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Introduction
Agriculture is sensitive to changing temperature and 

precipitation patterns as well as to frequencies of extreme 
weather events. A growing number of studies have dealt with 
the impact of climate change on agricultural production and 
the farming sector (e.g. Mendelsohn et al., 1994; Chang, 
2002; Seo and Mendelsohn, 2008; van der Werf, 2008; Wang 
et al., 2009; Di Falco et al., 2011; Chang et al., 2012; Kamin-
ski et al., 2013; Nelson et al., 2014, Mitter et al., 2015). The 
effects of climate change on agricultural production would 
highly depend upon the geographical location of the crop 
and animal production, with farms in some regions benefi t-
ing (Ghaffari et al., 2002) and farms in other regions suffer-
ing adverse effects under new climatic conditions (Jones and 
Thorton, 2003; Key and Sneeringer, 2014).

Modelling supply and market price adjustments of the 
European Union (EU) agricultural sector as well as tech-
nical adaptation to climate change, Shrestha et al. (2013) 
estimated an increase in yields and production volume. In 
general, there are relatively small effects at the EU aggre-
gate level and stronger impacts at regional level with some 
stronger effects prevailing in the Central and Northern EU 
and higher impacts in Southern Europe. The most negative 
effects of climate change in Europe were found to occur 
in the continental climate in the Pannonian environmental 
zone, which includes Bulgaria, Hungary, Romania and Ser-
bia (Olsen et al., 2011).

A growing number of recent studies provide evidence 
of climate change in Hungary (Spinoni et al., 2013) and on 
the likely effects of climate change on Hungarian agriculture 
(Fodor and Pásztor, 2010; Fodor et al., 2014; Gaál et al., 
2014; Kemeny et al., 2014). These studies focus on biophys-
ical and environmental consequences of climate change, and 
there are no empirical investigations on economic impacts of 
climate change on Hungarian agricultural production.

The objectives of this paper are, fi rstly, to estimate the 
impacts of climate change on yields in the Hungarian cereal 

sector using the 4M crop simulation model and, secondly, 
to assess the possibilities for technological adaptation 
with regression analysis. The 4M model has been applied 
in previous studies focusing on soil and weather infl uence 
(Máthé-Gáspár et al., 2005), and on the effects of climate 
change on crop yields in Hungary (Fodor and Pásztor, 2010; 
Fodor et al., 2014). However, these studies are based mainly 
on experimental and non-representative farm-level data, 
whereas in this study we apply the model to representative 
Hungarian Farm Accountancy Data Network (FADN) data.

Methodology
Here we present the crop simulation and regression anal-

ysis models with the implementation settings and describe 
the data of the case study application.

Crop simulation model and implementation

The simulation of the effects of climate change on cere-
als yields is performed by using the 4M deterministic crop 
model. This mathematical programming crop model is 
adjusted to the Hungarian agro-technical and environmental 
conditions from the CERES model (Fodor et al., 2002; Fodor, 
2006). 4M is a daily-step deterministic model using input 
parameters of the atmosphere, soil and plant system. These 
input parameters are processed by the functions and equa-
tions of the model simulating the development and growth 
of plants and the heat, water and nutrient balance of the soil. 
The boundary conditions are primarily the daily meteoro-
logical data such as radiation, temperature and precipitation. 
The constraint conditions are the numerical expressions of 
human activities such as planting, harvesting, fertilisation 
and irrigation. In addition to plant development and growth, 
the model calculates the water, heat and nitrogen fl ows as 
well as the nitrogen transformation process of the soil.

The meteorological data include daily maximum and 
minimum temperatures and daily precipitation covering the 
area of Hungary with a one-sixth degree resolution grid, and 
were provided by the Hungarian Meteorological Service. The 
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Meteorological Interpolation based on Surface Homogenised 
Data Basis (MISH) interpolation technique (Szentimrey et 
al., 2005) was used for producing the grid of meteorologi-
cal data from the local observations (Szépszó and Horányi, 
2008; Szépszó et al., 2011; Szépszó et al., 2013). The soil use 
data are from the Hungarian Soil Information and Monitor-
ing System (SIMS) covering clay, sand and organic matter 
soil types. The land use information was collected from the 
National Land Cover Database and was used to calculate 
agricultural areas within the meteorological cells used for 
simulation. The plant data, such as the phenological charac-
teristics and stages, maximum root depth, light use effi ciency 
and specifi c nitrogen content were determined from the rel-
evant scientifi c literature (Fodor et al., 2014). Agro-technical 
data such as planting date, plant density and fertiliser appli-
cations were provided according to the usual Hungarian 
agro-technology of each plant (Fodor et al., 2014).

The calibration and validation of 
the crop simulation model

The calibration and validation of the 4M model was 
performed using actual crop fertilisation data as well as the 
observed yields for winter wheat and maize from the Hun-
garian FADN database for the period 2001-2012. The survey 
comprises detailed farm-level information on cost account-
ing, farming system and structural aspects.

The differences between the yields obtained from simu-
lation and observed inputs were tested using equation (1):

Yi = c + β1Ye,i + β2dYe,i + β3TCi + β4LQi + ei (1)

where Yi denotes the observed yield of every i farms, c is the 
constant term, Ye,i represents the simulated yields of the dif-
ferent farms by the 4M model, dYe,i is the difference of esti-
mated yields of every farms from the average, TCi and LQi 
denote defl ated total costs and land quality of every farms 
obtained from Hungarian FADN survey data, ei is the error 
term, and β are the parameters of the regression. The data 
used for the regression analysis are given in Table 1.

The effects of climate change on cereal yields

After validation of the model using observed Hungarian 
FADN data, the projections of the yields until 2050 were cal-
culated based on the data of the farms selected for calibration 
and validation. The simulated yield values were adjusted 
using the parameters of the regression analysis.

The forecast of climate change is performed by the Hun-

garian Meteorological Service (Országos Meteorológiai 
Szolgálat, OMSZ) employing three regional climatic models 
from the ESSEMBLES project (van der Linden and Mitchell, 
2009). The ALADIN, RACMO and REGCM models simu-
late different climate scenarios for the Carpathian Basin and 
Central and Eastern European regions respectively. These 
models are based on 50 km, 25 km and 10 km grids for the 
period 1951-2100, applying the newest emission scenarios. 
The model results are validated with observed data from the 
periods 1961-1990 and 1971-2000 and the projections are 
made for the periods 2021-2050 and 2050-2100 (Szépszó et 
al., 2013). The interpretation of climate simulation models 
results should be made taking into account the uncertainty 
due to the estimation of physical processes and human activ-
ities. The application of these three regional climatic mod-
els offers the opportunity of addressing these uncertainties, 
but for a more complete estimation the regional simulation 
results of the ENSEMBLES project with 25 km grid density 
were applied (van der Linden and Mitchell, 2009).

Results
The differences between observed yields and the yields 

estimated with the 4M model indicated the need for calibra-
tion and validation. After adaptation to the changed environ-
mental conditions, the model was used for the projection of 
winter wheat and maize yields.

Calibration and validation

In comparison to the observed yields, the winter wheat 
and maize yields calculated by the 4M model were lower in 
the years with favourable climatic conditions for cereal pro-
duction, and higher in the years with unfavourable climatic 
conditions. To improve the comparability of the simulated 
yields with the observed yields, only those farms with the 
smallest differences between observed and estimated yields 
were retained in the sample. Based on fi ve-year farm-level 
data sets during the period 2001-2012, 1,002 winter wheat 
and 1,075 and maize producing farms were chosen. The 
4M model was validated for these selected sample farms, 
the causes of differences between observed and estimated 
yields were investigated using regression analysis, and this 
validated crop simulation model was used to estimate the 
potential yields in the selected farms.

The regression analysis was based on estimated yield per 
hectare, difference of estimated yield per hectare, defl ated 
total production costs per hectare and land quality param-
eters, and we found that main error source of the 4M model 
(the difference between observed and estimated yields) can 
be attributed primarily to heterogeneity of production tech-
nologies and the quality of land (Table 2).

In the calibration process, water stress and dry matter 
values were modifi ed (Table 3). The calibration resulted in 
slightly higher coeffi cients of determination (R2), but a more 
effi cient indicator of calibration is the coeffi cient of varia-
tion of root mean square error – CV(RMSE). As a result of 
calibration we obtain values for CV(RMSE) that are closer 
to the critical value 40, when the estimated yields with the 

Table 1: Description of the data used for the regression analysis.

Parameter Winter 
wheat Maize

Number of farms 1,002 1,075
Number of observations 7,811 7,675
Average observed yield, t/ha-1 (Yi) 4.16 6.48
Average estimated yield, t/ha-1 (Ye,i) 4.21 6.50
Average total production costs, HUF/ha-1 (TCi) 78,677 103,700
Average utilised agricultural area, ha 21.70 21.60

Source: own calculations based primarily on Hungarian FADN data



Modelling climate effects on winter wheat and maize yields

87

calibrated simulation model can be accepted. Validation of 
our calibrated 4M model indicated that we improved the esti-
mation characteristics of the model, which can therefore be 
used for yield forecasts.

Climate effects on expected crop yields

The forecasted yields of winter wheat and maize as a 
consequence of changes in the climatic conditions without 
more effi cient risk mitigation follow a slightly decreasing 

Table 2: Regression analysis results of the selected sample of farms.

Parameter Winter 
wheat Maize

Estimated yield per hectare (Ye,i) 0.284*** 0.215***
Difference of estimated yields per hectare (dYe,i) 0.045*** 0.284***
Total production costs per hectare (TCi) 0.305*** 0.332***
Land quality (LQi) 0.183*** 0.127***
Constant (c) 1.678*** 1.534***
Adjusted R square 0.279 0.448

***/**/*: statistically signifi cant, respectively at the 1%, 5%, and 10% levels
Source: own calculations based primarily on Hungarian FADN data

Table 3: Calibration and validation results of 4M crop simulation model.

Calibration
Calibration values Calibration/validation equation Error indicators

Water stress Dry matter Slope Constant R square Mean difference RMSE CV (RMSE)

Winter wheat
Initial 1.0 0.0022 0.5132 1.9952 0.1268 -0.0243 1.8322 44.1677
Calibrated 1.6 0.0021 0.4660 2.3001 0.1465  0.0848 1.5953 38.4551
Validated 1.6 0.0021 0.4767 2.1753 0.1486 -0.0173 1.5936 38.0350

Maize
Initial 1.0 0.0027 0.7456 0.6342 0.3112 -1.0030 2.9280 45.4956
Calibrated 1.7 0.0029 0.7638 1.4661 0.3203 -0.0543 2.7494 42.7185
Validated 1.7 0.0029 0.7401 1.4895 0.2969 -0.1776 2.8418 44.3074

Source: own calculations (4M model)
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Figure 1: Winter wheat yield estimations according to three climate scenarios, 2022-2050.
Source: own calculations (4M model)
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Figure 2: Maize yield estimations according to three climate scenarios, 2022-2050.
Source: own calculations (4M model)
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trend in the coming decades (Figures 1 and 2). The aver-
age forecasted yields vary according to the climate scenario: 
for winter wheat and maize the estimated yields are close 
to current yields when the ALADIN and REGCM climate 
scenarios are considered, respectively. The predicted yields 
of winter wheat are sharply lower under the RACMO and 
REGCM climate scenarios while for maize production this 
trend is predicted under the ALADIN and RACMO climate 
scenarios. No climate scenario is favourable for both crops.

Considering farmers’ resilience and adaptation to the 
changing climate conditions, we adjusted the yield projec-
tions obtained with the 4M model with the parameters of 
the regression analysis (Figures 3 and 4). After adjusting 
the technology, the favourable climate scenarios for winter 
wheat and maize result in lower yields and the unfavourable 
climate scenarios result in higher yields. In both cases the 
‘volatility’ of yearly average yields is reduced as a result of 
farmers’ risk mitigation arrangements.

Discussion
This paper investigates the impact of changes in climatic 

conditions on Hungarian winter wheat and maize yields 
using the linear programming 4M model and regression 
analysis to highlight the necessity of adaptation in private 
and public decisions (Antle and Capalbo, 2010). Previous 
studies (e.g. Fodor et al., 2014) indicated that the 4M model 
provides realistic estimations for Hungarian crop yields. 
Other crop production optimisation models display similar 
performance at larger spatial scales (Moriondo et al., 2011; 
Liu et al., 2013).

Before calibration and validation, the simulated yields 
were systematically underestimated, but with the calibration 
and validation of the 4M model based on a Hungarian FADN 
representative sample of farms resulted in improved perfor-
mance indicators (Table 2), the model is able to reproduce 
better the trend of observed yields variations. The regression 
parameters of the calibrated and validated 4M simulation 
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Figure 3: Adjusted winter wheat yields estimation according to three climate scenarios, 2022-2050.
Source: own calculations (4M model)
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Figure 4: Adjusted maize yields estimations according to three climate scenarios, 2022-2050.
Source: own calculations (4M model)
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