
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 
 
 
 
 
 
 
 
 
 
 
 

PMP, EXTENSIONS AND ALTERNATIVE METHODS: 
INTRODUCTORY REVIEW OF THE STATE OF THE ART 

 
 
 
 

Bruno Henry de Frahan 
Université catholique de Louvain, Belgium 

henrydefrahan@ecru.ucl.ac.be 
 
 
 
 

 
 
 
 

Paper prepared for presentation at the PMP, Extensions and Alternative Methods 

Organised Session of the XIth EAAE Congress 

(European Association of Agricultural Economists)  

The Future of Rural Europe in the Global Agri-Food System 

Copenhagen, Denmark, August 23-27, 2005 

 
 
 
 
Copyright 2005 by Bruno Henry de Frahan.  All rights reserved.  Readers may make 
verbatim copies of this document for non-commercial purposes by any means, provided that 
this copyright notice appears on all such copies. 



 2

PMP, EXTENSIONS AND ALTERNATIVE METHODS: 
INTRODUCTORY REVIEW OF THE STATE OF THE ART 

 
Bruno Henry de Frahan 

Université catholique de Louvain, Belgium 
 

Positive Mathematical Programming (PMP) as formalised in Howitt (1995a) to calibrate exactly 
constrained optimisation models has renewed the interest in Mathematical Programming (MP) 
modelling for analysing agricultural and environmental policies.  It has generated numerous 
applications and extensions (e.g., Paris and Howitt, 1998; Paris, 2001) but also criticisms and 
alternative methods (Britz et al., 2003; Heckelei and Wolff, 2003).  Issues of exact calibration and 
aggregation have also been addressed differently with a procedure based on extreme point 
representation (Önal and McCarl, 1989 and 1991). 
 This organised session aims to compare alternative methods of exact calibration in MP 
modelling, update on development in these methods and discuss some recent applications.  After a 
short introduction by Henry de Frahan who recently reviewed these methods (Henry de Frahan et al., 
2005), this session assembles contributions of three key protagonists in the development of these 
methods.  First, Heckelei explains the inconsistency in parameter estimation for the case of multiple 
observations if we rely on the first PMP calibration step, presents an alternative method to PMP for 
avoiding this problem and assesses merits and problems with this alternative method.  Second, Howitt 
responds to the Heckelei and Wolff's (2003) critique, shows the benefits of relying on PMP-GME 
based micro flexible production function models for policy analysis and provides measures of 
information gain from the disaggregation of production models.  Third, Schneider explains the Önal 
and McCarl approach as an alternative for exact aggregation and calibration and illustrates its use in 
the context of the FAOSM model.  These three contributions are followed by a round table discussion. 
 The renewed interest in MP in the last fifteen years to model economic behaviour and, hence, 
help analyse agricultural and environmental policy originates from a combination of factors among 
which PMP plays a distinctive role.  First, the emergence in the late 1980's of the positive 
mathematical programming (PMP) has brought an appealing breath of positivism in the determination 
of the optimising function parameters in replacement of various unsatisfactory ad hoc calibration 
techniques.  This method formalised later by Howitt (1995a) makes it indeed possible to calibrate MP 
models exactly exploiting the observed behaviours of economic agents at either the disaggregated or 
aggregated level.  Second, as a result of the former, PMP has provided a more flexible and realistic 
simulation behaviour of MP models avoiding unlikely abrupt discontinuities in the simulation 
solutions.  Third, the increasing need to model and simulate behavioural functions under numerous 
technical, economic, policy and, more recently, environmental conditions has strengthened the 
recourse to MP models.  Fourth, in an environment of often-limited amount of adequate information 
and data to treat complex decisions, MP models are nevertheless able to handle decision problems 
which econometrics cannot.  This renewed interest in MP modelling for analysing agricultural and 
environmental policies has generated numerous applications as well as extensions at different 
investigation levels of which several are reported in Heckelei and Britz (2005). 
 Alternatively to PMP, another but less popular approach to calibrate programming models has 
been proposed exploiting the Dantzig-Wolfe (1961) decomposition. To correct aggregation errors so 
common in regional and sector models Önal and McCarl (1991) provide an aggregation procedure 
that has the potential to be exact under full information on all disaggregated entities irrespective to 
their heterogeneity.  Like PMP, this aggregation procedure also is positive in the sense that its 
empirical applications exploit the observed behaviours of economic agents. 

This introduction briefly reviews the PMP and the exact aggregation procedures, outlines their 
shortcomings and extensions and guides the participants to this organised session to ongoing work to 
correct these shortcomings. 
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1.  The Standard PMP Procedure 
 

PMP is a method to calibrate mathematical programming models to observed behaviours during a 
reference period by using the information provided by the dual variables of the calibration constraints 
(Howitt, 1995a; Paris and Howitt, 1998).  The dual information is used to calibrate a non-linear 
objective function such that the observed activity levels are reproduced for the reference period but 
without the calibration constraints.  The term "positive" that qualifies this method implies that, like in 
econometrics, the parameters of the non-linear objective function are derived from an economic 
behaviour assumed to be rational given all the observed and non-observed conditions that generates 
the observed activity levels.  The main difference with econometrics is that PMP does not require a 
series of observations to reveal the economic behaviour, which as a drawback deprives PMP from 
inference and validation tests. 
 Formalised by Howitt (1995a), PMP follows a procedure in three steps.  The first step consists in 
writing a MP model as usual but adding to the set of limiting resource constraints a set of calibration 
constraints that bound the activities to the observed levels of the reference period.  Taking the case of 
maximising gross margins with upper bounded calibration constraints, we write the initial model as in 
Paris and Howitt (1998): 
 

Maximise Z = p' x - c' x (1) 
subject to: A x ≤ b [λλλλ] (1a) 
 x ≤ xo + εεεε [ρρρρ] (1b) 
 x ≥≥≥≥ 0  (1c) 

 
where: 
Z scalar of the objective function value, 
p (n x 1) vector of product prices, 
x (n x 1) non-negative vector of production activity levels, 
c (n x 1) vector of accounting costs per unit of activity, 
A (m x n) matrix of coefficients in resource constraints,  
b (m x 1) vector of available resource levels, 
xo  (n x 1) non-negative vector of observed activity levels, 
εεεε (n x 1) vector of small positive numbers for preventing linear dependency between the 

structural constraints (1a) and the calibration constraints (1b),  
λλλλ (m x 1) vector of duals associated with the allocable resource constraints, 
ρρρρ (n x 1) vector of duals associated with the calibration constraints. 

 
Howitt (1995a) and Paris and Howitt (1998) interpret the dual variable vector ρρρρ associated with 

the calibration constraints as capturing any type of model mis-specification, data errors, aggregate 
bias, risk behaviour and price expectations.  In the perspective of calibrating a non-linear decreasing 
yield function as in Howitt (1995a), this dual vector ρρρρ represents the difference between the activity 
average and marginal value products.  In the alternative perspective of calibrating a non-linear 
increasing cost function as in Paris and Howitt (1998), this dual vector ρρρρ is interpreted as a differential 
marginal cost vector that together with the activity accounting cost vector c reveals the actual variable 
marginal cost of supplying the observed activity vector xo. 
 To account for greater competitiveness among closed competitive activities that can be viewed as 
variant activities from a generic activity, Rohm and Dabbert (2003) add within this first step 
calibration constraints for these variant activities that are less restrictive than the calibration 
constraints for the generic activities. 
 The second step of PMP consists in using these duals to calibrate the parameters of the non-linear 
objective function.  A usual case considers calibrating the parameters of a variable cost function Cv 
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that has the typical multi-output quadratic functional form, however, holding constant variable input 
prices at the observed market level as follows:1 
 

Cv(x) = d' x + x' Q x / 2  (2) 
 
where: 
d (n x 1) vector of parameters of the cost function, 
Q (n x n) symmetric, positive (semi-) definite matrix with typical element �ii' for activities i and i’. 
 

The variable marginal cost vector MCv of this typical cost function is set equal to the sum of the 
accounting cost vector c and the differential marginal cost vector ρρρρ as follows: 
 

MCv = ∇∇∇∇Cv(x)xo' = d + Q xo = c + ρρρρ (3) 
 

where ∇∇∇∇Cv(x) is a (1 x n) gradient vector of first derivatives of Cv(x) for x = xo. 
 

To solve this system of n equations for [n + n(n + 1)/2] parameters and, thus, overcome the under-
determination of the system, PMP modellers rely on various solutions.  An earlier ad hoc solution 
consists in assuming that the symmetric matrix Q is diagonal, implying that the change in the actual 
marginal cost of activity i with respect to the level of activity i' (i≠i') is null and, then, in relying on 
additional assumptions.  Among them, the average cost approach equates the accounting cost vector c 
to the average cost vector of the quadratic cost function, which leads to: 
 

qii = 2 ρi / xio and di = ci - ρi for all i = 1, …n.  (4) 
 

In this case, however, the variable marginal costs of these so-called marginal activities that are 
constrained by the allocable constraints (1a) but not by the calibration constraints (1b) are 
independent of their levels while those of the so-called preferable activities that are constrained by the 
calibration constraints are.  As a result, an exogenous shock on one preferable activity would uniquely 
modify the levels of this activity and the level of the marginal activities, not those of the other 
preferable activities (Gohin and Chantreuil 1999).  One ad hoc solution to obtain an increasing 
marginal cost function for these marginal activities consists in retrieving some share of one limiting 
resource dual value λ and adding it to the calibration dual vector ρρρρ to obtain a modified calibration 
dual vector ρρρρM (Rohm and Dabbert 2003). 

Exogenous supply elasticities εii are also used to derive the parameters of the quadratic cost 
function as in Helming et al. (2001): 
 

qii = pio / εii xio and di = ci + ρi - qii xio for all i = 1, …n.  (5) 
 

All these ad hoc specifications would exactly calibrate the initial model as long as equations (2) 
are verified, but lead to different simulation responses to external changes. 

A more severe solution consists in skipping the first step of PMP altogether.  Judez et al. (2001) 
directly derive the unknown parameters of the final non-linear model from the Kuhn-Tucker 
conditions of such final model considering exclusively the activities whose observed levels are 
different from zero and the opportunity costs of the limiting resources as given exogenously to the 
model.  To the extent that the opportunity costs of the limiting resources are lower than the dual 
values λλλλ obtained from the initial linear programme, all activities are described with an increasing 
marginal cost.  They use this approach to represent the economic behaviours of different farm types 

                                                
1
 Other functional forms are possible.  The generalized Leontief and the weighted-entropy variable cost function (Paris and 

Howitt, 1998) and the constant elasticity of substitution (CES) production function (Howitt, 1995b) in addition to the 
constant elasticity of transformation production function (Graindorge et al., 2001) have also been used.  A von Neumann-
Morgenstern expected utility approach has been used to account for a constant absolute risk aversion to price volatility (Paris 
1997). 
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based on farm accounting data from the Spanish part of the European Farm Accountancy Data 
Network (FADN). 

A subsequent development from Paris and Howitt (1998) to calibrate the marginal cost function is 
to exploit the maximum entropy estimator to determine all the [n + n(n + 1)/2] elements of the vector 
d and matrix Q using the Cholesky factorisation of this matrix Q to guarantee that the calibrated 
matrix Q is actually symmetric positive semi-definite.2  This estimator in combination with PMP 
enables to calibrate a quadratic variable cost function accommodating complementarity and 
competitiveness among activities still based on a single observation but using a priori information on 
support bounds.  Nevertheless, as argued in Heckelei and Britz (2000), the simulation behaviours of 
the resulting calibrated model would be still arbitrary because heavily dominated by the supports. 
 The third step of PMP uses the calibrated non-linear objective function in a non-linear 
programming problem similar to the original one except for the calibration constraints.  This 
calibrated non-linear model is consistent with the choice of the non-linear activity yield or cost 
function derived in the preceding step and exactly reproduces observed activity levels and original 
duals of the limiting resource constraints.  The following PMP model is ready for simulation. 

Maximise Z = p' x - 
∧
d ' x - x' 

∧
Q  x / 2 (6) 

subject to: A x ≤ b [λλλλ] (6a) 
 x ≥ 0 (6b) 

where the vector 
∧
d and matrix 

∧
Q  are the calibrated parameters of the non-linear objective function. 

 
This calibration approach can be applied at the farm, regional and sector levels.  When 

accounting data of a sample of F farms are available such as from the FADN, F PMP models can be 
defined for each farm of the sample.  Simulations can then be performed on these individual PMP 
models and simulation results may be aggregated as in Buysse et al. (2004) and Henry de Frahan et 
al. (2005). 
 To represent the economic behaviours with regard to activities of farms whose initial observed 
supply level is zero during the reference period, Paris and Arfini (2000) add to the F PMP models a 
supplementary PMP model for the whole farm sample and calibrate a frontier cost function for all the 
activities included in the whole farm sample.  Such solution to the self-selection problem provides a 
representation of economic behaviours even with regard to those activities of farms whose initial 
observed supply level is zero. 
 
2.  The Exact Aggregation Procedure 
 

Alternatively to PMP, another but less popular approach to calibrate programming models has 
been proposed exploiting the Dantzig-Wolfe (1961) decomposition. To correct aggregation errors so 
common in regional and sector models Önal and McCarl (1991) provide an aggregation procedure 
that has the potential to be exact under full information on all disaggregated entities irrespective to 
their heterogeneity.  Like PMP, this aggregation procedure also is positive in the sense that its 
empirical applications exploit the observed behaviours of economic agents. 
 The aggregation procedure advocated by McCarl (1982) and Önal and McCarl (1989 and 1991) 
that can be also used to calibrate programming models rests on the Dantzig-Wolfe (1961) 
decomposition.  According to this decomposition any feasible solution of the production possibility 
set, i.e., the bounded set defined by the resource constraints, can be expressed as a convex 
combination of the extreme points. 
 By exploiting the extreme point representation of a linear system, the problem: 

                                                
2 In short, the maximum entropy approach consists in estimating parameters regarded as expected values of associated 
probability distributions defined over a set of a priori discrete supports (Golan et al., 1996). 
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Maximise Z = p' x - c' x          (7) 
subject to:  A x ≤ b 

x ≥≥≥≥ 0  
 
using the same notation as in model (1), can be equivalently stated as (Önal and McCarl 1989): 
 

Maximise Z = p' x - c' x          (8) 

subject to: φφφφ 
^
X = x  

w

i
i

φφφφ���� = 1 

x ≥ 0 and φi ≥ 0 for all i 
 
where the (w x 1) vector contains the convex combination weights φi and the (n x w) matrix 

^
X contains the extreme points of the linear system of the initial model constraints.  Schneider will 
elaborate further on this exact aggregation procedure in his presentation. 
 
3.  PMP Shortcomings and Alternatives 
 

The under-estimation of the marginal cost system and the consequently ambiguous treatment of 
the marginal versus the preferable activities are shortcomings of the PMP that have been already 
reported above.  Other shortcomings are reviewed in the following. 
 To overcome other criticisms that have been raised against the use of a linear technology in 
limiting resources and the zero-marginal product for one of the calibrating constraints, Paris (2001) 
and Paris and Howitt (2001) generalise the PMP framework into a Symmetric Positive Equilibrium 
Problem (SPEP) and extend it to a full sample of farms sharing the same technology.  These authors 
express the first step of this new structure as an equilibrium problem consisting of symmetric primal 
and dual constraints and the third step as an equilibrium problem between demand and supply 
functions of inputs, on the one hand, and between marginal cost and marginal revenue of the output 
activities, on the other hand.  For these authors, the key novelty of this new framework is rendering 
the availability of limiting inputs responsive to output levels and input price changes.  Britz et al. 
(2003), however, address several conceptual concerns with respect to the SPEP methodology and 
question the economic interpretation of the final model ready for simulations. 
 As Heckelei will explain in his presentation, even if we rely on multiple cross-sectional or 
chronological observations to overcome the problem of under-determination of the marginal cost 
system, then we face a fundamental inconsistency between the specification of the parameters of this 
system and the resulting quadratic optimisation model.  His argument goes as follows (Heckelei and 
Wolff, 2003).  On the one hand, the shadow values λλλλ of the limiting resources implied by the ultimate 
model (6) are determined by the vectors p, d and b and the matrices A and Q of all the activities 
through its first-order condition.  On the other hand, the various sets of shadow values λλλλ of the 
limiting resources from the sample initial models (1) are solely determined by the vectors p and c and 
matrix A of only those marginal activities bounded by the resource constraints through their first-
order conditions.  As a result, the various sets of shadow values of the initial models are most 
generally different from the shadow values of the ultimate model.  Since the first step simultaneously 
sets both the initial dual vectors ρρρρ and λλλλ and the second step uses the initial dual vector ρρρρ to estimate 
the vector MCv, this latter vector must generally be inconsistent with the ultimate model (6).  The 
derived marginal conditions (3) are, therefore, most likely to be biased estimating equations yielding 
inconsistent parameter estimates.3  This inconsistency makes PMP not well suited to the estimation of 
programming models that rely on multiple cross-sectional or chronological observations.  Howitt will 
respond to that criticism in his presentation. 

                                                
3 In other words, the ‘estimated’ values of the shadow values λ cannot converge to the true shadow values λ as more 
observations are added because PMP always selects the highest possible values for shadow values λ. 
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To avoid inconsistency between steps 1 and 3 as further exposed in Heckelei and Britz (2005), 
Heckelei and Wolff (2003) suggest to skip the first step altogether and employ directly the optimality 
conditions of the desired programming model to estimate, not calibrate, simultaneously the shadow 
values of the limiting resources and the parameters of the marginal cost system.  They illustrate this 
general alternative to the original PMP through three examples relying on the Generalised Maximum 
Entropy (GME) procedure for estimating the model parameters.  Their examples deal with the 
estimation of the parameters of various optimisation models that (1) incorporate a quadratic cost 
function and only one constraint on land availability, (2) allocate variable and fixed inputs to 
production activities represented by activity-specific production functions or (3) allocate fixed inputs 
to production activities represented by activity-specific profit functions. 
 As stated by their authors, this alternative approach to PMP has some theoretical advantage over 
the original PMP for the estimation of programming models.  It also has some empirical advantage 
over standard econometric procedures of duality-based behavioural functions for the estimation of 
more complex models characterized by more flexible functional forms and more constraints as well as 
the incorporation of additional constraints relevant for simulation purpose. 
 To exploit fully the richness of the farm-level data from the standard FADN, Polomé et al. (2005) 
rely on a panel data estimation to estimate the parameters of a marginal cost and input demand system 
avoiding the calibration step of PMP.  The cost function has a quadratic form similar to the Paris and 
Howitt's (2001) quadratic-Leontieff cost function but modified to fully satisfy the regularity properties 
of a cost function.  The estimation of the marginal cost and input demand system derived from this 
cost function is restricted to a sample of homogeneous crop farms of the Belgian part of the FADN 
that hypothetically share the same technology.  This sample restriction allows limiting the number of 
parameters to estimate while still maintaining the farm fixed effect of the panel data model.   
Following Heckelei and Wolff (2003), the estimation of this system directly uses the optimality 
conditions of the desired programming model equating the marginal cost system to the observed 
output prices and the input demand system to the observed input uses. Restrictions to account for 
theoretical regularity properties but also for some specific policy aspects or resource constraints can 
be incorporated into the estimation.  Once estimated, the marginal cost and input demand system is 
ready to be used in a profit maximisation program to simulate the farmers' economic behaviours when 
some exogenous conditions change.  Results can then be aggregated and analysed according to farm 
type, size or location. 
 
4.  Preliminary Conclusions 
 

PMP has renewed the interest in mathematical modelling for agricultural and environmental 
policies for several reasons.  The main advantages of the PMP approach are the simplicity of the 
modelling of bio-economic constraints or policy instruments, the smoothness of the model responses 
to policy changes and the possibility to make use of very few data to simulate agricultural and 
environmental policies. 
 PMP is a method that has, however, been developed for situations in which the researcher has 
either very few information or faces a situation with a high heterogeneity in farms, but is willing to 
impose strong hypotheses on the functional form of the cost function. Without additional data, there is 
probably little improvement that can be achieved.  As large samples such as the FADN become 
available, it becomes more and more useful to extend PMP and to prefer econometric estimation 
approaches to calibration approaches, as they are less demanding in terms of hypotheses and more 
robust.  
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