

combinations, which is why we decided to use propensity score matching (PSM) techniques, 

another common approach to reduce selection bias in impact assessment (Rosenbaum and Rubin, 

1983; Dehejia and Wahba, 2002; Abadie and Imbens, 2006). 

 

3.2. Propensity score matching 

PSM reduces selection bias by only comparing groups of adopters and non-adopters 

(“treated” and “untreated” subjects in the terminology of the impact evaluation literature) that are 

sufficiently similar based on observable characteristics. We follow five steps involved in 

applying PSM, as outlined by Baker (2000) and Caliendo and Kopeinig (2008). First propensity 

scores are estimated for each farm household using a discrete choice model. We use a logit 

regression model that leads to consistent parameter estimates (Baker, 2000; Ravallion, 2001). 

Propensity scores describe the likelihood of adopting a certain technology based on a set of 

covariates. Second, the matching algorithm is selected. Matching is the technique to select 

treated and untreated subjects that are similar in terms of their propensity score. 

We use kernel based matching (KBM) and radius matching (RM) methods. KBM is a 

non-parametric matching method that uses the weighted average of the outcome variable 

(household income) for all non-adopters to construct the counterfactual outcome, attributing a 

higher weight to those observations that provide a better match. This weighted average is then 

compared with the outcome variable for the group of adopters. The difference in mean outcomes 

provides an estimate of the average treatment effect on the treated (ATT). For KBM, we use a 

bandwidth of 0.1. RM is a variant of caliper matching (Dehejia and Wahba, 2002). Applying 

caliper matching means that an individual from the group of non-adopters is chosen as a 

matching partner for an adopter that lies within the caliper (propensity range) and is closest in 

terms of propensity score (Caliendo and Kopeinig, 2008). RM as a variant of caliper matching 

implies that not only the nearest neighbor within each caliper is used as a match, but all of the 

comparison members within the caliper. A benefit of this approach is that it uses only as many 

comparison units as are available within the caliper and therefore allows for usage of extra 

(fewer) units when good matches are (not) available. For RM we use a radius caliper of 0.1. A 

balancing test is then conducted after matching to ascertain that the differences in covariates 

between adopters and non-adopters have been eliminated, such that the matched comparison 

group can be considered as a credible counterfactual (Caliendo and Kopeinig, 2008). 

Third, the common support (overlap) condition is identified. Common support is the area 

where the balancing score has positive density for both treated and untreated units. No matches 

can be made to estimate average treatment effects when there is no overlap. Fourth, the ATT is 

estimated in the common support region based on the selected matching algorithm. Fifth, 

sensitivity analysis is undertaken to test the robustness of the results. In particular, PSM assumes 

that treated and untreated subjects differ only in terms of observed factors, which is referred to as 

the conditional independence assumption. Since with PSM it is not possible to estimate the 
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magnitude of unobserved selection bias, Aakvix (2001) suggested the use of Rosenbaum bounds 

to test the null hypothesis of zero change in the ATT when different values of unobserved 

selection bias are introduced. This test shows how hidden bias – if relevant – might alter 

inferences about the ATT, but it does not indicate whether hidden bias is actually an issue. 

 

4. Results and discussion 

4.1. Descriptive statistics 

Table 2 presents a summary of the key variables used in this analysis. As explained 

above, the outcome variable for the impact evaluation is household income. We look at total 

household income as well as income in per capita terms. The treatment variables are technology 

adoption, referring to the seven technologies described above plus selected combinations. In 

principle, 120 different combinations are possible, but many of these combinations are not 

observed in reality. We focus on those that are more common so that a sufficient number of 

adopters is available for the statistical analysis. It should be mentioned that data on technology 

adoption were collected at plot level, even though the impact evaluation is done at household 

level. We define a household as adopter if it adopted the particular technology on at least one of 

the plots. The covariates used to explain adoption are also shown in Table 2. They comprise a set 

of socioeconomic, institutional, farm, and agroecological characteristics. We also use two 

variables related to climatic shocks, namely drought and flooding events experienced by farmers 

during a period of 10 years prior to the survey. 

 

 

 

Table 2: Summary statistics of outcome variables, technology adoption, and covariates 

Variable name Description of the variable Mean Std Dev 

Outcome variables    

Household income Total annual income generated by the household in KES
a 

257,643 323,721 

Per capita income Total household income per person in KES 45,791 70,582 

Technologies 

Improved seeds =1if seeds are improved maize varieties, 0 otherwise 0.85 0.36 

Fertilizer =1 if farmer applied chemical fertilizers, 0 otherwise 0.60 0.49 

Terraces =1if farmer has constructed terraces , 0 otherwise 0.55 0.50 

Soil bunds =1 if farmer had soil bunds on the plot, 0 otherwise 0.20 0.40 

Crop residues =1if farmer left any crop residues on the plot, 0 otherwise 0.60 0.49 

Zero tillage =1if farmer practiced zero tillage, 0 otherwise 0.13 0.33 

Manure =1 if farmer used animal manure, 0 otherwise 0.65 0.48 

Covariates 

Socioeconomic characteristics 

Age Age of the household head in years 53.96 13.86 

Male = 1 if the household head is male, 0 otherwise 0.81 0.39 

Education Years of formal education of the household head 7.71 4.48 

Household size Number of household members. 6.46 2.56 

Farm size Total land owned by the household in acres. 5.59 9.12 
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TLU
 

Total livestock units 5.57 7.46 

Occupation = 1 if farming is the main occupation of the household head, 0 

otherwise 

0.76 0.42 

Productive assets Total value of non-land productive assets in KES 42,552 173,962 

Off-farm income Proportion of off-farm income in total income 0.47 0.31 

Institutional variables 

Credit  =1if household took any credit in the previous year, 0 if not 0.20 0.40 

Group membership =1 if household participates in any group and 0 otherwise. 0.87 0.33 

Market distance Distance in walking hours to the nearest main market 1.62 1.57 

Info improved seeds =1 if household got extension information on improved maize 

varieties, 0 otherwise 

0.65 0.48 

Info on zero tillage =1 if household got extension information on zero tillage, 0 

otherwise 

0.14 0.34 

Info on crop residue =1 if household got extension information on crop residues, 0 

otherwise 

0.33 0.47 

Info on soil management =1 if household got extension information on soil and water 

conservation practices, 0 otherwise 

0.47 0.50 

Farm characteristics 

Slopy land Proportion of slopy land 0.69 0.44 

Fertile land Proportion of fertile land 0.38 0.46 

Own land Proportion of owned land out of all land under cultivation 0.88 0.25 

Climatic shocks  

Drought Frequency of drought experienced between 2003 – 2012  4.06 4.35 

Flooding Frequency of flooding experienced between 2003 – 2012  1.10 1.60 

AEZ dummies
b 

Dry mid-altitude
 

=1 if HH is located in the dry mid attitude, 0 otherwise. 0.16 0.37 

Dry transitional =1 if HH located in the dry transitional zone, 0 otherwise 0.15 0.36 

Moist transitional =1 if HH located in the moist transitional zone, 0 otherwise  0.26 0.44 

High tropics =1 if HH is located in the high tropics, 0 otherwise 0.18 0.38 

Moist mid-altitude =1 if HH is located in the moist mid attitude, 0 otherwise. 0.18 0.38 

The number of observations is n=1337 (seven observations had to be dropped due to missing values). 
a 
KES, Kenyan 

Shilling; 1 US dollar = 100 KES. 
b
 For the AEZ, the lowland tropics are defined as base category. 

Figure 1 provides an overview of the structure of household incomes by agroecological 

zone. In spite of some regional differences, maize production accounts for 10-20% of total 

incomes in all zones. Other crops and livestock together account for another 30-40%, implying 

that off-farm activities account for 40-60% of total incomes. Among the off-farm activities, 

employed labor is the most important source of income, followed by self-employed trade and 

business activities. Table 3, compares income structures between farmers who did and did not 

adopt certain technologies. Various significant differences can be observed, underlining that the 

sub-groups are not identical and pursue different economic strategies. 

 

 

Figure 1: Average structure of household income by agroecological zones 



9 
 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Lowland
tropics

Dry mid
altitude

Dry
transitional

Moist
transitional

High tropics Moist mid
altitude

Overall

Maize Other crops

Livestock and livestock products Labor

Rent and remittances Trade and business



10 
 

Table 3: Average structure of household income by status of technology adoption (income shares in %) 

 Maize Other crops Livestock Labor Rent and remittances Trade and businesses 

Adopters Non-

adopters 

Adopters Non-

adopters 

Adopters Non-

adopters 

Adopters Non-

adopters 

Adopters Non-

adopters 

Adopters Non-

adopters 

Improved seeds 16.64* 14.51 22.51*** 16.61 17.09*** 11.64 23.82*** 31.84 5.22*** 8.80 14.71 16.59 

Fertilizers 17.63*** 14.32 23.49*** 18.73 16.99 15.13 21.85*** 29.92 5.09** 6.82 14.96 15.07 

Terracing 15.84 16.89 21.71 21.48 14.70*** 18.13 25.89 24.03 6.06 5.43 15.79 14.05 

Soil bunds 16.03 16.39 24.46** 20.88 18.38** 15.71 21.49** 25.95 6.32 5.63 13.32 15.43 

Crop residues 18.63*** 12.91 21.92 21.14 15.16** 17.88 23.84* 26.84 4.82*** 7.20 15.65 14.05 

Zero tillage 15.61 16.42 23.89 21.27 15.44 16.37 23.20 25.32 6.57 5.66 15.29 14.96 

Manure 15.29*** 18.15 21.87 21.13 16.67 15.50 25.02 25.10 5.97 5.43 15.17 14.69 

Overall  16.32 21.60 16.25 25.05 5.77 15.00 

***, **, and * indicate significant differences in income shares between adopters and non-adopters at the 1%, 5%, and 10% level, respectively (t-test results). 
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Table 4 compares mean household incomes between adopters and non-adopters of each of the 

seven technologies. Adopters of input-intensive technologies have significantly higher incomes 

than non-adopters. In comparison, income differences between adopters and non-adopters of 

NRM technologies are less pronounced. However, as was discussed previously, these 

comparisons cannot be interpreted as impacts of technology adoption because of systematic 

differences between adopters and non-adopters. PSM results that account for confounding factors 

are presented in the following section. 

 

Table 4: Average household income levels by technology adoption status 

 Household income  Per capita income 

 Adopters Non-adopters  Adopters Non-adopters 

Improved seeds 274,379*** 165,227  48,886*** 28,700 

(341,817) (168,528)  (75,198) (30,484) 

Fertilizer 281,019*** 229,049  52,461*** 35,635 

(343,532) (287,662)  (81,977) (46,600) 

Terracing 254,066 261,958  45,765 45,823 

(297,444) (353,028)  (63,737) (78,100) 

Soil bunds 272,661 253,843  52,026 44,213 

(409,995) (298,074)  (102,419) (59,870) 

Crop residues 257,391 258,015  41,900** 51,533 

 (341,788) (295,352)  (71,763) (68,466) 

Zero tillage 316,030** 249,195  53,214 44,717 

 (369,461) (315841)  (80,556) (68,993) 

Manure 265,995 242,681  48,922** 40,183 

(352,262) (264,715)  (80,658) (47,024) 

***, **, and * indicate significant differences in incomes between adopters and non-adopters at the 1%, 5%, and 

10% level, respectively (t-test results). Incomes are measured in Kenyan Shilling (KES per year); 1 US dollar = 100 

KES. Standard deviations are shown in parentheses. 

 

4.2. Impact results 

PSM involves estimating propensity scores for each of the technologies using logit 

models. The logit model results for the seven technologies considered in this study are shown in 

the appendix Table A.1. Using the same covariates we also estimated logit models to explain the 

adoption of relevant technology combinations and to calculate propensity scores. The propensity 

scores for adopters and non-adopters were then matched and balanced to find credible 

counterfactuals. Evidence of successful matching is presented in the appendix Table A.2 in terms 

of reduced bias, low pseudo-R
2
, and insignificant log-likelihood values after matching. 

Successful bias reduction was achieved for all technologies except for improved seeds. To 

achieve successful matching, the number of available untreated controls should be greater than 

the number of treated subjects (Lunt, 2014). Due to the high share of adopters of improved seeds 

in our sample, this condition could not be fulfilled for this particular technology. To enable 
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balancing, we had to reduce the number of covariates in the logit model for improved seeds. 

Also, we used a tighter caliper and kernel bandwidth of 0.05 for improved seeds (as compared to 

0.1 for the other technologies) to reduce bias as much as possible. 

Similarly, the common support condition was fulfilled for all technologies except for 

improved seeds (propensity score histograms are shown in the appendix Figure A.1). For 

improved seeds, we could not find suitable matches for 156 adopters and therefore the ATT 

estimates for this technology should be interpreted with caution; it only represents the impact on 

the income of those adopters for whom suitable matches were found. We present differences in 

important covariates between matched and unmatched adopters in the appendix Table A.3. 

Matched adopters are less wealthy and have lower propensity scores than unmatched adopters, 

meaning that the ATT results are more relevant for the lower part of the income distribution. 

Problems with successful matching and common support relate to the high adoption rates of 

improved seeds in three of the AEZs, namely the moist transitional zone (97%), the highland 

tropics (94%), and the dry transitional zone (87%). As an additional robustness check, we 

exclude these three AEZs and estimate the impact of improved seeds in the remaining three 

AEZs (moist mid-altitude, dry mid-altitude, and lowland tropics), where adoption rates were 

lower and matching was successful. 

Table 5 presents the estimated ATTs for the seven technologies and relevant 

combinations, with total household income and per capita income as outcome variables. Also 

shown are the critical gamma levels that indicate how hidden bias – if present – might affect the 

estimated impact. The gamma level is defined as the odds ratio of differential treatment 

assignment due to an unobserved covariate. For instance, a gamma level of 1.50 would imply 

that matched subjects would have to differ by a factor of 50% in terms of unobserved 

characteristics in order to render the estimated ATT insignificant. We only report gamma levels 

for significant ATT estimates. For estimates with low gamma levels more caution is warranted. 

The impact magnitudes and significance levels are quite robust to the chosen matching method. 

In the following paragraphs we concentrate on discussing results obtained with radius matching. 

For terracing, crop residue management, and soil bunds we do not observe any significant 

impact on household income. In comparison, for the other two NRM technologies, zero tillage 

and use of manure, significantly positive income effects are observed. Adoption of zero tillage 

increases household income by 51,527 Kenyan Shillings (KES), which is equivalent to a gain of 

approximately 16%. The effect of zero tillage on per capita income is positive but insignificant. 

Manure adopters increase their total household income by KES 36,444 (14%) and their per 

capita income by KES 10,000 (20%). 

Turning to the input-intensive technologies, adoption of improved maize seeds 

contributes to an increase in household income by almost 15%, when observations from all six 

AEZ are included. When only looking at the three AEZ with somewhat lower adoption rates, the 

ATT gets even larger, indicating that improved seeds help to raise household living standards. 

Somewhat strikingly, however, the use of chemical fertilizer does not contribute to household 

income gains. The estimated effect for fertilizer is even negative, albeit not statistically 
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significant. This is in spite of the fact that fertilizer adopters are significantly richer than non-

adopters, as was shown above in Table 4. 

What are reasons for the insignificant effect of fertilizer adoption? Average fertilizer rates 

used in the Kenyan small farm sector are low and many of the soils are nutrient-depleted, hence 

positive yield and income effects of fertilization should actually be expected. However, many of 

the farmers use fertilizers that only contain nitrogen (N), phosphorus (P), and potassium ( K). 

While these are the key macronutrients that plants need for healthy growth, several 

micronutrients – such as sulfur (S), boron (B), zinc (Zn), copper (Cu), or manganese (Mn) – are 

also required (Ryan et al., 2013). Many of the African soils are micronutrient depleted, so that 

using NPK fertilizers alone may not always result in expected yield gains (Chianu et al., 2012). 

This could also explain the notable differences in impacts between chemical fertilizers and 

manure, because manure contains micronutrients as well. When we confine the group of 

chemical fertilizer adopters to those that used fertilizers with micronutrients, the negative ATT 

estimate turns positive, even though it remains insignificant due to large standard errors (Table 

5). It should be mentioned that water constraints may also limit the effectiveness of chemical 

fertilizers. Since we only have data from 2012, which happened to be relatively dry in some parts 

of Kenya, the estimated effects should not be over interpreted. 

We now look at the effects for technology combinations in Table 5. The adoption of 

improved seeds together with chemical fertilizers does not lead to a significant ATT, which is 

related to the disappointing fertilizer effect discussed previously. However, combining improved 

seeds with manure results in highly significant impacts on household (15%) and per capita 

incomes (18%). The combination of improved seeds with zero tillage also increases household 

income beyond what both technologies achieve when adopted alone. And the largest positive 

income effects are observed when improved seeds are combined with manure and zero tillage. 

On average, this combination of three technologies produces household income gains of KES 

150,150 (35%) and per capita income gains of KES 25,669 (35%). These results clearly 

underline that important synergies exist between input-intensive and NRM technologies. On the 

other hand, we also see in Table 5 that the number of adopters of such promising technology 

combinations is relatively low, suggesting that the synergies are not yet fully exploited. 
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Table 5: Impact of the adoption of technologies and technology combinations on household income using PSM 

  Radius matching (RM) Kernel based matching (KBM) 

Impact on ATT Std error Gamma level ATT Std error Gamma level 

Improved seeds 

(treated n=1,132)  

Household income 39,885** 20,371 1.20-1.25 38,811** 20,562 1.20-1.25 

Per capita income 5,668 3,73  5,454 3,766  

Improved seeds for 3 AEZ
a 

(treated n=388)  

Household income 65,184*** 22,635 1.20-1.25 64,445*** 22,976 1.20-1.25 

Per capita income 10,813*** 3,449 1.20-1.25 10,737*** 3,496 1.20-1.25 

Fertilizer 

(treated n=807)  

Household  income -10,679 24,738  -13,280 24,957  

Per capita income 98 4,477  638 4,509  

Fertilizer (incl. micronutrients) 

(treated n=444) 

Household income 28,266 22,137  26,771 22,200  

Per capita income 2,391 4,774  2,037 4,789  

Terraces 

(treated n=731)  

Household income -11,162 22,456  -9,457 22,769  

Per capita income 2,140 4,970  2,526 5,041  

Soil bunds 

(treated n=270) 

Household income 22,171 26,802  21,466 26,916  

Per capita income 6,679 6,546  6,343 6,566  

Crop residue 

(treated n=797) 

Household income 10,859 23,699  10,325 24,112  

Per capita income -858 5,365  -657 5,463  

Zero tillage 

(treated n=169) 

Household income 51,257* 31,093 1.70-1.75 52,821* 31,265 1.70-1.75 

Per capita income 8,080 6,799  8,765 6,838  

Manure 

(treated n=858) 

Household income 36,644* 19,234 1.55-1.60 35,595* 19,422 1.55-1.60 

Per capita income 10,000*** 3,854 1.45-1.50 9,704** 3,883 1.45-1.50 

Improved seeds + fertilizer  

(treated n=759) 

Household income -7,996 23,313  -10,314 23,370  

Per capita income 991 4,449  140 4,457  

Improved seeds + manure 

(treated n=711) 

Household income 41,947** 17,366 1.50-1.55 41,026** 17,494 1.50-1.55 

Per capita income 9,576*** 3,343 1.45-1.50 9,423*** 3,364 1.45-1.50 

Improved seeds + fertilizer + manure 

(treated n=449) 

Household income 7,514 20,089  4,141 20,249  

Per capita income 3,817 4,121  3,203 4,144  

Improved seeds + zero tillage 

(treated n=146) 

Household income 57,308* 34,530 1.85-1.90 57,001* 34,562 1.80-1.85 

Per capita income 8,900 7,578  8,858 7,585  

Zero tillage+ crop residues 

(treated n=121) 

Household income 31,721 36,449  30,739 36,600  

Per capita income 1,704 6,940  1,816 6,980  

Zero tillage + manure 

(treated n=99) 

Household income 129,188*** 45,518 1.10-1.15 128,618*** 45,515 1.10-1.15 

Per capita income 22,514** 10,375 1.40-1.45 22,192** 10,374 1.45-1.50 

Zero tillage+ fertilizer 

(treated n=101) 

Household income 63,133 41,987  61,269 42,425  

Per capita income 9,160 8,994  9,237 9,093  
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Improved seeds+ zero tillage + manure 

(treated n=81) 

Household income 150,150*** 53,851 1.15-1.20 148,858*** 53,941 1.15-1.20 

Per capita income 25,669** 12,356 1.35-1.40 25,697** 53,941 1.35-1.40 

Terracing +manure 

(treated n=510) 

Household income 10,138 22,163  6,566 22,488  

Per capita income 5,945 4,867  5,684 4,936  

Improved seeds + terracing +manure 

(treated n=429) 

Household income 22,169 22,238  20,244 22,476  

Per capita income 7,574 4,930  7,391 4,969  

Improved seeds + terracing +manure+ 

fertilizer (treated n=281) 

Household income 16,296 25,175  18,208 25,476  

Per capita income 6,990 5,765  7,273 5,825  
***, **, and * significant at 1%, 5%, and 10% level, respectively. ATT, average treatment effect on the treated. Results are reported in Kenyan Shillings (KES) per year; I US 

dollar = 100 KES. a This refers to the three AEZ moist mid-altitude, dry mid-altitude, and lowland tropics where a sufficient number of non-adopters was found for robust impact 

assessment. 
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5. Conclusion 

Sustainable intensification is seen by many as the new paradigm for increasing 

agricultural productivity and incomes in the African small farm sector while conserving natural 

resources and reducing negative environmental externalities. Sustainable intensification requires 

a broad portfolio of innovations and technologies, including improved seeds, fertilizers, as well 

as various natural resource management (NRM) practices. While in the public debate 

technologies that rely on external inputs are sometimes depicted as being incompatible with 

NRM technologies, in reality there may be interesting synergistic relationships when elements of 

both types of technologies are combined. Possible synergies in smallholder environments are not 

yet sufficiently understood. Most impact studies focus on the effects of single technologies. In 

this article, we have used representative data from smallholder farmers in Kenya to compare the 

effects of various input-intensive technologies, NRM technologies, and selected combinations. 

In particular, we have used propensity score matching methods to analyze impacts of 

technology adoption on household income. The estimation results show that – when adopted 

alone – some technologies produce positive income effects, while other technologies do not. At 

the same time, some of the technology combinations lead to higher positive impacts. The largest 

positive income effects are observed when improved seeds are adopted together with organic 

manure and zero tillage practices. This clearly underlines that there are important synergies 

between input-intensive and NRM technologies. On the other hand, the number of farmers 

adopting such promising technology combinations is relatively low, suggesting that the synergies 

are not yet fully exploited. More impact studies that explicitly account for possible synergies can 

help to improve the knowledge that is needed for designing and promoting suitable technology 

combinations in particular settings. 

Our analysis has a few limitations. First, we used cross-section data from only one year, 

even though impacts of technologies may vary over time due to climatic variability and other 

factors. Second, while propensity score matching helps to control selection bias due to 

observable factors, unobserved heterogeneity may still lead to hidden bias. Third, we could only 

analyze a few technology combinations, because for other combinations we did not have 

sufficient adoption observations for meaningful impact assessment. Against this background the 

exact numerical results should be interpreted with caution. However, our intention was not to 

provide conclusive evidence. Rather, we wanted to show that important synergies between 

different types of technologies exist, which were often neglected in previous impact studies. 

Follow-up research is needed for a more comprehensive understanding. 
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Appendix  

Table A.1: Logit models for estimating propensity scores 

 

Improved 

seeds 

Improved seeds 

(3 AEZs) Fertilizer Terracing Soil bunds Crop residue Zero tillage Manure 

Male  -0.377 -0.085 0.288* -0.135 -0.075 -0.035 -0.282 

 

 (0.308) (0.189) (0.167) (0.183) (0.171) (0.241) (0.179) 

Age -0.002 0.001 0.003 -0.004 -0.008 -0.021*** -0.012* 0.011** 

 

(0.007) (0.009) (0.005) (0.005) (0.006) (0.005) (0.007) (0.005) 

Education 0.142*** 0.180*** 0.090*** -0.015 0.011 0.005 -0.052** 0.011 

 

(0.024) (0.037) (0.020) (0.019) (0.017) (0.016) (0.025) (0.017) 

Household size 0.041 0.004 -0.035 0.026 -0.026 0.105*** 0.037 -0.028 

 

(0.036) (0.048) (0.028) (0.025) (0.028) (0.031) (0.037) (0.024) 

Farms size  0.019 -0.002 -8.36E-04 -0.033** 0.032*** 0.024*** -0.039*** 

 

 (0.016) (0.008) (0.007) (0.015) (0.019) (0.008) (0.008) 

TLU  0.024 -0.039** -0.008 0.009 0.005 -0.007 0.041*** 

 

 (0.020) (0.016) (0.011) (0.013) (0.011) (0.016) (0.014) 

Occupation  -0.352 0.051 0.231 -0.018 -0.114 0.229 0.178 

 

 (0.283) (0.176) (0.161) (0.189) (0.164) (0.240) (0.162) 

Productive assets 0.199*** 0.109 0.184*** 0.083** -0.006 -0.101** -0.012 0.062 

 

(0.067) (0.110) (0.050) (0.040) (0.048) (0.042) (0.056) (0.043) 

Off farm income -1.508*** -1.795*** -0.536** 0.273 -0.399 -0.254 0.183 -0.245 

 

(0.328) (0.422) (0.249) (0.216) (0.255) (0.238) (0.334) (0.227) 

Group membership  0.052 0.056 0.307* 0.309 0.154 -0.249 0.613*** 

 

 (0.311) (0.198) (0.182) (0.255) (0.196) (0.259) (0.185) 

Market distance -0.107** -0.174*** -0.005 0.027 -0.010 0.054 0.053 -0.057 

 

(0.048) (0.060) (0.040) (0.038) (0.042) (0.041) (0.055) (0.038) 

Credit  0.277 0.422** 0.024 -0.009 0.126 0.386* -0.207 

 

 (0.296) (0.178) (0.160) (0.181) (0.176) (0.213) (0.161) 

Info on zero tillage       1.547***  

 

      (0.189)  

Info on crop residues      0.426***   

 

     (0.135)   

Info on soil management    0.421*** 0.438**    

 

   (0.146) (0.184)    

Info  improved seeds 0.787*** 1.383***       

 

(0.241) (0.333)       
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Improved 

seeds 

Improved seeds 

(3 AEZs) Fertilizer Terracing Soil bunds Crop residue Zero tillage Manure 

Own land  -0.905 -0.433 0.101 0.024 -0.213 -0.218 0.323 

 

 (0.515) (0.353) (0.256) (0.286) (0.266) (0.358) (0.246) 

Fertile land  0.260 -0.492*** -0.064 -0.441** -0.131 0.179 -0.185 

 

 (0.240) (0.155) (0.135) (0.158) (0.141) (0.187) (0.136) 

Slopy land  0.413* 0.491*** 0.988*** 0.094 0.077 -0.041 0.212 

 

 (0.227) (0.154) (0.142) (0.165) (0.149) (0.194) (0.140) 

Drought -0.045** -0.056** -0.099*** -0.011 -0.004 0.037* 0.009 -0.058*** 

 

(0.018) (0.025) (0.019) (0.015) (0.018) (0.020) (0.021) (0.016) 

Flooding   0.059 0.033 -0.077 0.039 -0.236*** -0.017 

 

  (0.059) (0.043) (0.051) (0.062) (0.078) (0.042) 

Dry mid-altitude -0.291 -0.414 -0.548 1.685*** 0.292 -2.508*** -0.740** 1.325*** 

 

(0.315) (0.342) (0.336) (0.299) (0.409) (0.381) (0.366) (0.290) 

Dry transitional 0.659*  1.086*** 2.061*** 0.135 -2.391*** -1.073** 1.046*** 

 

(0.370)  (0.329) (0.326) (0.419) (0.386) (0.418) (0.303) 

Moist transitional 1.766***  1.952*** 0.673** 0.575 -0.934** -0.233 -0.400 

 

(0.425)  (0.338) (0.298) (0.402) (0.379) (0.359) (0.278) 

High tropics 1.083***  2.416*** -0.131 1.254*** -1.169*** -0.149 -0.755*** 

 

(0.381)  (0.377) (0.313) (0.403) (0.384) (0.392) (0.288) 

Moist mid-altitude -0.884*** -1.047*** 0.552* 0.402 0.194 0.0767 -0.226 0.271 

 

(0.313) (0.341) (0.332) (0.302) (0.417) (0.409) (0.376) (0.288) 

Constant -0.787 0.480 -1.793*** -3.018*** -1.763** 2.547*** -1.410 -0.823 

 

(0.742) (1.177) (0.689) (0.636) (0.822) (0.667) (0.870) (0.594) 

Pseudo R
2
  0.225 0.176 0.274 0.130 0.051 0.200 0.118 0.117 

***, **, * significant at 1%, 5%, and 10% level, respectively. Figures in parentheses are standard errors. 
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Table A.2: Balancing tests before and after matching 

Technologies Before matching  After RM  After KBM 

 Pseudo 

R
2
 

Mean 

bias 

LR χ2 

p value 

 Pseudo 

R
2
 

Mean 

bias 

LR χ2 

P value 

 Pseudo 

R
2
 

Mean 

bias 

LR χ2 

P value 

Improved seeds only 0.225 45.2 0.000  0.008 3.8 0.065  0.008 3.8 0.059 

Improved seeds for the 3 AEZs 0.176 26.3 0.000  0.008 3.7 0.986  0.009 3.6 0.982 

Fertilizer only 0.274 30.5 0.000  0.013 4.2 0.204  0.013 4.3 0.198 

Terracing only 0.130 17.7 0.000  0.006 2.6 0.981  0.005 2.6 0.994 

Soil bunds only 0.051 11.9 0.000  0.005 3.5 1.000  0.003 2.5 1.000 

Crop residue only 0.200 23.5 0.000  0.014 3.9 0.185  0.012 3.6 0.303 

Zero tillage only 0.118 15.3 0.000  0.006 3.1 1.000  0.003 2.1 1.000 

Manure only 0.117 18.6 0.000  0.007 3.1 0.775  0.006 3.0 0.891 

Improved seeds+ fertilizer 0.255 28.6 0.000  0.013 4.0 0.294  0.013 4.1 0.349 

Improved seeds + manure 0.097 16.5 0.000  0.003 2.5 1.000  0.002 2.0 1.000 

Improved seeds+ fertilizer+ manure 0.124 19.5 0.000  0.003 2.6 1.000  0.002 2.2 1.000 

Improved seeds+ zero tillage 0.115 17.0 0.000  0.007 3.5 1.000  0.006 3.3 1.000 

Zero tillage+ crop residues 0.136 18.3 0.000  0.012 3.9 1.000  0.009 3.4 1.000 

Zero tillage + manure 0.119 17.5 0.000  0.008 4.0 1.000  0.008 3.9 1.000 

Zero tillage + fertilizers 0.140 20.9 0.000  0.011 4.6 1.000  0.008 3.7 1.000 

Improved seeds + zero tillage+ manure 0.123 18.9 0.000  0.012 4.9 1.000  0.123 4.3 1.000 

Terracing + manure 0.162 20.6 0.000  0.003 2.4 1.000  0.003 2.0 1.000 

Improved seeds + terracing + manure 0.157 21.1 0.000  0.003 2.3 1.000  0.002 1.9 1.000 

Improved seeds + terracing + manure + fertilizer 0.157 24.3 0.000  0.004 2.7 1.000  0.004 2.5 1.000 

 



Table A.3: Differences in attributes between matched and unmatched adopters of improved seeds 

Attribute Matched adopters (n=976)  Unmatched (n=156)  P value 

 Mean Std dev  Mean Std dev   

Household income 237,604*** 273,507  504,455 616,763  0.0000 

Per capita income 41,321*** 48,712  96,219 154,012  0.0000 

Propensity score 0.863*** 0.130  0.985 0.077  0.0000 

Education 7.49*** 3.98  11.71 5.67  0.0000 

Age 53.78 13.82  52.77 12.61  0.4141 

Household size 6.50 2.53  6.28 2.33  0.3015 

Productive assets 30,288*** 141,507  159,452 339,407  0.0000 

Off-farm income 0.483*** 0.294  0.240 0.284  0.0000 

Market distance 1.695*** 1.646  1.247 1.239  0.0011 

Drought 4.022*** 4.299  2.083 2.170  0.0000 

Dry mid-altitude 0.163*** 0.370  0.000 0.000  0.0000 

Dry transitional 0.178*** 0.382  0.044 0.206  0.0000 

Moist transitional 0.225*** 0.418  0.776 0.419  0.0000 

High tropics 0.198 0.399  0.190 0.393  0.8085 

Moist mid-altitude 0.166*** 0.373  0.006 0.080  0.0000 

***, **, * significant at 1%, 5%, and 10% level, respectively. 
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Figure A.1: Propensity score histograms using radius matching showing common support between treated and untreated 
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