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Auctioning Payment Entitlements

Kurt Nielsen∗
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Abstract

Payment entitlements is a new commodity that arises from the new European common agricultural

policy. The agricultural subsidies are decoupled from the actual production and replaced by the

so-called payment entitlements. A payment entitlement has a farm specific value and may be freely

traded. This paper discusses the complexity of this new market and suggests an auction that

simplifies the complexity. The suggested auction allows a buyer to simultaneously bid on all

payment entitlements. The prices are found by a tatonnement that monotonically approximates the

equilibrium prices for the different types of payment entitlements for sale. The auction enhances the

competition and efficiency of the market, which is essential for the individual members of the

European Union in order for them to receive their entitled subsidies.

Keywords: Auction, multiple goods, bidding agents, tatonnement, agricultural subsidies.

JEL Classification: D44, Q13.

1 Introduction
For various reasons agriculture has been heavily subsidized in many countries around the world for

quite some time (especially in the past 3-4 decades). Typically, this support has been coupled directly to

the production of agricultural products. In the European Union (EU) agricultural subsidies have

traditionally been a direct price support (as elsewhere). The consequences have roughly been two-fold:

Overproduction and a distorted world market price. The overproduction has mainly been solved by

production quotas, while the distorted world market price is of continuous concern not least to the

World Trade Organization (WTO). Agriculture has been part of the WTO negotiations since the

Uruguay round in 1986-94. As a result of the global concern about distortions of trade, the WTO has

worked for a global decoupling of agricultural subsidies. Decoupled subsidies is a system of support

that does not affect the price on agricultural products. Within the EU, the USA and many other places

there have been various reforms aiming at a decoupling of agricultural support. See Ritson and Harvey

(1997) and Picinini and Loseby (2001) for an overview of these reforms. The latest reform (the

2003-reform) in the EU is a big step towards a complete decoupled agricultural support. This reform

contains a lot of special issues and transition periods concerning different agricultural products.

However, one general element is the decoupling of direct price support, which is the topic of this paper.

See Jensen and Frandsen (2003) for more details on the 2003-reform.

The price support, set a-side support etc. are transformed into farm specific “Payment

Entitlements” (PE). A PE is the total amount of direct payment divided with the number of hectares (ha)

on the individual farm. The total amount of direct payments is determined by a reference period (2000 -
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2002). Agricultural land is required to utilize a PE - one ha to one PE. The owner of a PE receives its

nominal value each year. The 2003-reform states a maximum nominal value of 5000 Euros and a yearly

depreciation starting with 3 % in 2005, 4 % in 2006 and 5 % in 2007 and onwards. Beside these yearly

adjustments, the existence of the PEs is for an undefined period. The PEs may be traded freely with or

without land. Some attempts have been made to estimate the outcome of the 2003-reform, see e.g.

Jensen and Frandsen (2003). These models rely on ideal assumptions about how the market works,

which may not hold in practice1. This paper discusses the complexity of the market for PEs and

suggests an auction design that ensures a competitive market by easing the searching and matching of

the participants.

Since most farms differ in their production portfolio and number of ha, the nominal value of the

individual farm’s PEs will differ as well. Clearly, a PE with a high nominal value is worth more than

one with a low value, and they should therefore be treated as separate commodities. On a market for

PEs, the important criteria is the difference between its price and its value to the individual farmer, not

the price or the nominal value itself. Upon knowing the price on each of the PEs for sale, the buyer can

relatively easy select his most preferred portfolio of PEs. For the market to be efficient, the PEs should

end up in the hands of those that value them the most. For this to be true, the prices should be

endogenously determined by the individual demand and supply for the different PEs, and demand and

supply for the individual PEs should be determined by the prices. Even with a few PEs for sale, the

transaction cost involved in the searching and matching seems to be considerable. The turnover of farms

and land provides an indication of the size of the market. Taking Denmark as an example, for the past 3

years, around 5.900 farms and 110.000 ha have been traded per year and the total area has decreased

with around 9.000 ha/year (De Danske Landboforeninger 2004). These numbers indicate that a large

number of different PEs will be for sale at the same point i time. Also, as the area decreases, placing the

most valuable PEs on the existing ha seems to be a considerable matching problem.

The main contribution to this paper is an auction design that relies on the principles of the

so-called Walrasian Tatonnement. The auction is a closed auction where the participants submit the

required information once and for all. A central planner is receiving information about each

participant’s reservation value of all possible PEs, his portfolio of PEs and number of ha. Based on this

information the auction algorithm approximates the equilibrium by a systematic evaluation of possible

outcomes. Given a set of possible market clearing prices, the algorithm selects each participants most

optimal demand and supply and excess demand is determined for each type of PE. This information is

used to find a new set of possible market clearing prices. Since the PEs are (most likely) substitutes, a

unique equilibrium may be found by a Walrasian Tatonnement.

If the participants are price-takers the optimal bidding strategy is to submit the reservation values

of all possible PEs (the true value). The auction algorithm allows the participants to trade all types of

PEs simultaneously. Therefore, the markets for the different PEs can be seen as a single market in terms

of efficiency and competition. The considerable size of the entire market for PEs makes the price-taking

assumption likely and facilitates an efficient allocation of the PEs.

The outline of the paper is as follows. Section 2 provides theoretical background and present

related work. Section 3 describes the market for payment entitlements. The auction design is presented

in Section 4. Section 5 discusses the suggested auction, and Section 6 concludes.

1The results in Jensen and Frandsen (2003) are based on a general equilibrium model.



2 Some Theoretical Background on Auction Design
The application of auctions has a very long history but the theory of auctions is rather new and has

developed along with the discipline of information economics. Klemperer (1999) provides a recent

survey. An auction is basically a set of trading rules, and auction design aims at finding rules that ensure

a desired outcome. An auction may improve the allocation of goods and services, e.g. by introducing a

price setting mechanism that leads to more profitable trading by concentrating the market, or by making

the market more transparent.

The central difficulty in auctions is that of private information. The bidders have private

information, e.g. about their preferences or production costs. This information is needed - directly or

indirectly - to determine an optimal allocation. On the other hand, economic agents cannot be trusted to

reveal their private information unless they are given the right incentives to do so. In general, the agents

may try to act strategically to influence the auction outcome in their own favor. By taking advantage of

their information they might possibly get a better share of the reallocation gains. Though, the relative

size of the individual bidder is crucial in utilizing private information.

2.1 The Double Auction

A relatively small fraction of the literature on auctions considers multi-unit double auctions where

sellers and buyers reallocate multiple units of a product or a service. These auctions are sometimes

called exchanges, I refer to them simply as double auctions or two-sided auctions. Some of the most

important real world markets are double auctions, e.g. the typical stock exchanges (a continuous double

auction).

To thoroughly study a double auction one needs an equilibrium model. Attempts have been made

to introduce strategic behavior in the analytical studies of double auctions by invoking a series of further

simplifications, see e.g. Wilson (1985) and Amir et al. (1990). However, in general, the problem of

solving for equilibria in multi-unit auctions is analytically intractable, Gordy (1999, p. 450).

The literature on double auctions focuses in particular on three problems: 1) incentive

compatibility (i.e. truth-telling must be an optimal bidding strategy), 2) ex post efficiency (i.e. the

realization of all trades that improve social welfare) and 3) budget balancing (i.e. the aggregated value

sold must equal the aggregated value bought). The two first problems follows from the so-called

Myerson-Satterthwaite theorem, (Myerson and Satterthwaite 1983). It says that delays and failures are

inevitable in private bargaining if the goods start out in the wrong hands. This follows from the central

observation that in any two-persons bargaining game the seller have incentives to exaggerate its value

and the buyer has incentives to pretend the value is low. There have been a few attempts to design

truth-telling double auctions, see McAfee (1992) and Yoon (2001, 2003). Attempts to solve the first two

problems is typically at the cost of the third problem of balancing the budget. Fortunately, the

magnitude of the three problems diminish as the number of participants grows.

The markets considered in this paper are two-sided and consist of a large number of participants.

We therefore assume that the buyers and sellers are non-strategic price-takers. They do not speculate in

the price effect of demand and supply reductions. This assumption can be justified by several

observations. First, this is a two-sided auction with elastic supply and demand. Any attempt to influence

the price has a smaller effect in a two-sided auction than a one-sided auction with in-elastic supply.

Second, we consider a market with a high number of participants. This makes every participant

marginal. Third, several empirical studies and laboratory experiments have shown that the double



auctions are very stable, i.e. they are robust against strategic behavior. Test auctions with as few as 2-3

buyers and 2-3 sellers have generated almost efficient outcomes (Freidman (1984) and Friedman and

Ostroy (1995)). Fourth, Satterthwaite and Williams (1989) show analytically that a double auction

modelled as a Bayesian game converges rapidly towards ex post efficiency as the market grows.

Consider a large number of both sellers and buyers that meet in a double auction to exchange

multiple items of a good. The sellers have well-defined supply schemes represented by a set of

quantity-price bids (s1, p1), (s2, p2), . . . , (sL, pL). Here, sl is the quantity seller i offers for sale at pl.

In this general representation, the supply scheme consists of L bids, one for each of the L possible bid

prices. Likewise the buyers have well-defined demand schemes represented by a set of quantity-price

bids (d1, p1), (d2, p2), . . . , (dL, pL). The demand and supply schemes are assumed to be monotone in

the price. That is for any two prices ph and pl where ph ≤ pl, we have sh ≤ sl, i.e. a seller will supply

at least the same when the price increases, and dh ≥ dl, i.e. a buyer will demand at least the same when

the price falls. All trade is executed at the same market clearing price. Bids to buy above and sell below

the market clearing price is accepted, the remaining bids are rejected.

Now the aggregated demand/supply is found by summing up the demand/supply for each feasible

market clearing price. Let I be the number of buyers, J the number of sellers, and i and j be the

associated counters. For any market clearing price pl , l = 1, 2, . . . , L, the aggregated demand is given

by ADl =
∑I

i=1 di
l and the aggregated supply is ASl =

∑J
j=1 sj

l . Also the excess demand is defined as

Zl = ADl − ASl,∀l = 1, 2, . . . , L. The discrete nature of the bids requires a clearing policy. We will

typically say that an (approximate) equilibrium is where Zl is closest to zero. With price-taking

behavior the optimal bidding strategy is simply to submit the true demand and/or supply schemes, see

e.g. Nautz (1995).

2.2 Multiple Double Auctions

In this paper, we look at an auction market with an unknown number of K different goods to be

traded simultaneously. The possible interdependency between the different goods adds a new layer of

complexity to the auction design. Among other places, these issues have been widely discussed in

relation to selling licenses for using radio spectrums in the US. If a city is divided into two licenses,

having both of the licenses is worth far more than the separate values of the two. On the other hand, the

value of two spectrum licenses for two different cities may very well be independent. This problem of

handling goods that can be complementary as well as substitutes on the same market, is not an easy

task. The general approach, known as combinatorial auctions, allows the bidders to bid on any

combination of items, which in itself may be an overwhelming task. Also, the problem of selecting the

winner and setting the price is complex. In general, the problem of solving a combinatorial auction is

NP-hard, meaning that the required number of elementary operations (addition, subtraction etc.)

required for solving the problem is not a polynomial function. This basically means that (independently

of the machinery) there is no guarantee that a solution will be found. Fortunately, most problems may

be treated either by restricting the allowed combinations or by applying algorithms that find reasonable

solutions. For a survey on combinatorial auctions see Vries and Vohra (2003). The use of combinatorial

auctions is still very limited, for more see e.g. Pekec and Rothkopf (2003).

If the goods for sale are mutual substitutes, the search for equilibrium prices is greatly simplified.

It is known that the optimal equilibrium may be found by a so-called Walrasian Tatonnement (Walras



1874). The PEs are mutual substitutes for bidder i, if raising the prices on all types of PEs but k does

not reduce the demand for PE k:

p∗−k ≥ p−k, p
∗
k = pk ⇒ Di

k(p
∗) ≥ Di

k(p) (1)

With no type specific requirements on the individual PEs (e.g. by some degree of “coupled

support”), this seems to be a reasonable assumption.

However, there is no guaranty that a Walrasian Tatonnement will find the equilibrium in reasonable

time. The large number of possible equilibria illustrate the difficulties in finding the equilibrium. An

equilibrium, is the K market clearing prices that clear all markets. Let L be the number of possible

market clearing prices on each of the K markets. Now the total number of equilibrium candidates are

L1 · L2 · . . . · LK = LK . In fact, computing the equilibrium is NP-hard in the number of markets.

Therefore, the challenge is to find an algorithm that approximate the equilibrium with as few

computations as possible. A few papers provide algorithms for discrete computations of Walrasian

equilibria see e.g. Cheng and Wellman (1998); Cheng et al. (2003). This paper differs from the previous

work by suggesting an algorithm that defines and updates a possibility set in which the equilibrium is to

be found. Hereby the closeness of the equilibrium candidates is determined as the algorithm approach

the equilibrium.

3 The Market For Payment Entitlements
Although the PEs may be traded together with land, an efficient market for PEs would be preferred.

To see this note that if the price for a given PE is lower on the separate market for PEs, the buyers will

chose to buy PEs separately. Likewise if the price is higher, the sellers will chose to sell PEs separately.

Therefore, if the auction market constitute a Walrasian equilibrium, all PEs will be traded at the auction.

In terms of incentives, the assumption of price-taking behaviour makes it a mere question of

ensuring individual best response to a given price vector. In order to do so the auction have to reflect the

bidders’ preferences. This section discusses the bidders’ (buyers and sellers) best responses to a given

equilibrium candidate, which is used in Section 4 to ensure ex post efficiency of the auction. Upon

knowing the bidders’ preferences, the auction mechanism basically bids in the best interest of the

bidders, this is the idea of the so-called bidding agents.

For simplicity and without loss of generality, we will assume that the farmers have constant

marginal utility of subsidies (money) and that the administrative costs of handling a PE is negligible.

Given that the number of ha and the farmers’ portfolio of PEs are common knowledge, the only private

information required is the reservation values of all of the PEs for sale. Now, let Ri
k be bidder i’s

expected monetary value of PE k, then the expected surplus from buying a PEk is simply:

V i
k = Ri

k − p̂k (2)

where p̂k is the market clearing price. The surplus from selling a given PE can be determined

likewise. Based on the surpluses from buying and selling, the most optimal portfolio of PEs can be

determined subject to an equilibrium candidate. Let qi be a vector with the number of each of the K

different PEs in i’s portfolio, Qi the total number of PEs and ni the number of ha. With constant

marginal utility of money the participants’ most preferred portfolio is subject to the 4 constraints:
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Figure 1. Supply and demand based on total surplus VTS

Buying constraint: Buy only the most valuable PEs (given that it generates a positive surplus):

V B
k∗ = Rk∗ − p̂k∗, where k∗ = arg maxk=1,2,...,K{Rk − p̂k}

Selling constraint: Sell only PEk if the surplus from selling is positive: VS
k = p̂k − Rk > 0

Replacement constraint: Replace only existing PEs if the total surplus from replacing is positive:

V TS
k = V B

k∗ + V S
k > 0

Quantity constraint: The reservation values of the PEs that are not utilized (because the number of

PEs exceed the number of ha) is set equal to 0

With no negative surplus from trade individual rationality is ensured (participation is a weakly

dominating strategy). Also, by selecting the most preferred buying, selling and replacements incentive

compatibility is guaranteed (telling the truth is a weakly dominating strategy).

Now the actual demand and supply can be determined. By setting the reservation values of PEs

that are not utilized equal to 0, the supply of PEs is given by the replacement constraint. Supply is a

vector si with the number of PEs that provide a positive total surplus:

si =

{
qi
k if V i,TS

k > 0
0 otherwise

∀k = 1, 2, . . . ,K

}
(3)

Based on this optimal supply the demand is simply a matter of utilizing the number of ha (given

that V B
k∗ > 0). Based on the supply si the demand is given by the following number of PEk∗:

di
k∗ = ni −

(
Qi −

K∑
k=1

si
k if V i,B

k∗ > 0

)
(4)

To picture this in a figure, let i’s surplus scheme from trading (total surplus) be the order-statistics

of (qi
1, V

i,TS
1 ), (qi

2, V
i,TS
2 ), . . . , (qi

K , V i,TS
K ) with respect to the total surplus V i,TS

k . Figure 1 illustrates

a situation where s PEs are supplied (two different types of PEs) and n − (Q − s) of the most profitable

PEs are demanded.
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Figure 2. Conditional demand of PEA and PEB
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Figure 3. Conditional supply of PEA

To give an numeric example, consider farmer i with 100 ha and 60 PEs of type A and a market that

consists of only two types A and B. i’s reservation values are: RA = 10, RB = 6 and the market

clearing prices are: p̂A = 8, p̂B = 5, which leaves i with VA = 2 and VB = 1 from buying. Since, the

total surplus of replacing the existing 60 PEs is 0 (VA − VA), there will be no replacements. Also, since

VA is larger than VB and positive the demand is simply the number of ha minus number of PEs in i’s

portfolio (minus possible replaced PEs): 100 − (60 − 0) = 40 PEA.

To picture the demand of e.g. type B in a traditional price-quantity diagram, we need to condition

the demand on the price of type A and vise versa. Given p̂B > 5, i will demand 40 PEA at a maximum

of p̂A = 9. Also, he would be willing to sell the existing 60 PEA at a price just above 11 conditioned on

buying 100 PEB at a price no larger than 5. Figure 2 illustrates farmer i’s conditional demand of both

PEA and PEB. Figure 3 illustrates the conditional sale of 60 PEA.

Although the different PEs have to be treated in separate markets the linkage on the buyers’ side

makes the market function as one big market for PEs (assuming an efficient price formation). In terms

of competition, the linkage makes the individual buyer and seller very marginal and therefore renders

strategic behaviour unlikely. To see this, consider a large buyer that tries to bias the price downwards by

withholding demand of a given PE. Now, since the buyers simultaneously bid on all PEs, a lower price

on one market will make this PE more attractive to all of the other buyers and some buyers may switch

demand towards this marked. Likewise, on the other side of the market, consider a large seller who tries

to bias the price upwards by holding back supply of a given PE. Again, since the buyers simultaneously

bid on all PEs, a higher price on one market will switch demand towards the other markets which

counteract any strategic behaviour. Therefore, the price-taking behaviour that ensures the most optimal

allocation seems most likely.

3.1 Bidding Agents

A bidding agent is a set of instructions that makes it possible for a computer to behave in the best

interest of the individual participant. As we shall see, finding the equilibrium prices for the different

PEs is an iterative process, that requires the different bidders to respond to different prices. The use of

bidding agents makes this iterative process applicable in practice.

An open auction format known from the traditional stock exchange allows the bidders to respond

directly to the prices. However, the searching and matching problem is considerable, and a good price

formation requires active participation. Unlike professional traders in stock exchanges, most farmers

probably neither have the time nor the training to ensure a reasonable price formation in such a market.



Also, on-line bidding with thousands of bidders may cause serious logistical problems. Therefore, the

suggested auction is a closed auction with bidding agents.

With no scale effects on either demand or supply as in the scenario above, the only information

required is each participant’s reservation values Rk for all k = {1, 2, . . . ,K} (assuming that the

individual bidder’s portfolio of PEs is public information).

To get the participants to participate and for the auction to be efficient we need to positively

confirm two questions 1) Is Ri
k∀k = {1, 2, . . . ,K} too much information to ask for? and 2) do the

bidding agents reflect the bidders’ preferences?

Too much information?: When the bidders submit their bids, the actual number of different PEs

for sale is unknown. Therefore to guarantee the most optimal trades, each bidder have to tell his

reservation values of all possible K PEs, which may be measured in hundreds or thousands. To limit the

quantity of information required, one solution could be to ask for type specific parameters to calibrate a

valuation function. E.g. let the reservation value of a given PE with a nominal yearly value of r, be

given as:

R(T, ε, δ, r) =
T∑

t=1

δtE[εt]r (5)

where T is the expected duration of the PE, δt the discount factor, E[εt] the expected depreciation

in year t. Hereby the required information is limited to 3 type specific parameters: T, ε and δ. However,

for this to be a good idea we have to make sure that the functional form actually captures the individual

reservation values. An alternative solution would be to ask for a limited number of bids and use linear

interpolation in order to estimate the remaining reservation values. Data Envelopment Analysis have

been used in a somehow similar setting to estimate costs in a regulatory setting, see e.g. Bogetoft

(1997).

The right information?: Is the information about the bidders’ reservation values of the different

PEs enough to ensure ex post efficiency (given price-taking behavior)? So far we have assumed that

there is no scale effect i.e. that a the marginal value of PE is constant independent of the number of PEs

demanded or supplied. However, this might not hold in practice, a decreasing marginal value of PEs

may come from a decreasing value of money or risk aversion2. To express possible scale effects

demand schemes are needed. Individual demand schemes for each PE for sale is clearly to much

information to ask for. One solution would be to introduce a general demand scheme based on the

individual participant’s surplus from trade3.

4 The Auction Market
In this section we consider an auction market consisting of an unknown number of K PEs. The

challenge is to find the K prices that clear all K double auctions simultaneously. As mentioned in

Section 2, we know that the Walrasian tatonnement finds the optimal outcome when the PEs are mutual

substitutes. Though with a large and unknown number of K markets the adjustment process maybe

2The common uncertainty about the whole existence of the agricultural subsidies may cause some buyers to pay less for
high valued PEs, since the potential loss is greater.

3Also the incorporation of things like financial constraints and the national tax system (e.g. possible tax deduction or
taxation of sale) are left for future research.



considerable. Therefore, we suggest a tatonnement that defines a possibility set W in which the

equilibrium is to be found, and approximate the equilibrium by a systematic contraction of W .

The algorithm basically evaluates parallel equilibrium candidates. That isP̃ + θe, where

P̃ = (p̃1, p̃2, . . . , p̃K), e = (1, 1, . . . , 1) ∈ R
K and θ is a multiple of the size of the price grids, pl − pl−1

(= 1 for simplicity). A somewhat similar approach is applied in some versions of the open so-called

simultaneous ascending clock auction used for selling power capacity, see e.g. Cramton (2003).

To evaluate any equilibrium candidate, P̃ = (p̃1, p̃2, . . . , p̃K), each buyer’s optimal response is

determined and subsequently the excess demand and excess supply on each of the K markets are

computed. The discrete nature of the bids requires a clearing policy4. We define the (approximate)

equilibrium as the price vector P̂ = (p̂1, p̂2, . . . , p̂K) that results in the smallest aggregated excess

demand and no excess supply on any market5:

P̂ = arg min
P̃

{
K∑

k=1

Zk(P̃ )|Zk(P̃ ) ≥ 0∀k = 1, 2, . . . ,K

}
(6)

For any equilibrium candidate each participant’s optimal demand and supply is found as described

in Section 3. To sum up, let qi be a vector with the number of each of the K different PEs in i’s

portfolio, Qi the total number of PEs and ni the number of ha. Now, each participant’s optimal response

to an equilibrium candidate P̃ is based on the buyer’s and seller’s surplus:

Buyer’s surplus: V B
k∗ = Rk∗ − p̂k∗, where k∗ = arg maxk=1,2,...,K{Rk − p̂k}

Seller’s surplus: V S
k = p̂k − Rk

Total surplus: V TS = V B
k∗ + V S

k

Based on the total surplus the supply of the existing Qi PEs is a vector si given as:

si =

{
qi
k if V i,TS

k > 0
0 otherwise

∀k = 1, 2, . . . ,K

}
(7)

and demand as:

di
k∗ = ni −

(
Qi −

K∑
k=1

si
k if V i,B

k∗ > 0

)
(8)

Since the PEs are mutual substitutes we can find a lower bound on the set of possible equilibrium

candidates. This is summarized in proposition 1.

Proposition 1. Let the minimum price vector Pmin be P̃ + θ∗e where θ is the largest integer thus there

is no excess supply on any markets:

θ∗ = arg max
θ

{P̃ + θe|Zk(P̃ + θe) ≥ 0,∀k = 1, 2, . . . ,K} (9)

4There are many ways in which two stepwise functions may overlap. The function may be over, equal or below for both
price and quantity on both supply and demand. In general 3 positions on 4 different dimensions, which is 34 = 81 different
ways.

5In case of excess demand, we suggest that the lowest bid of the successful buyers will be randomly selected, such that all
supply is met.



Pmin constitutes a global minimum on all markets

Pmin ≤ P̂ (10)

Proof. Let the initial minimum price vector be Pmin
t . Now, consider a second equilibrium candidate

P̃t+1 and let all prices in P̃t+1 equal the prices in Pmin
t , besides any price ω, which is decreased with

the smallest possible step. ω may be any of the K prices.

In the following we show that if Pmin
t+1 ≤ Pmin

t , Pmin
t+1 is not closer to equilibrium. If Pmin

t+1 ≤ Pmin
t ,

then the prices on all markets but ω, are the same at time t and t + 1. The price ω is one step below.

Now, since a lower price on market ω has a weakly increasing effect on the aggregated demand and a

weakly decreasing effect on the aggregated supply on market ω, the price effect is weakly increasing.

On the other K − 1 markets the price effect is weakly decreasing, caused by a weakly decreasing effect

on demand (some demand moves to market ω) and a weakly increasing effect on supply (caused by

more profitable replacements). Therefore, with a weakly decreasing effect on the other K − 1 markets

Pmin
t+1 can not be closer to equilibrium if Pmin

t+1 ≤ Pmin
t .

The same reasoning may be used to find a global maximum Pmax. Now, the interval (box)

between Pmin
t and Pmax

t constitutes a possibility set Wt in which the equilibrium must be found. Also,

it follows from the existence of a global minimum price vector that the joint minimum price vector also

constitutes a global minimum price vector. Consider the joint price vector Pmin
t
⋂

t+1 consisting of the

following K prices max{pk
t , p

k
t+1},∀k = 1, 2, . . . ,K. Where pk

t and pk
t+1 are the elements of the two

different minimum price vectors Pmin
t and Pmin

t+1 . Hereby the intersection of the two possibility sets Wt

and Wt+1 (Wt
⋂

Wt+1) constitutes the possibility set in which the equilibrium is to be found. This is

used in the tatonnement to keep track of the closeness to equilibrium.

For a given equilibrium candidate P̃ the possibility set W is bounded by the following K parallel

price vectors: Pk = P̃ + θ∗ke, where θ∗k is defined as:

θ∗k = arg max
θk

{P̃ + θke|Zk(P̃ + θke) ≥ 0}∀k = 1, 2, . . . K (11)

In terms of computations, each of the Pk price vectors may be found by a simple bi-sector search, which

requires a minimum of computations. Appendix A provides an algorithm.

The missing part is the adjustment rule. That is, based on previous round, what should the next

guess of a equilibrium candidate P̃t+1 be? We suggest the adjustment to be based on Pmin
t and Pmax

t as

well as a price vector Pclear
t consisting of the following K prices: p̃k

t + θ∗k,te,∀k = 1, 2, . . . ,K, where

p̃k
t is the price guess on market k in the previous round and θ∗k,t the scalar found in equation 11. Pclear

t

can be seen as some intermediate clearing prices. The suggested adjustment is based on Pmin
t and P clear

t

as follows:

p̃k
t+1 = pk,clear

t +

⌊
pk,clear

t − pk,min
t

t

⌋
∀k = 1, 2, . . . ,K (12)

t is initially equal to 1. If the new price vector does not result in a smaller W or the equilibrium

(the equilibrium is where Wt and Wt+1 result in the same price vector) then t is adjusted upwards in

order to make the adjustment less.

To provide a good indication of the speed of convergence further studies remain to be done. A



simulation would clarify the usefulness of the auction and map the computation speed in terms of the

contraction of W .

Clearly a good initial price vector may speed up the convergency. A good initial guess could be the

price vector that makes the average participant indifferent between the K PEs. Let R
avg
k be the average

reservation value of PE k then the initial price vector Pini is the one that fulfills:

R
avg
1 − pini

1 = R
avg
2 − pini

2 = · · · = R
avg
K − pini

K . To estimate the average participant’s valuations, one

approach would be simply to take the average of all of the submitted valuations of the PEs6. Either way,

making the average bidder indifferent seems to be a good first guess of the market clearing prices.

5 Discussion
As we have seen, the number of PEs is the most important parameter in terms of complexity. The

way the value of the PEs are constructed counts for a large K. This leaves us with a high degree of

complexity, which may cause the suggested tatonnement to fail in finding the equilibrium. In that case a

different clearing rule must be applied. Fortunately, the tatonnement provides an approximation W in

which the equilibrium is to be found. One solution is to apply the current minimum price vector and

randomly select among the buyers in order to meet all supply. For a reasonable small W the possible

distortions is of little importance. To see this note that the bids that are eliminated are the ones that

generate the least surplus.

For a mechanism to work, the agents have to understand it and realise the optimal behaviour7. The

idea of comparing the different PEs is probably by intuition easy to understand. However, possible use

of valuation functions and general demand schemes as suggested in Section 3.1 may result in a

unnecessarily complicated bidding process.

Finally, as mentioned earlier, an alternative approach is a traditional open exchange market. While

such a market may have a positive effect of avoiding overoptimistic bids (the problem of the so-called

winner’s curse) the price formation requires too much activity from too many participants. An

alternative middle way is the bulletin market, where buyers and sellers announce their bids and offers

e.g. on a web site. Studies of this type of markets show that prices tend to be higher and efficiency

lower compared to double auctions. One reason is that it tends to ease tacit collusion among the sellers.

Ketcham et al. (1984) provides a thorough study of this problem and concludes that double auction

empowers buyers in ways that a bulletin market does not.

6 Conclusion
The decoupling of the EU agricultural support introduces an all new market for the resulting

securities; the payment entitlements. It requires a hectare to exploit a payment entitlement. Therefore, if

the payment entitlements are not properly distributed the individual member countries will not be given

the support they are entitled to.

In this paper we illustrate the complexity of this market and suggest an auction that ensures an

optimal allocation of the payment entitlements. Based on information about the bidders’ portfolio of

PEs, number of ha and the reservation values of the different PEs, a bidding agent bids in the best

6In doing so it might be a good idea to exclude possible extreme bids e.g. excluding the 10 % highest and lowest bids and
take the average of the remaining bids

7Understandability is just one of a long list of important criteria. Schotter (1998) provides an overview of general criteria
for selecting a mechanism.



interest of each participant. An iterative algorithm ensures a monotonic price formation towards

equilibrium.

Since the auction allows the buyers to systematically participate on all markets, the entire market

of PEs can be considered as one in terms of competition. Therefore, the existence of thin markets for

some types of PEs is of no importance for the overall competition and efficient distribution.

Bibliography
Amir, R., Sahi, S., Shubik, M. and Yao, S.: 1990, A strategic market game with complete markets,

Journal of economic theory 51, 126–143.

Bogetoft, P.: 1997, DEA-based yardstick competition: The optimality of best practice regulation,

Annals of Operations Research 73, 277–298.

Cheng, J. Q. and Wellman, M. P.: 1998, The walras algorithm: A convergent distributed implementation

of general equilibrium outcomes, Computational Economics 12, 1–24.

Cheng, S.-F., Leung, E., Lochner, K. M., OMalley, K., Reeves, D. M., Schvartzman, L. J. and Wellman,

M. P.: 2003, Walverine: A walrasian trading agent. University of Michigan, Artificial Intelligence

Laboratory.

Cramton, P.: 2003, Electricity market design: The good, the bad and the ugly, Proceedings of the

Hawaii Internatinal Conference on System Sciences.

De Danske Landboforeninger: 2004, Landøkonomisk oversigt 2004, Yearly statistical report.

Freidman, D.: 1984, On the efficincy of experimental double auctions markets, American Economic

Review 74(1), 60–72.

Friedman, D. and Ostroy, J.: 1995, Competitivity in auction markets: An experimantal and theoretical

investigation, Economic Review 105, 22–53.

Gordy, M. B.: 1999, Hedging winner’s curse with multiple bids: Evidence from the portuguese treasury

bill auction, The Review of Economics and Statistics 81(3), 448–465.

Jensen, H. G. and Frandsen, S.: 2003, Impact of the eastern european accession and the 2003-reform of

the cap consequenses for individual member countries, Working paper, Danish Research Institute of

Food Economics.

Ketcham, J., Smith, V. L. and Williams, A. W.: 1984, A comparison of posted-offer and double-auction

pricing institutions, Review of Economic Studies 51(4), 595–614. available at

http://ideas.repec.org/a/bla/restud/v51y1984i4p595-614.html.

Klemperer, P.: 1999, Auction theory: A guide to the literature, Journal of Economic Survey

13(3), 227–286.

McAfee, R.: 1992, A dominant strategy double auction, Journal of Economic Theory 56(2), 434–450.

Myerson, R. B. and Satterthwaite, M. A.: 1983, Efficient mechanisms for bilateral trading, Journal of

Economic Theory 1(29), 265–281.



Nautz, D.: 1995, Optimal bidding in multi-unit auctions with many bidders, Economics Letters

48, 301–306.

Pekec, A. and Rothkopf, M. H.: 2003, Combinatorial auction design, Management Science

49(11), 1485–1503.

Picinini, A. and Loseby, M.: 2001, Agricultural policies in Europe and the USA, 1 edn, Palgrave.

Ritson, C. and Harvey, D.: 1997, The Common Agricultural Policy, 2 edn, CAB International.

Satterthwaite, M. A. and Williams, S. R.: 1989, The rate of convergence to efficiency in the buyer’s bid

double auction as the market becomes large, Review of Economic Studies 56, 477–498.

Schotter, A.: 1998, in Organization With Incomplete Information, m. majumdar edn, Cambridge

University Press, chapter A Practical Person’s Guide to Mechanism Selection: Some Lessons From

Experimental Economics.

Vries, S. D. and Vohra, R. V.: 2003, Combinatorial auctions: A survey, INFORMS Journal on

Computing 15(3), 284–309.

Wilson, R.: 1985, Incentive efficiency of double auctions, Econometrica 53(5), 1101–1115.

Yoon, K.: 2001, The modified vickrey double auction, Journal of Economic Theory 101, 572–584.

Yoon, K.: 2003, An efficient double auction, Working paper, Korea University.



Appendix

A Using a Bi-sector Search to Find Wt

Here we explicitly describe the algorithm used for finding the possibility set Wt in which the

equilibrium is to be found given an equilibrium candidate P̃t. Also the complexity in terms of

computations is analyzed.

Given the initial equilibrium candidate, lower and upper bounds on the equilibrium price vector,

Pmin and Pmax, are found by applying the algorithm below K times. Consider an initial candidateP̃t

and K initial minimum prices (pmin
k,t = 0) and three initial maximum prices

(pmax
k,t = max{p1, p2, . . . , pL}). For each k = 1, 2, . . . ,K the following algorithm is applied:

Step 1: Each participant’s supply and demand (si, di) is determined.

Step 2: Excess demand is computed Zk(P̃t) =
∑I

i=1 di
k(P̃t) −

∑J
j=1 sj

k(P̃t).

Step 3: The sign of Zk(P̃t) is determined.

Step 4: If Zk(P̃t) < 0, the pmax
k,t+1 = p̃k,t and P̃t+1 = P̃t − e

⌊
p̃t−pmin

k,t

2

⌋
, otherwise pmin

k,t+1 = p̃k
t and

P̃t+1 = P̃t + e
⌊

pmax
k,t −p̃t

2

⌋
.

Step 5: If P̃t = P̃t+1 stop, otherwise return to Step 1

The result is K price vectors P1 + θ1e, P 2 + θ2e, . . . , PK + θKe. Taking coordinate wise

minimum and maximum defines the possibility set (W ) in which the equilibrium is to be found.

The number of computations in order to find a single price vector is: log2 L(I + J + 1) additions

and as many determinations of optimal demand/supply as well as log2 L comparisons. The total number

of computations is K times larger. The number of computations in the next round depend entirely on

the size of the possibility set W from the previous round.


