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Representing climatic uncertainty in agricultural
models – an application of state-contingent

theory*

Jason Crean, Kevin Parton, John Mullen and
Randall Jones†

The state-contingent approach to production uncertainty presents a more general
model than the conventional stochastic production approach. Here we investigate
whether the state-contingent approach offers a tractable framework for representing
climatic uncertainty at a farm level. We developed a discrete stochastic programming
(DSP) model of a representative wheat–sheep (mixed) farm in the Central West of
NSW. More explicit recognition of climatic states, and associated state-contingent
responses, led to optimal farm plans that were more profitable on average and less
prone to the effects of variations in climate than comparable farm plans based on the
expected value framework. The solutions from the DSP model also appeared to more
closely resemble farm land use than the equivalent expected value model using the
same data. We conclude that there are benefits of adopting a state-contingent view of
uncertainty, giving support to its more widespread application to other problems.

Key words: climatic uncertainty, expected value, risk, state-contingent theory,
stochastic programming.

1. Introduction

Although farmers face many sources of uncertainty, it is agriculture’s basic
dependence on climatically dependent biological systems that often exert
the most influence on the sector from one year to the next. Australian
farmers contend with a high degree of inter-annual rainfall variability,
creating uncertainty and production risk. Anderson (1979) estimated that
climate variability was responsible for just under 40 per cent of the
variation in Australia’s gross value of agricultural production and farm
income.
As is the case with risk more generally, climatic risk imposes costs.

Farmers facing climate risk have to plan for a range of possible seasonal
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conditions other than the one that ultimately occurs. Thismeans that farmers do
not use resources as they would if climate conditions in the approaching season
were known. Moreover, traditional approaches to incorporating risk in
modelling decision-making by farmers limit the scope of risk responsiveness
of farmers and generate farmplans that often bear little resemblance to decisions
made by farmers.
Chambers and Quiggin (2000) proposed that state-contingent production

theory, based on the work of Arrow (1953) and Debreu (1959), was the best
way to think about all problems of uncertainty. State-contingent theory
implies that the production relationship between inputs and outputs depends
ultimately on the state of nature that arises rather than being fixed across
states. This contrasts with the commonly used stochastic production function
approach where uncertainty is represented by an error term and where the
role of inputs used in production remains the same irrespective of what state
ultimately occurs.
State-contingent theory recognises that farmers choose from a set of

technologies, which canvas the range of seasonal outcomes (rather than just
a single expected season. It allows consideration of a broader set of
responses to climate risk than traditional expected value approaches, which
are only optimal when the ‘expected season’ coincides with the ‘actual
season’.
In this paper, we investigate whether the state-contingent approach,

applied through discrete stochastic programming (DSP) (Cocks 1968; Rae
1971a,b), offers a preferable framework for representing climatic uncertainty
at a farm level compared to expected value approaches. A brief overview of
state-contingent theory is given in the next section, followed by a review of
how state-contingent theory can be applied to climate risk. A DSP model of a
representative wheat–sheep (mixed) farm in Central West NSW is outlined in
Section 4. Section 5 presents decision criteria to discriminate between the
DSP and expected value approaches. Results are presented in the penultimate
section followed by some conclusions.

2. State-contingent theory

The Expected Utility (EU) model (Anderson et al. 1977) has been the
standard economic framework for analysing decision problems under
uncertainty, although empirical studies dating back to the 1950s have
revealed a variety of choice behaviour that is inconsistent with EU (Starmer
2000). In contrast to criticisms relating to whether expected utility preferences
are actually held by decision-makers, Chambers and Quiggin (2000) broaden
the attack to the way in which production technologies are conventionally
represented within the EU model. More specifically, they point out the
problems with the use of simplified stochastic production functions that they
argue, do not adequately consider the interaction between controlled and
uncontrolled inputs (i.e. the state of nature).
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The notion of state-contingent commodities allows decision-making under
uncertainty to be approached in the same way as decision-making under
certainty. ‘The crucial insight of Arrow and Debreu was that, if uncertainty is
represented by a set of possible states of nature, and uncertain outputs by
vectors of state-contingent commodities, production under uncertainty can be
represented as a multi-output technology, formally identical to a nonsto-
chastic technology’ (Quiggin and Chambers 2006, p. 153). From this
equivalence, Chambers and Quiggin demonstrated that the tools and
marginal principles used by economists in nonstochastic production theory
are also applicable to problems involving uncertainty, provided that the
problem is cast in state-contingent production terms.
Chambers and Quiggin (2000, p. 41) summarise the general state-

contingent model where there are M outputs, N inputs and S states of
nature. A vector of inputs, x 2 <N

þ, is committed by the producer prior to
nature selecting from a set of possible states, Ω = (1,…,s,…,S). The
producer’s technology T(x, z) converts inputs, x, into a matrix of state-
contingent outputs z 2 <SxM

þ . Inputs that are variable ex post may be
regarded as negative state-contingent outputs. Here, z is a matrix of ex ante
or potential outputs since ex post only one state of nature occurs. An element
of the z matrix, zms, for example, denotes the amount of output m (row)
produced if state s (column) occurs. Given that inputs are committed prior to
the state of nature being known, the total bundle of inputs is the same in
every state while outputs are specific to an individual state. Uncertainty in the
state-contingent model may therefore be considered as a two-period game
with nature (Quiggin and Chambers 2006). In the first period, producers
commit a vector of inputs (x) under conditions of uncertainty. In the second
period, a state of nature is revealed, and a vector of state-contingent outputs
(zs) is produced.
The selection of one input bundle over another is equivalent to looking

forward over the season and selecting one output matrix over another, where
the columns of the output matrix define the states and the rows the respective
outputs. The choice among such state-contingent output matrices can be
considered an expression of risk aversion. A highly risk-averse producer
would select an output matrix, which portrays little variability across
different states. In other words, they would select an input bundle that maps
into a low variability output matrix. For example, a highly risk-averse
livestock producer could select such a low stocking rate, or carry such a high
level of fodder reserves, that production outcomes across different climatic
states would be similar. Such a strategy would surely stabilise production
outcomes, but the producer would also incur large opportunity costs in doing
so. A less risk-averse livestock producer would choose a stocking rate that
traded-off production stability across states with economic returns possible
under each state. Consequently, the degree of variability in outputs is an
economic choice made by producers rather than something beyond their
control.
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Most applications of state-contingent theory to date have been policy
related. These are reviewed in Quiggin and Chambers (2006) and include
analyses of price stabilisation, crop area insurance, point source pollution
and drought policy. There have been relatively few empirical applications of
the state-contingent approach. O’Donnell and Griffiths (2006) applied the
state-contingent model to econometrically estimate production frontiers of
rice farmers in the Philippines. In contrast to conventional stochastic frontier
studies, they found that most of the estimated output shortfalls were due to
climatic variability rather than inefficiency. The state-contingent approach
has also been applied to water and salinity issues in the Murray-Darling
Basin (Adamson et al. 2007). The approach was found to better capture
flexible responses to uncertainty about water availability, a key component of
the environment confronting water managers.

3. Stochastic programming and state-contingent theory

Risk in agricultural problems is often of a sequential nature whereby famers
have opportunities to respond to changes in their environment over time. In
a two-period representation, there is a set of initial decisions (x1), state-
dependent outcomes (y1) of those decisions, followed by a set of stage-2
decisions (x2). The importance of the sequential nature of risk is
increasingly recognised by agricultural economists (Kingwell et al. 1993;
Pannell et al. 2000; Just 2003; Hardaker et al. 2004). Tactical adjustment is
critical in uncertain environments because decisions made ex ante will rarely
be optimal ex post. Broader recognition of the importance of time in
decision-making is also reflected in the growth in the application of Real
Options Theory (Dixit and Pindyck 1994) to longer-term investment
decisions.
Discrete stochastic programming (DSP), originally developed by Dantzig

(1955) and extended by Cocks (1968) and Rae (1971a,b), is the main
modelling approach used to capture problems involving sequential risk. A
key feature of DSP is that alternative states of nature are explicitly
represented within the analysis. Adamson et al. (2007) noted that DSP was
the closest approach to a state-contingent representation of uncertainty. A
number of parallels can be drawn between DSP and a state-contingent view
of uncertainty. Both make a clear distinction between the states of nature and
the outcomes in those states. Both allow trade-offs over state-contingent
outcomes. In other words, there is a possibility to substitute outcomes in one
state of nature for outcomes in another state (ex ante). Each approach
recognises that some decisions need to be taken prior to the resolution of
uncertainty, and the probabilities of states are treated as being independent of
the actions taken by decision-makers.
Based on Chambers and Quiggin (2000), net income in a given state within

the state-contingent model can be defined as:
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ys ¼ rs � Cðw;r;pÞ ð1Þ
where

rs ¼
XM
m¼1

pmszms ð2Þ

C(w,r,p) the revenue-cost function is the least cost way to produce a given
vector of state-contingent revenues.
The problem can be thought of as maximising state-contingent income over

all states and is written as:

MaxE½Y� ¼ �Cðw; r; pÞ þ
XS
s¼1

psrs ð3Þ

The C(w,r,p) term in Equation (3) can be interpreted as the cost of inputs,
capable of producing a set of state-contingent revenues, that must be
committed prior to the state of nature being known. The

PS
s¼1 psrs term is the

probability-weighted sum of state-contingent revenues made possible by that
commitment of inputs. Here, ps is the probability of state s occurring and rs
is the revenue received in state s. Interpreted this way, Equation (3) resembles
the classic two-stage DSP problem described later in Equation (4). In both
the DSP approach and in state-contingent theory, inputs are committed in the
first stage under conditions of uncertainty and state-contingent outputs are
only revealed in the second stage when the real state of nature is known. In
either approach, once state s has been realised, state income is determined by
the input vector committed in the first stage and the realised vector of
outputs.

4. A DSP model of dryland farming in Central West NSW

4.1. The region

The Central West region of NSW is typical of mixed farming systems in
south-eastern Australia. The Central West region is the same as that defined
by Patton and Mullen (2001) and includes the local government areas of
Lachlan, Bland, Forbes, Weddin, Gilgandra, Dubbo and Wellington
(Figure 1). The town of Condobolin lies in the centre of the region.
Annual average rainfall varies from around 700 mm in the eastern part of

the region to 400 mm in the west. Annual rainfall variability at Condobolin is
shown in Figure 2a. Rainfall variability has an important influence on
agricultural production. Rainfall is distributed relatively uniformly through-
out the year (Figure 2b) although rainfall received during May to October is
more effective and coincides with the main winter cropping period.
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Farms in the Central West have adopted mixed dryland farming systems.
Over the 1990 to 2005 period, winter cereals accounted for just over 80 per
cent of the total crop area (ABARE 2007). Wheat was by far the most
important cereal comprising just over 70 per cent of the winter cereal area.
Noncereal crops, including canola, field peas and lupins, accounted for
around 20 per cent of the crop area. Livestock activities have been typically
based around wool production supported by a mixture of native and
improved pasture species. However, changes in the price relativities between

Figure 1 Central West NSW.
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Figure 2 Condobolin rainfall (1900–2006).
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wool, sheep and lamb prices have favoured some shift towards first- and
second-cross lamb production. There has also been a trend towards larger
crop areas at the expense of livestock. Typically about 40–50 per cent of total
farm area is used for cropping activities. Farmers tend to employ pasture
phases of 3–4 years in length, which are generally undersown with the last
crop in the cropping phase. Opening crops are usually long-fallow wheat or
canola and exploit the build-up of soil moisture and nutrients that occurs
over the fallow period.

4.2. Overview of the DSP model

The DSP model representing the eastern farming system of the Central West
is fully described in Crean et al. (2012) and is based on the representative
farm characteristics identified by Patton and Mullen (2001). The farm has a
total area of 1,500 ha, consisting of annual winter cropping (640 ha), annual
pasture (640 ha) and fallow (220 ha). Livestock activities include first-cross
lamb production (1,050 ewes) and merino wool production (450 wethers),
giving an overall stocking rate of 1.95 dry sheep equivalents per hectare
(dse’s/ha).
Two simulation models, the Agricultural Production Systems Simulator

(APSIM) and the Sustainable Grazing Systems (SGS) model, were used in
this study to quantify the interactions between climatic conditions, produc-
tion and management for crop and livestock activities, respectively. ASPIM
simulates biophysical processes in cropping systems and has been extensively
applied in Australia (Keating et al. 2002). The wheat module of APSIM was
configured for use in the case study region and was run under different sets of
planting conditions considered important in farmers’ decisions. Nine sets of
planting conditions were assessed reflecting different combinations of
planting dates (early – 20 April; mid – 10 May; and late – 5 June) and
starting soil moisture levels (low – 30 mm; average – 60 mm; and high –
100 mm).
The SGS Pasture Model simulates biophysical processes in a pasture

system (Johnson et al. 2003). The SGS model, configured for the case study
region, was used to simulate annual pasture and lucerne production.
Three discrete rainfall states1 were defined based on growing season rainfall

received at Condobolin (s = dry, average or wet). The growing season was
defined as May to October, and the period assessed was 1902–2006
(105 years). The dry state contained the lowest third of years (growing
season rainfall of 0–177 mm), the average state contained the middle third
(178–249 mm) and the wet state contained the upper third (>249 mm). Each

1 Specifying the number of states is an important consideration in the application of the
state-contingent approach. While more states could be considered, one would expect that the
marginal benefits of increasing the number of states to decrease quite quickly. At the same
time, the marginal cost of including more states is unlikely to be trivial. The appropriate trade-
off will depend on the particular problem under consideration.
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year was categorised as belonging to one of these terciles. Crop and pasture
production models were then simulated over the 1902–2006 period, and the
outputs summarised by rainfall state.
A two-stage DSP model was developed for the case study region

(Figure 3) where time was divided into the ‘present’ and the ‘future’. A
standard linear programming model can be developed into a DSP model by
introducing a second period decision. The x ? s format of static linear
programming changes to x1 ? s? x2 (s, x1) in the DSP case. Here, x1 is a
vector of stage-1 decisions, s is the state of nature and x2 (s, x1) is a vector
of stage-2 decisions, contingent upon earlier stage-1 decisions and the state
of nature.
The farm-planning problem is to choose the mix of agricultural activities to

maximise the expected level of net farm income across climatic states. The
following two-stage DSP model was used:

MaxE½Y� ¼
XS
s¼1

psys ¼ �
XJ
j¼1

c1jx1j þ
XS
s¼1

ps
XN
n¼1

c2nsx2ns

 !
ð4Þ

subject to:

Figure 3 Overview of DSP model.
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Land, labour and capital constraints

XJ
j¼1

a1ijx1j þ
XN
n¼1

a2insx2ns � bi for all i; s ð5Þ

Use of crop and pasture outputs

XJ
j¼1

a1mjsx1j þ
XN
n¼1

a2mnsx2ns � 0 for all m; s ð6Þ

Non-negative activity levels

x1j; x2ns � 0 for all j; n; s ð7Þ
Where model parameters are as follows:
ps, probability of state s; c1j, the cost of growing crop or pasture j in stage 1

($/ha); a1ij, the quantity of resource i required by crop or pasture j in stage 1
(units/ha); a1mjs, the quantity of output m produced by crop or pasture j in
state s (t/ha); c2ns, the net revenue (+ve) or cost (�ve) from activity n in state s
($/unit); a2ins, the quantity of resource i required by activity n in state s; a2mns

the quantity of output m required by activity n in state s (tonnes); bi, the
availability of resource i; and the model variables are as follows: ys, farm
income in state s; x1j, the area of crop or pasture activity j grown in stage 1;
x2ns, the level of activity n chosen in state s in stage 2.
The objective function Equation (4) maximises the expected net farm

income from crop, pasture and livestock production decisions across three
climatic states. The outcomes of each state are weighted by their probabil-
ities. Expected net farm income is maximised subject to constraints on
availability of land, labour and capital, which must be satisfied in each state,
see Equation (5). The DSP model was set up as a linear programming
problem (LP) and solved using the What’s Best!® R8.0 add-in to Microsoft
Excel®.
The objective function reflects a two-stage decision process. The

P
c1jx1j

term of Equation (4) indicates a commitment of inputs (e.g. variable costs of
growing wheat) based on the selection of stage-1 activities (x1j), while thePS

s¼1 ps
PN

n¼1 c2nsx2ns term reflects expected state-contingent revenue derived
from stage-2 activities (x2ns) (e.g. harvest and sale of wheat). The inputs
committed in stage 1 are the same in every state of nature, whereas the inputs
selected in stage 2 are specific to each state.
In stage 1 of the DSP approach, the farmer makes decisions about the areas

of crop, pastures and fallow, taking into account the probabilities of dry,
average and wet states. With only the probabilities known, Stage-1 decisions
must trade-off returns across states in order to be optimal in the face
of uncertainty. In stage 2, decisions are taken about the end use of crops
(e.g. sell grain, store grain, graze crops and cut crops for hay) and pastures
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(e.g. graze and cut for hay), which are contingent upon both the state of
nature and the decisions taken in stage 1. The representation of production in
this way attempts to capture the flexibility that farmers have over the choice
of production technologies when faced with climatic uncertainty. The DSP
model contains 111 stage-1 activities, 456 stage-2 activities and 255 resource
constraints that apply across either or both of the stages.
There are a number of important aspects of the above formulation. First,

the DSP model has two clearly identifiable stages, one prior to and one
postuncertainty from the first stage being resolved. Stage-1 decisions cannot
anticipate one state over another, must be chosen a priori and must be
feasible for each state (McCarl and Spreen 2007).
Second, there is a direct linkage between stage-1 and 2 decisions. The linkage

is contained within constraint matrices (a1mjs a2ins a2mns in Eqn 6). Stage-2
decisions (x2s) depend on both the stage-1 decision and the state of nature. In a
mixed farming example, a decision in stage 1 to run a large number of livestock
may require in stage 2 either the retention of crop output on farm, grazing of
failed crops or the purchase of additional fodder if a dry state occurs. An
important characteristic of the DSP approach is that it requires explicit
consideration of all adjustments that can bemade to production in each state of
nature when determining the optimal set of stage-1 decisions.
Third, uncertainty about which state of nature will occur is reflected in the

probabilities that a decision-maker assigns to each state (ps), which are
unaffected by the action of the decision-maker. Changes in state probabilities
thus alter the weighting given to state-contingent revenues in the objective
function, which in turn influences the optimality of stage-1 decisions. The
optimal solution to the DSP problem takes into account the outcomes across
all states of nature. For this reason, DSP solutions are often thought of as
solutions that are ‘well hedged’ for uncertainty.
Lastly, the objective function assumes risk neutrality. However, DSP can

also accommodate a nonlinear utility function to reflect risk aversion and
would therefore be solved as a nonlinear program (McCarl and Spreen 2007).
Risk preferences were not pursued here in the light of what appears to be a
growing consensus, within the agricultural economics literature, that the
importance of capturing risk aversion within normative studies may have
been overemphasised relative to the need to better represent production
possibilities (Pannell et al. 2000; Just and Pope 2003; Hardaker et al. 2004).
The question remains whether the application of a DSP model will result in

substantially different optimal solutions to expected value models based
around the occurrence of a single state. Moreover, does the additional value
obtained from a DSP approach justify its larger costs and added complexity?

5. Measuring the gains from modelling risk in a state-contingent way

Uncertainty imposes costs because decisions made ex ante are rarely optimal
ex post. By measuring the cost of uncertainty, an estimate can be obtained of
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the pay-offs from better representing uncertainty in models of agricultural
decision-making. Two concepts from the stochastic programming literature
(Birge and Louveaux 1997), the Expected Value of Perfect Information
(EVPI) and the Value of the Stochastic Solution (VSS), provide a basis on
which these judgments can be made. EVPI and VSS are calculated from
alternative approaches to representing uncertainty. The EVPI measures the
maximum amount that a decision-maker would be prepared to pay for
perfect information about the future. The VSS measures the gains from more
realistically representing uncertainty and is calculated by comparing solutions
from alternative approaches to representing uncertainty. There are four
modelling approaches relevant to these calculations, and each of these is
described below.
The ‘wait and see’ (WS) model involves solving a conventional determin-

istic model for each climatic state. It assumes that the decision-maker can
wait and see what the state of nature is prior to making any commitment. WS
problems are a generalisation of conventional sensitivity analysis and
parametric linear programming (Birge and Louveaux 1997). The maximum
amount of net farm income obtained for a single state is a standard
maximisation problem of the following form:

ys ¼ Maxyðx; sÞ ð8Þ

where ys is maximum level of net farm income obtained under state s, and x is
a vector of decisions chosen on the basis that state s was known to be the true
state at the time the model was solved (i.e. the case of perfect information).
The model is solved separately for each state so that there are optimal farm
plans for the dry, average and wet states. The optimal WS solution is
represented by the decision set ðx�1s; x�2sÞ. The overall value of the WS solution
across all states requires ys to be weighted by the probability of each state:

YWS ¼
XS
s¼1

psys ð9Þ

The expected value (EVA)2 approach requires that the random parameters
in the model be replaced by their expected values. Like the WS approach, in
the EVA approach, all uncertainty about random parameters is dealt with
prior to the model being solved. The EVA approach remains a simple
deterministic maximisation problem:

YEVA ¼ MaxYðx; �sÞ ð10Þ

where YEVA is the maximum level of expected net farm income achieved in the
expected state �s and x is a vector of decisions chosen on the basis of �s. The

2 EVA is used here to avoid confusion with mean-variance (E-V) notation used in the
agricultural economics literature.
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optimal EVA solution is represented by the decision set ðx�1�s;x�2�sÞ. The optimal
stage-1 decisions x�1�s are chosen based on a single expected state, as indicated
by subscript �s. In this solution, crop and pasture yields take their values from
the single expected state rather being state-contingent as indicated previously
by the term a1mjs.
The actual result of implementing the stage-1 decisions of the EVA solution

ultimately depends on which state of nature actually occurs. A further
measure referred to in the literature is the expected result of using the
expected value solution3 (YEV

B). The optimal EVB solution is represented by
the decision set ðx�1�s;x�2sÞ. Stage-1 decisions are fixed at their values from the
deterministic EVA solution x�1�s (e.g. areas of crop and pasture). The model is
then solved separately for each state with flexibility to determine optimal
stage-2 decisions x�2s (e.g. the best use of crop and pasture output in this
instance). The level of income from each EVB solution is weighted by state
probabilities to form an expected value (YEV

B) as shown in Equation (11).

YEVB ¼
XS
s¼1

psysjEVA ð11Þ

The optimal DSP solution is represented by the decision set ðx�1; x�2sÞ.
Stage-1 decisions x�1 do not have a state subscript, implying that the
decisions must be chosen prior to the state of nature being revealed. As a
consequence, stage-1 decisions must sacrifice returns in some states in order
to be optimal across states. This is the principal difference between the DSP
model and the WS and expected value approaches. It differs from the WS
model that presumes uncertainty can be resolved prior to a choice being
made and is also different from the expected value model that presumes a
single expected state is the best guide to selection of inputs and outputs. The
approach here requires that the decision-maker is aware of the possible
states and can assign a probability to each of those states. This is not a
strong assumption in the context of annual climate risk that can be readily
informed by historical observations, but might pose challenges in other
contexts.
Net farm income derived from the solutions of the above models provides

the basis for the calculation of the VSS. Madansky (1960) established a
series of inequalities that govern the relationship between the solutions
including:

YEVB �YDSP �YWS ð12Þ

From Equation (12), the value of YEV
B will always be less than or equal to

YDSP. Any feasible solution considered by the EVB model would have already
been considered in finding the optimal solution to the DSP model (Di

3 EVB is used here to more clearly denote the clear linkage between the two solutions.

© 2013 Australian Agricultural and Resource Economics Society Inc. and Wiley Publishing Asia Pty Ltd

370 J. Crean et al.



Domenica et al. 2009). The difference between the first two terms is defined as
the VSS, a measure of the benefits of using a DSP approach relative to an
expected value approach.

VSS ¼ YDSP � YEVB ð13Þ

Given that both the DSP and EVB models provide the flexibility to respond
to state conditions in stage 2, the source of VSS can be attributed to
differences between stage-1 decisions. The key distinction is that the DSP
model anticipates the future in making stage-1 decisions by explicitly
considering state-contingent responses. In contrast, the EVB model only
responds to the current state, given that stage-1 decisions have previously
been already set in place by a naive EVA model.
Equation (12) also stipulates that the value of YWS should be always

greater than or equal to that of YDSP. Any solution found to be optimal for
the DSP model, under conditions of imperfect information, would have also
been considered by the WS model under perfect information. The difference
between the second two terms in Equation (12) is known as the EVPI:

EVPI ¼ YWS � YDSP ð14Þ

The EVPI measures the maximum amount that a decision-maker would be
prepared to pay for perfect information about the future. It is the difference
in expected net farm income obtained from implementing the optimal farm
plan, given perfect knowledge of each state of nature, and that obtained from
implementing the best hedged farm plan from the DSP model.
It is also apparent from Equation (12) that using an expected value model

to represent uncertainty rather than the DSP model will generally increase the
estimate of the EVPI because YDSP will generally exceed YEV

B. Modelling
approaches that give solutions not well hedged for uncertainty will overstate
the value derived from information that reduces uncertainty and thereby bias
the valuation of technologies like climate forecasts.

6. Results

6.1. Comparisons of returns

The returns from DSP and expected value approaches were assessed over
three planting dates. The average level of net farm income reported for each
solution is contained in Figure 4a, and a breakdown of the results for each
planting date is contained in Figure 4b–d.
The DSP farm plan was found to have a higher level of expected net farm

income (across states) than the EVB farm plan for all planting dates
(Figure 4a). The VSS ranged from $12,848 (30 per cent increase) under the
20 April planting date, to $15,512 (44 per cent increase) under the 10 May
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planting date, to $14,918 (59 per cent increase) under the 5 June planting
date. The extent of gains from the DSP farm plan over that of the EVB

farm plan suggests that a more explicit representation of uncertainty is
valuable.
Under the 20 April planting date, the DSP farm plan was more profitable

than the EVB farm plan in both dry and wet states, but was inferior in the
average state. Under the 10May and 5 June planting dates, the DSP farm plan
wasmore profitable in the dry state (farm losseswere reduced). Someof the gain
in the dry state was, however, offset by slightly lower levels of income in average
and wet states. A consistent finding across all planting conditions is that the
DSP farm plan limits the losses in net farm income that occur in a dry state.
The findings are consistent with the notion that DSP approaches result in

strategies that are ‘well hedged’ compared with typical deterministic expected
value approaches. By explicitly considering the consequences of alternative
states, and their probability of occurrence, the farm plans proposed by the
DSP approach were better hedged. By contrast, the final EVB model simply
responds to the conditions of each state, which were not planned for in the
EVA model.

DSP farm plan EVB farm plan
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Figure 4 The value of the various farm plans by planting date. EMV is the expected monetary
value. It weights net farm income in each state by the respective probabilities.
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6.2. Comparison of farm plans

Table 1 provides a summary of the results for the mid-planting date (10 May)
including the optimal set of stage-1 and 2 decisions for the DSP, EVA and
EVB farm plans. Note that the EVA and EVB plans share the same stage-1
decisions, but differ in respect to stage-2 decisions. EVB can be thought of as
the real consequences of implementing EVA under climate variability. We
also note the similarity between the DSP farm plan and the farm plan
assembled for the study area from judgements by farmers and scientists about
what farmers typically do as reported in Patton and Mullen (2001). The
major difference between the farm plans concerns the number of livestock
and crop areas. The EVA farm plan was found to have a much higher overall
stocking rate of 4.61 dse’s/ha relative to the DSP farm plan of 2.66 dse’s/ha.
This is because the adverse consequences of high stock numbers in dry states
are ignored in this formulation. Patton and Mullen’s representative farm had
a stocking rate of 1.95 dse’s/ha.
Higher livestock numbers contained in the EVA farm plan trigger

substantially different stage-2 decisions in the EVB farm plan for each
planting date relative to the DSP farm plan. Much more grain was consumed
on farm, and grain and hay purchases were much higher. Although these
results are partial, they do suggest that model solutions that take into account
more than one climatic state tend to be better hedged. In this case, the
solution also better reflected aspects of the real farm system.

6.3. Robustness of DSP and expected value farm plans

Following Di Domenica et al. (2009), we used ex post simulation to further
test both the robustness of the DSP farm plan relative to the expected value
farm plans by incorporating simulated crop and pasture yields for each year
of the analysis.
As shown in Figure 5, for each planting date, stage-1 decisions (i.e. area of

pasture, fallow and crop, and number of livestock) of the previously solved
DSP and EVA models were inserted into an annual simulation model and
fixed at their optimal values. The simulation models projected pasture and
crop yields based on the inputs applied in Stage 1 and actual rainfall
and temperature data from 1902 to 2006. The pasture and crop yields relating
to the first year of the simulation period were then inserted into the model.
The model was then solved, allowing stage-2 decisions to vary in response to
the combined effects of the fixed stage-1 decisions and the simulated yields of
the current year. The maximum level of farm income was recorded, and the
analysis continued to the next year of the simulation. This process was
undertaken for the three planting dates (20 April, 10 May and 5 June all at
60 mm of soil moisture) for each year of the simulation period (1902 to 2006).
Some changes were required in order to run the ex post simulation.

Infeasibilities occurred in implementing decisions of expected value models in
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Table 1 Ten May planting date – DSP, EVA and EVB farm plans

Unit DSP farm
plan

EVA farm
plan

EVB farm
plan

Net farm income
Dry — $ -$39,345 — -$117,891
Avg — $ $76,868 — $87,164
Wet — $ $114,926 — $136,640
EMV — $ $50,816 $80,087 $35,304
VSS — $ $15,512 — —

— % 44% — —
Stage-1 decisions
Pasture & Fallow Total pasture ha 699 642 642

Total fallow ha 203 184 184

Livestock Mer. ewes – 23u hd 0 0 0
Mer. wethers – 23u hd 1023 0 0
1st 9 Lambs hd 1249 2938 2938
2nd 9 lambs hd 0 0 0
Subtotal dse’s 3985 6919 6919
Average dse’s/ha 2.66 4.61 4.61

Cropping LF cereal ha 203 184 184
LF break ha 0 0 0
SF cereal ha 203 184 184
SF break ha 0 0 0
CC cereal ha 95 153 153
CC break ha 95 153 153
Total crop ha 598 674 674
Nitrogen kg 9195 4257 4257

Stage-2 decisions
DRY
Crop disposal
options

H & Sell crops t 672 — 337
H & Store crops t 14 — 294
Cut crops t 0 — 0
Graze crops t 45 — 184

Fodder options Buy grain t 0 — 206
Make pasture hay t 59 — 0
Buy pasture hay t 0 — 69

AVG
Crop disposal
options

H & Sell crops t 1284 1159 1261
H & Store crops t 0 158 140
Cut crops t 0 0 0
Graze crops t 0 0 0

Fodder options Buy grain t 0 24 32
Make pasture hay t 16 48 167
Buy pasture hay t 0 0 0

WET
Crop disposal
options

H & Sell crops t 1620 — 1640
H & Store crops t 0 — 93
Cut crops t 0 — 0
Graze crops t 0 — 0

Fodder options Buy grain t 0 — 19
Make pasture hay t 0 — 143
Buy pasture hay t 0 — 0

Note: CC, continuos cropping; H, harvest; LF, long fallow; SF, short fallow.
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very dry years, a further indication of the optimistic nature of EVA. Dry years
resulted in reduced crop and pasture production, creating additional demand
for the purchase of grain and fodder, as well as higher demand for labour to
undertake necessary supplementary feeding of livestock. To ensure a feasible
solution in each year, constraints on the purchase of fodder and grain and the
availability of casual labour were relaxed prior to the start of the simulation.
We refer to this feasible solution again as the EVB farm plan. In this case, the
EVB model is responding to annual climatic conditions for each of the
105 years given stage-1 decisions of EVA, rather than the three more general
states of dry, average and wet. The results of the analysis are shown in
Figure 6 in the form of cumulative distribution functions of net farm income.
The cumulative distribution function of net farm income from the DSP

farm plan most often lies to the right of that for the EVB farm plan. Formal
tests of the simulation results were completed using Generalised Stochastic
Dominance with Respect to a Function using Simetar software (Richardson
et al. 2008). The lower and upper risk aversion coefficients were set to zero to
reflect risk neutrality. The resulting tests confirmed that the DSP farm plan
stochastically dominated the EVB farm plan for all planting dates. Dry years
led to negative farm income levels and to particularly large losses in some
years (e.g. see the 0.10 probability) but the DSP farm plan provides a notable
improvement over the EVB farm plan. The objective function in the DSP
model reflects risk neutrality. If this assumption was relaxed to reflect risk
aversion, the DSP farm plan would be even more preferred. This can be
gleaned from a comparison of the cumulative distribution functions of farm
profit, which show that that the DSP farm plan consistently outperforms the
EVB farm plan in dry years when either low profits or losses are incurred.

7. Conclusions

Our objective was to assess whether applying state-contingent production
theory through a DSP model accounts for climate risk in a better way than
expected value, stochastic production function approaches. The relative

Figure 5 Ex post simulation of DSP and expected value farm plans.
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performance of the approaches was assessed in terms of differences in net
farm income, and whether farm plans were consistent with both our
expectations about how farmers adapt to climate risk and actual farmer
behaviour.
The VSS is a measure of the benefits of adopting a DSP model and, by

association, the gains from adopting a state-contingent view of uncertainty.
The VSS was found to be positive over all planting dates and represented a
sizeable improvement in net farm income over expected value approaches.
The value of the DSP approach was further tested using ex post simulation.
Optimal farm plans from the DSP model were found to be superior to the
corresponding expected value farm plans in terms of second-degree stochastic
dominance for all planting dates considered. The DSP farm plan resulted in
notable reduction in downside risk and improvement in overall farm returns.
The DSP farm plan was found to be better ‘hedged’ for uncertainty compared
to the expected value approaches, with a lower overall stocking rate and
generally a more diversified set of cropping and livestock activities. In this
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Figure 6 Ex post simulation results – comparison of DSP and EVB farm plans (1902 to 2006
simulation period).
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case, it also more closely resembled farm behaviour as reflected in
representative farm plans for the case study area.
Many farm-level models aimed at representing agricultural production

systems have incorporated risk using an expected value, stochastic produc-
tion function approach. The approach provides an optimal farm plan for a
single expected state, but not one that is optimal across states. An alternative
approach is one that specifically incorporates future contingencies as a
reasonable and realistic method of combating uncertainty, a central element
of state-contingent theory. In this paper, we have shown that there are
benefits of adopting a state-contingent view of uncertainty, giving support to
its more widespread application to other problems.
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