
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 
 
 
 
 

ESTIMATING STATE-CONTINGENT PRODUCTION FUNCTIONS 
 
 
 
 

by 
 
 

Svend Rasmussen (sr@kvl.dk) 
Kostas Karantininis (kok@kvl.dk) 

 
Food & Resource Economics Institute 

The Royal Veterinary & Agricultural University of Copenhagen (KVL) 
Phone: (+45) 35282266, FAX: (+45) 35282295 

 
 
 

 
 
 
 

Paper prepared for presentation at the XIth Congress of the EAAE 
(European Association of Agricultural Economists) 

 Copenhagen 2005 
 
 
 
 
 

Copyright 2005 by Svend Rasmussen and Kostas Karantininis. All rights reserved. 
Readers may make verbatim copies of this document for non-commercial purposes by any 

means, provided that this copyright notice appears on all such copies 
 



ESTIMATING STATE-CONTINGENT PRODUCTION FUNCTIONS 
 

By 
 

Svend Rasmussen and Kostas Karantininis 
Food and Resource Economics Institute 

The Royal Veterinary and Agricultural University, KVL 
Copenhagen, Denmark 

 
 

Abstract 
The paper reviews the empirical problem of estimating state-contingent production functions. The ma-
jor problem is that states of nature may not be registered and/or that the number of observation per 
state is low. Monte Carlo simulation is used to generate an artificial, uncertain production environ-
ment based on Cobb Douglas production functions with state-contingent parameters. The parameters 
are subsequently estimated based on different sizes of samples using Generalized Least Squares and 
Generalized Maximum Entropy and the results are compared. It is concluded that Maximum Entropy 
may be useful, but that further analysis is needed to evaluate the efficiency of this estimation method 
compared to traditional methods. 
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1. Introduction 
The classical approach to the problem of optimizing production under risk/uncertainty is the ex-

pected utility model (EU model). The EU-model is, in its basic form, a relatively general model. But 
as regards empirical application, the tradition has developed over time to the EU-model being the 
equivalent of a model, where utility is maximized as a function of the expected value and variance of 
profit (EV model) (Robison and Barry; Dillon and Anderson; Hardaker, Huirne, and Anderson ). 

This approach to decision making under uncertainty has been severely criticized by Chambers 
and Quiggin in their book on state-contingent production from 2000, as well as in subsequent papers 
(Chambers and Quiggin, 2002a; 2002b). The main problem being that the traditional approach typi-
cally does not consider the interaction between the uncontrolled (uncertain) variables and the decision 
variables controlled by the decision maker. Furthermore, although Dillon and Anderson realized the 
basic need for modelling this kind of interaction, they did not derive criteria for optimal production 
that went beyond maximizing utility, defined as a function of expected value and variance of profit 

With the state-contingent approach developed by Chambers and Quiggin (2000), the foundation 
for alternative ways of describing and analyzing production under uncertainty, were made available. In 
a recent article, Rasmussen (2003) used the state-contingent approach to derive criteria for optimal 
production (input use) under uncertainty. While the article illustrates that the state-contingent ap-
proach has the merit of being based on well-known marginal principles and optimization tools, it also 
indicates that the state-contingent approach has its own weaknesses when it comes to empirical appli-
cation. Thus, the basic problem of not knowing the decision makers’ utility function still exists, and 
the problem of how to estimate state-contingent production functions, has not been solved. Thus, the 
question of how to apply the theory of state-contingent production to the real problems of actual deci-
sion making still has no clear answer. 

This paper considers the problem of how to estimate state-contingent production functions. The 
problem is that empirical data have not traditionally been registered in a form which may be appropri-
ate for estimating state-contingent production functions. Data from farm accounts do not normally in-
clude observations on the states of nature. Further, the number of different states of nature may be 
very large, and therefore the number of observations per state may be rather small. Estimation meth-
ods therefore call for methods that may handle small number of observations. 
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To compare alternative estimation methods, alternative samples of production data based on a 
pre-specified production function with state-contingent parameters are generated. The data are gener-
ated using Monte-Carlo simulation, and alternative sample sizes of both ordinary time series and panel 
data are generated. Parameters of the pre-specified production function are estimated using traditional 
estimation methods (OLS, and ITSUR), and Maximum Entropy (ME), and the estimation efficiency is 
compared measuring how well the alternative methods are able to estimate the correct parameter val-
ues. 

The state-contingent approach to decision making under uncertainty may or may not involve an 
improvement compared to the traditional methods. It is not clear whether the state-contingent ap-
proach has the potential at all of providing a better framework for decision making than the traditional 
EV model. The further perspective of the research presented in this paper is to use the results on how 
to estimate state-contingent production functions, as a basis for answering the following question: 
With a given set of data, is it better to base decision making on estimated state-contingent production 
functions, or does the well-known EV model based on an estimated stochastic production function and 
variances provide just as good – or maybe even better decisions?  

 
 
 

2. The problem of estimating state-contingent production functions 
The state-contingent approach to describing production under uncertainty is based on the concept 

of state-contingent production functions. Depending on the state of nature, there is a specific (i.e. 
state-contingent) production function. Thus, the relation between controllable inputs and output (the 
production function) for production of wheat will depend on the climate (the state of nature): If it is a 
rainy season the production function will be different compared to a dry season. 

More generally, consider an uncertain production environment consisting of a set of states Ω = 
{1, 2, …, s, …, S}, from which ‘nature’ picks the state of nature independently of the decisions made 
by the decision maker. Nature picks the state of nature after the decision maker has made his produc-
tion decision. The decision variables are the amounts of inputs and the choice of the technique1). If the 
input vector is x = ( x1, …, xN), then the amount of output z produced if nature picks state s is: zs = 
fs(x1, …, xN), where fs(.) is the state-contingent production function in state s. With an output price of ps 
in state s, and a vector of input prices w = (w1, …, wN), the net-return from producing product z in state 
s is ys = pszs – wx. 

To determine the optimal production decision, the decision maker has to know all S production 
functions2). In case he does, all the production uncertainty has been eliminated in the sense that there is 
no uncertainty concerning the production in state s. The only uncertainty left is the frequency by 
which state s occurs. 

 It is hard to imagine that this ideal case would take place in practice. First of all, the number of 
possible real states (S) is often very large. (This is indeed the case when the variables describing the 
states of nature, are continuous variables). Therefore, if state-contingent production functions are 
available, it will in practice typically be for only some of the possible real states. To illustrate, consider 
the simple decision problem of fertilizer application to a crop of barley. The yield of barley four 
months later depends both on the amount of fertilizer applied now, but also on the real state of nature 
during the growing season. Assume for simplicity that the real state of nature may be quantified by the 
amount of sunshine and rain during the growing season. Further assume that the relevant interval of 
possible amount of rainfall is between 10 and 50 centimetres, and that the relevant interval of the 
amount of sunshine is between 200 and 800 hours. With only these two state-variables describing the 
real states of nature, there would – if state-variables are measured in integer units - be 50x600 = 
24,000 different states of nature.  Imagine that state-contingent production functions are estimated 
based on experimental yields. Then, even in the unrealistic case that none of the states came out twice, 

                                                 
1 The choice of different techniques may cause some problems of non-convexity.  This is not consider here. 
2 The decision maker also has to know the utility function and the state-contingent output prices. The problem of 
determining these parameters is not considered here (see Rasmussen (2003)). 
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it would take at least 24,000 years/experiments3) to collect enough observations to estimate the 24,000 
state-contingent production functions! 

Secondly, a state of nature is often characterized by a large number of state-variables. If only a 
few of these variables are in fact observed/registered when doing the experiments which create the 
data, then the state-description is incomplete. The variables registered could be e.g. monthly rainfall 
and hours of sunshine/month. However, other variables (like for instance wind velocity or CO2 content 
of the atmosphere) influencing the output may not be observed (and registered). In that case the date 
set is incomplete, and it is only possible to estimate the production functions that refer to the registered 
states. Besides this, these functions will be stochastic production functions because the level of the 
non-registered state-variables may vary. 

In empirical work the time series of data available for estimating production functions are often 
limited. With the objective of estimating state-contingent production functions, this problem grows 
drastically, because the number of observations for each state of nature typically will be very small if 
existing at all! For instance, with just 5 possible states with equal probabilities, one would need a time 
series of at least 50 experiments to have just 10 observations per state. 

It is therefore critical to the empirical application of the state contingent approach that we con-
sider estimation methods that will work even with very few empirical observations. One such method 
is the method of Maximum Entropy (Golan et al., 1996). Also the use of panel data will improve esti-
mation efficiency considerably. Both approaches are considered in the following. 

 
 

3. Generating the stochastic environment. 
3.1. The real states of nature. 

The uncertain production environment used as the basis for empirical analysis in the following 
was created using the following Cobb-Douglas state-contingent production function: 

 
1 2 3

1 2 3
s s sa a a

s sz A x x x=          (s = 1, …, S)    (1) 
 

where zs is the output in state s, x1, x2, and x3 are three variable inputs, and As, 1sa , 2sa , and 3sa  are the 
parameters in state s. 

The various (S) states of nature were generated by combining the following values of the four pa-
rameters: 

 
Table 1. Values and relative frequencies of parameters (state-variables) 

           A a1 a2 a3 

Value Probability Value Probability Value Probability Value Probability 
2 0.20 0.05 0.10 0.12 0.15 0.24 0.20 
4 0.50 0.12 0.35 0.22 0.30 0.28 0.30 
5 0.30 0.19 0.45 0.32 0.40 0.32 0.30 

  0.26 0.10 0.42 0.15 0.36 0.20 
 
Using all possible combinations of the parameter values in Table 1, a total of 3×4×4×4 = 192 

possible states of nature (S = 192), and a corresponding number of state-contingent production func-
tions is generated. In the following we shall for convenience refer to a specific state of nature as si,j,k,l ,  
where i is an index of state-variable 1, j is an index of state-variable 2, k is an index of state-variable 3, 
and l is an index of state-variable 44). Index i is in this example at the same time an index of the possi-
ble values of parameter A (i=1,…, 3), j is an index of the possible values of parameter a1 (j=1,…, 4), k 

                                                 
3 In the following it is appropriate to think of the data generating process to take place on an imaginative experi-
mental station.  Therefore, it is more appropriate to talk about “experiments” rather than “years”, since one ex-
periment may span for more than one calendar year, whereas many experiments can be carried out within one 
calendar year. 
4  The four state variables characterising a specific state of nature (weather) could be for instance be sun, rain, 
temperature, wind velocity. 
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is an index of the possible values of parameter a2 (k=1,…, 4), and l is an index of the possible values 
of parameter a3 (l=1,…, 4). 

The four state-variables are assumed to be independent, and to occur with a relative frequency 
corresponding to the probabilities shown in Table 1. Thus, the probability of a specific state of nature 
is calculated simply by multiplying the probabilities of the individual state-variables. Thus, for in-
stance, the probability of state s2,3,1,4 is 0.50×0.45×0.15×0,20 = 0.00675. 

In real life the state-variables will typically not be independent. Thus, if the state-variables are 
for instance sunshine, rain, and temperature, these three variables are typically not independent vari-
ables. However, in the context considered in this paper, this is not important, and the individual state 
variables are for convenience considered as being independent. 

One should also notice that the number of states is subjectively determined by the scale of meas-
urement of the individual state-variables and the number of state-variables. If the amount of rain is for 
instance measured in integer number of 100 mm intervals, then the state-variable rain may take only 4 
or 5 discrete values. If instead rain is measured in integer number of 1 mm intervals, then the state-
variable rain will include maybe 500 discrete values. 

As with the dependency between state-variables, this subject will not be considered further. With 
the choice made here the number of possible states are 192, a number, which will be sufficient to serve 
as an example for the following illustrations. 

 
 

3.2. The registered states of nature 
In the example above, there are 192 real states, each state being generated by a certain combina-

tion of values of the four state-variables. 
In practice, only some of the state-variables influencing production are registered (together with 

the production data (input and output)). Consider for instance an agricultural experimental station per-
forming experiments with different levels of various inputs. Besides registering the amount of  input 
(controlled input) and output, experimental stations typically also register the state of nature in the 
form of the level of some of the (none-controllable) state-variables influencing production. However, 
hardly all state-variables influencing production are registered. And even if they were, these data may 
not be available or may not be available in an appropriate form, so that the data can be used by the de-
cision maker - i.e. the farmer. The typical case in empirical work is therefore that only some of the 
state-variables are registered and therefore are available for econometric analysis. In the extreme 
case, none of the state-variables are registered, and no information about the states of nature is avail-
able at all. 

In the following, the situation with only some of the state-variables (A and a1) being registered is 
illustrated by assuming that in the example above only the first two state-variables are registered 
state-variables. In this case the empirical production data therefore covers only 3×4 = 12 registered 
states (as opposed to the total amount of 192 real states). And for each of these registered states, the 
other two state-variables (a2 and a3) could take on any of the other 4×4 = 16 values. Thus, with a given 
amount of input, the output in any of the 12 registered states will be a stochastic variable with 16 pos-
sible values distributed according to the probability distribution of each of these 16 states calculated 
by multiplying the probabilities of state-variables a2 and a3 according to the probabilities in Table 15. 

 
 
 

4. Estimation of state-contingent, stochastic production functions. 
4.1. Amount of input 

The stage is now prepared for generating the empirical data to be used for estimating the state-
contingent production functions. However, first one needs to consider the amount of input applied. 

To generate the production data, the following “experimental plan” was used: 
 
 

                                                 
5  The disturbance term generated in this way is heteroscedastic.  The problem is dealt with accordingly in the 
estimation procedure in Section 4. 
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Table 2. Application of input (experimental plan) 
x1 x2 x3 

10 40 15 
30 80 45 
50 120 75 
70 160 105 
90 200 135 

110 240 165 
 
The term “experimental plan” is in this case to be interpreted as follows: For each experiment 

and for each plot of land, the amount of each input applied is determined by drawing randomly an 
amount of input from the individual columns of the six possible amounts of input shown above. Thus, 
in any experiment and on any of the plots, the experimental station may have applied a combination of 
for instance 30 units of x1, 160 units of x2, and 105 units of x3. This specific combination of these 
amounts of input occurs in the data set with a relative frequency of (1/6)×(1/6)×(1/6) = 1/216. 

 
 

4.2. Generating data 
The data generating process runs as follows: 
 
For each experiment t the following steps are carried out: 
 

1) The amount of input applied to a “plot” is determined by random choice of the possi-
ble input amounts in Table 2. These amounts of input applied to the plot in question are regis-
tered. 

2) In the case of more plots per experiment, the procedure in (1) is repeated for every 
plot. 

3) The state of nature in the experiment in question is determined by drawing individu-
ally the four state-variables in Table 2 randomly according to the probabilities in Table 2. 
Only the value of two state-variables A and a1 are registered, i.e. the value of state-variable a2 
and a3 are not registered).  

4) The amount of output y is calculated for each plot using (1) by inserting the relevant 
amounts of input determined in (1) and (2), and the parameter values determined in (3). The 
amount of output y is registered (for each plot). 

5) The experiment number t is registered 
 
A large number of experiments (in this case 40,000) were generated. The resulting data set with 

data registered as mentioned above is in the following referred to as the “population”. It is from this 
population that the samples of data used for estimating the state-contingent production functions in the 
following are drawn. 

As only the first two state-variables, each with three and four possible values, respectively, have 
been registered, it is only possible to estimate - depending on the sample size - a maximum of 3×4 = 
12 different state-contingent production functions. According to the definitions above, these produc-
tion functions are thus in fact stochastic, state-contingent production functions. 

 
In the following, two different methods will be used for estimation: The traditional Ordinary and 

Generalized Least Squares (OLS and ITSUR), and the Generalized Maximum Entropy (GME).The 
two methods will be compared on the basis of their ability to replicate the true parameter values shown 
in Table 1. 

The production functions to be estimated is given in equation (1) above, where the number of 
(registered) states is now 3×4 = 12, where the number 3 refers to the number of possible values of 
state-variable one (here the parameter A), and the number 4 to the number of the possible values of 
state-variable two (here the parameter a1). In the following we shall refer to the 12 registered states as 
si,j (i=1,…,3;  j=1,…, 4). Using this way of naming registered states of nature, the production functions 
to be estimated are: 
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1 2 3

1 2 3
ij ij ija a a

ij ij ij ij ijz A x x x=          (i = 1, …, 3;   j=1,…, 4)    (2) 
 
Taking the logarithm and adding an error term ε to account for the fact that the value of state-

variable 3 and 4 are not known and that therefore (2) are stochastic production functions; the econo-
metric model has the following form: 

 

1 1 2 2 3 3ln ln ln ln lnij ij ij ij ij ij ij ijz A a x a x a xτ τ τ τ τε= + + + +  
      (i =1, …,3;  j=1,…, 4;   τ=1,…, T,j)    (3) 

 
where the index τ refers to the number of observations of each registered state, and where there-

fore zijτ is the τ’th observation of output in state sij. Tij is the total number of observations of state sij in 
the sample. 

To estimate these state-contingent production functions, a sample of observations (experiments) 
is drawn from the data set (the population) generated as described above. To analyse the consequence 
of having available different sample sizes, estimations were carried out for different number of ex-
periments, in this case 100 experiments, 200 experiments and 400 experiments, respectively.  At the 
same time, the number of plots was varied from one to three plots to measure the consequence of hav-
ing available more observations for the same state of nature. 

With more than one plot, the model (3) changes to: 
 

1 1 2 2 3 3ln ln ln ln lnij p ij ij ij p ij ij p ij ij p pz A a x a x a xτ τ τ τ τε= + + + +  
      (i =1, …,3;  j=1,…, 4;   τ=1,…, Tij;   p=1, 2 ,3)  (4) 

 
where p is an index of plot  

 
 
4.3. OLS and ITSUR -estimation. 
As the econometric model in (4) is linear in the parameters, Ordinary Least Squares (OLS) can 

be applied directly to estimate each of the 12 state-contingent production functions. 
However, the variance of the error term is not a constant. Using the information on how the data 

were generated, it is easy to show that the variance 2
εσ  of the error term ετ is: 

 
 

2 3

2 2 2 2 2
2 3(ln( )) (ln( ))a ax xεσ σ σ= +        (5) 

 
where 

2

2
aσ  and 

3

2
aσ  are the variances of the parameters  a2 and a3, respectively. Thus, the error term is 

heteroscedastic and the estimation was performed accordingly 
This information in (5) would not be available if the data were real empirical data. Therefore, it 

may be considered incorrect to use this information in this simulation case. On the other hand, an ex-
perienced researcher would probably test the real empirical data for heteroscedastic error terms, and in 
the case that heteroscedasticity was determined, a generalised least squares estimator would be used, 
for instance in the form of weighted least squares6). 

With the assumption of only one plot per experiment, the estimation was carried out using PROC 
REG in SAS 8.02. The estimation was carried out as weighted regression with the inverse of the value 
in (6) as the weights. 

With more than one plot per experiment it is assumed that the parameters are identical across 
plots for each experiment, i.e. that the soil quality, the management, the technology, and the state of 

                                                 
6 ) It was therefore decided to use weighted least squares, using the inverse of the square-root of variance esti-
mated by using (6) as the weight (Judge et al., 1982, p 414). 
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nature is the same on every plot during an experiment. The only thing that varies between plots within 
experiments is therefore the amount of the three inputs x1, x2, x3, and the corresponding yield z. 

This situation illustrates the extreme case of having available perfectly correlated panel data. In 
the normal empirical cases, observations (from different farms) will typically be disturbance related, 
exhibiting some correlation. In the case described here the correlation between the observations (dif-
ferent plots) is perfect in the sense that the error term is exactly the same when the amount of input is 
the same. This information is valuable, and should of course be used when performing the estimation. 
This is done by considering the regression equations for each plot as a disturbance-related set of re-
gression equations, and including the restriction that the parameters are equal across plots (Judge et al. 
(1982), Cha. 11). Estimation is carried out by using the iteratively seemingly unrelated regression 
(ITSUR), which is available in PROS SYSLIN in SAS 8.02. 

Using the ITSUR facility means, the option of weighted regression is not directly available. 
Therefore, to perform weighted regression in this case, all the exogenous variables in the estimation 
model in (4) (including the intercept (1)) were transformed by dividing them by the square root of the 
variance in (5). 

The OLS and ITSUR columns of Table 3 show the results of the estimation of the parameters of 
the stochastic, state-contingent production functions in (4) for different numbers of experiments (ob-
servations), for one plot and two plots. (The results for three plots are not shown as they differ only 
marginally from the two-plot results). 

The first three columns of Table 3 describe the 12 states defined by the 12 possible combinations 
of the two first state-variables A and a1 shown In Table 1. The values of the parameters a2 and a3 in the 
‘TRUE’-column are the expected values according to the values and probabilities in Table 1. 

The numbers in Table 3 are the results of 25 simulation runs. The numbers in the “NUMBER” 
column are the average number of observations in the “sample”. The numbers in the EST columns are 
the average values of the parameter estimates. And the numbers in the ER columns are the estimation 
errors calculated as

25

1
ˆ( ) / 25i ii

γ γ
=

−∑ , where γi is the true parameter value (in the third column) and 

îγ  is the parameter estimate. GME refers to Generalized Maximum Entropy estimation (see following 
Section). 

 
 

4.4. GME-estimation. 
As mentioned above, to estimate the complete set of state-contingent production functions one 

needs to estimate 12×4=48 parameters (12 states and a 3-input Cobb-Douglas production function). 
The use of standard econometric techniques, such as maximum likelihood or generalized methods of 
moments, for the estimation of a production function for each state requires that there are at least 4-
plus observations registered for each state. This is not always available in real world situations.  In-
stead, the researcher has to resort to “recognize” a smaller number of states, imposing severe restric-
tions on their model, or alternatively, losing significant amount of information. Such restrictions are 
not necessary with the generalized maximum entropy (GME) formalism. The coefficients of the pro-
duction functions are recovered for each state of nature, as long as there is at least one observation for 
the state in question. 

In order to recover the parameters for the 12 state-contingent production functions using the 
GME formalism, equations (4) is re-written in the following form: 
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 (6) 

Where zsτp is the logarithm of the output of the pth plot at the τth experiment at the sth state7.  The 
matrices x′ are the corresponding inputs in logarithms.  Each matrix contains a column of [1] for the 
intercept.  We follow the standard GME parameterization process where each parameter αsp is ex-
pressed as a vector product of a vector of probabilities [psp1 psp2…pspk] times a support vector [vs1 
vs2…vsk], where k=5.  Similarly, the error term is parameterized as a vector product of probabilities 
[wsτp1 wsτp2…wsτpk] times a support vector [βs1 βs2…βsk], where λ=5.  The extreme points for both sup-
port vectors were set to three standard deviations on each side, according to the 3σ rule (Golan et al., 
1996).  Therefore, the support vectors for each state s, were set to: vs=βs=[-3σs  -1.5σs  0  +1.5σs  
+3σs], where σs is the standard deviation of the output ln(zs) for each state. 

To correct for heteroscedasticity all data were divided by εσ  from equation (5).  The constraint 
that all parameters were equal across plots for each state was also imposed: 

 

sk s k sk s k
k k

v p v pµ ν=∑ ∑ , for ∀ (µ, ν)∈p, µ≠ν      (7) 

 
Following the GME formalism, the entropy metric is minimized: 

 
Min H(p,w) = p′ ln(p) + w′ ln(w)       (8) 
 
subject to constraints (7), (8), the non-negativity constraints: 
 
p ≥ 0 , w ≥ 0          (9) 
 
and the additivity constraints: 
 
p′1=1 ; w′1=1          (10) 
 
 
 
 
 
 
 
 
 

                                                 
7 Here, for ease of notation we use a single index s for each state instead of the combination of ij used previ-
ously. 



Table 3. Results 
100 EXPERIMENTS 200 EXPERIMENTS 400 EXPERIMENTS 

ONE PLOT TWO PLOTS ONE PLOT TWO PLOTS ONE PLOT TWO PLOTS 
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EST ER EST ER 
A 2.00 0.35 1.65 2.01 1.79 0.35 1.65 1.72 2.00 5.33 5.56 1.78 0.28 1.46 0.83 1.66 0.34 22.72 21.80 1.80 0.21 2.15 0.28 1.79 0.21
a1 0.05 -0.63 0.68 0.15 0.14 -0.63 0.68 0.15 0.14 -0.02 0.43 0.14 0.09 0.22 0.46 0.14 0.09 -0.02 0.19 0.11 0.07 0.03 0.03 0.12 0.07
a2 0.28 -0.21 0.49 0.30 0.27 -0.21 0.49 0.30 0.26 0.55 0.57 0.31 0.05 0.56 0.30 0.30 0.04 0.33 0.38 0.30 0.05 0.31 0.07 0.32 0.05

1 

a3 0.30 

5 

1.71 1.41 0.22 0.33 

3 

1.71 1.41 0.23 0.33

6 

0.23 0.76 0.23 0.07

4 

0.09 0.43 0.24 0.07

9 

0.22 0.31 0.25 0.06

8 

0.27 0.04 0.23 0.07
A 2.00 22.60 22.39 2.05 0.13 5.08 3.35 2.06 0.12 6.96 6.37 1.99 0.18 1.93 0.25 2.04 0.07 3.50 2.15 1.96 0.16 2.03 0.11 1.99 0.09
a1 0.12 0.10 0.29 0.15 0.03 0.12 0.02 0.16 0.04 0.09 0.16 0.15 0.03 0.12 0.01 0.15 0.04 0.15 0.09 0.16 0.04 0.12 0.01 0.16 0.04
a2 0.28 0.31 0.45 0.33 0.06 0.24 0.05 0.33 0.05 0.30 0.19 0.30 0.04 0.28 0.03 0.30 0.03 0.23 0.09 0.29 0.03 0.28 0.02 0.30 0.03

2 

a3 0.30 

9 

0.38 0.26 0.25 0.06 

7 

0.26 0.05 0.24 0.06

14

0.33 0.14 0.26 0.05

14

0.30 0.01 0.25 0.05

28

0.27 0.10 0.25 0.06

27

0.30 0.01 0.24 0.06
A 2.00 4.12 3.51 2.18 0.21 2.00 0.25 2.28 0.28 4.43 3.45 2.06 0.19 1.97 0.14 2.16 0.24 3.13 1.90 2.03 0.23 1.95 0.12 2.14 0.25
a1 0.19 0.34 0.27 0.18 0.02 0.19 0.02 0.19 0.01 0.26 0.14 0.18 0.02 0.19 0.01 0.18 0.02 0.17 0.07 0.19 0.02 0.19 0.01 0.18 0.02
a2 0.28 0.19 0.29 0.33 0.06 0.26 0.05 0.33 0.06 0.19 0.17 0.33 0.06 0.28 0.02 0.33 0.06 0.25 0.10 0.32 0.05 0.28 0.02 0.31 0.04

3 

a3 0.30 

9 

0.36 0.22 0.28 0.03 

8 

0.30 0.02 0.27 0.03

19

0.29 0.15 0.27 0.03

18

0.30 0.01 0.27 0.03

39

0.32 0.10 0.28 0.03

35

0.30 0.01 0.27 0.03
A 2.00 0.44 1.56 2.40 1.81 1.56 0.44 2.24 1.91 169.14 167.76 2.27 0.76 42.27 40.68 2.23 0.75 10.62 10.08 2.30 0.49 2.23 0.63 2.41 0.61
a1 0.26 1.80 1.54 0.23 0.21 0.26 0.00 0.24 0.20 0.10 0.30 0.20 0.09 0.19 0.08 0.22 0.07 0.16 0.32 0.22 0.07 0.39 0.17 0.22 0.06
a2 0.28 -1.77 2.05 0.35 0.26 0.32 0.04 0.36 0.27 0.30 0.36 0.37 0.14 0.26 0.13 0.36 0.12 0.71 0.59 0.35 0.10 0.33 0.11 0.36 0.10

4 

a3 0.30 

6 

1.40 1.10 0.29 0.22 

3 

0.32 0.02 0.30 0.23

6 

-0.11 0.46 0.30 0.09

5 

0.26 0.05 0.09 0.07

8 

0.17 0.33 0.29 0.05

8 

0.27 0.07 0.27 0.05
A 4.00 46.70 46.50 2.35 1.65 5.05 2.84 2.31 1.69 16.16 15.14 2.27 1.73 3.65 0.70 2.25 1.75 7.08 5.34 2.30 1.70 3.98 0.28 2.24 1.76
a1 0.05 0.28 0.51 0.19 0.14 0.04 0.08 0.21 0.16 0.63 0.66 0.17 0.12 0.17 0.14 0.19 0.14 0.09 0.14 0.22 0.12 0.05 0.01 0.19 0.14
a2 0.28 0.49 0.45 0.34 0.07 0.33 0.11 0.35 0.08 0.16 0.68 0.35 0.08 0.24 0.11 0.35 0.08 0.27 0.17 0.35 0.05 0.28 0.03 0.32 0.05

5 

a3 0.30 

7 

0.37 0.26 0.27 0.03 

5 

0.33 0.11 0.28 0.03

9 

0.45 0.41 0.28 0.04

10

0.29 0.04 0.27 0.03

20

0.31 0.11 0.29 0.04

19

0.30 0.02 0.27 0.03
A 4.00 6.93 5.59 2.69 1.31 3.90 0.41 2.58 1.42 9.69 7.30 2.69 1.31 4.01 0.22 2.51 1.49 5.18 2.08 3.04 1.16 4.01 0.14 2.88 1.45
a1 0.12 0.09 0.10 0.19 0.07 0.12 0.01 0.21 0.09 0.13 0.07 0.19 0.07 0.12 0.01 0.22 0.10 0.13 0.06 0.17 0.06 0.12 0.00 0.19 0.07
a2 0.28 0.38 0.19 0.34 0.07 0.27 0.02 0.35 0.08 0.27 0.12 0.32 0.05 0.28 0.02 0.33 0.06 0.26 0.07 0.31 0.04 0.28 0.01 0.32 0.07

6 

a3 0.30 

18 

0.30 0.16 0.30 0.02 

19 

0.30 0.01 0.29 0.01

35

0.25 0.12 0.31 0.03

37

0.30 0.01 0.29 0.02

71

0.27 0.06 0.30 0.02

72

0.30 0.01 0.29 0.03
A 4.00 13.81 10.95 2.99 1.01 3.97 0.24 2.89 1.11 5.44 2.37 3.00 1.00 4.05 0.17 2.82 1.18 4.89 2.08 3.10 91.00 4.02 0.14 2.98 1.07
a1 0.19 0.20 0.10 0.23 0.04 0.19 0.01 0.24 0.05 0.21 0.05 0.22 0.04 0.19 0.01 0.23 0.04 0.20 0.05 0.22 0.03 0.19 0.00 22.67 0.04
a2 0.28 0.20 0.16 0.34 0.07 0.28 0.02 0.36 0.09 0.23 0.08 0.34 0.07 0.27 0.01 0.35 0.08 0.26 0.08 0.31 0.04 0.27 0.01 0.32 0.05

7 

a3 0.30 

24 

0.27 0.10 0.31 0.02 

23 

0.30 0.01 0.31 0.01

47

0.29 0.08 0.31 0.02

44

0.30 0.01 0.31 0.01

92

0.29 0.05 0.32 0.03

90

0.30 0.01 0.32 0.02
A 4.00 19.38 17.86 3.23 1.12 10.98 9.50 3.09 1.27 29.13 28.11 3.24 0.76 3.86 0.82 3.32 0.68 5.89 5.00 3.76 1.27 4.11 0.26 3.47 0.71
a1 0.26 0.88 0.92 0.26 0.04 0.49 0.24 0.28 0.05 0.31 0.24 0.27 0.02 0.30 0.05 0.28 0.02 0.29 0.12 0.27 0.02 0.26 0.01 0.26 0.01
a2 0.28 -0.10 0.64 0.38 0.14 0.28 0.20 0.38 0.14 0.35 0.25 0.38 0.11 0.29 0.06 0.38 0.11 0.29 0.17 0.35 0.10 0.27 0.03 0.36 0.11

8 

a3 0.30 

6 

0.13 0.44 0.34 0.07 

5 

0.24 0.24 0.34 0.07

11

0.28 0.21 0.34 0.04

10

0.32 0.04 0.33 0.03

19

0.39 0.16 0.33 0.03

20

0.30 0.01 0.32 0.03
A 5.00 88.28 86.61 2.42 3.53 4.15 1.53 2.16 3.79 111.45 111.26 2.42 2.58 15.58 12.80 2.31 2.69 6.99 6.36 2.53 2.47 4.95 0.68 2.44 2.56
a1 0.05 0.68 0.63 0.20 0.16 0.59 0.62 0.22 0.18 0.17 0.43 0.19 0.14 0.28 0.27 0.20 0.02 0.09 0.19 0.18 0.13 0.06 0.02 0.19 0.14
a2 0.28 0.11 0.41 0.37 0.15 -0.27 0.67 0.39 0.18 0.45 0.54 0.38 0.11 0.35 0.24 0.41 0.13 0.53 0.43 0.25 0.08 0.28 0.03 0.36 0.09

9 

a3 0.30 

6 

0.35 0.52 0.30 0.09 

4 

0.59 0.29 0.28 0.09

6 

0.24 0.42 0.29 0.03

6 

0.13 0.23 0.28 0.03

12

0.38 0.20 0.30 0.03

13

0.30 0.02 0.30 0.02
A 5.00 52.05 50.88 2.80 2.20 4.85 0.62 2.86 2.14 10.49 7.88 2.91 2.13 4.87 0.36 2.76 2.24 6.28 3.09 2.93 2.07 4.90 0.23 2.81 2.19
a1 0.12 0.16 0.25 0.23 0.11 0.12 0.01 0.23 0.11 0.11 0.14 0.22 0.10 0.12 0.01 0.24 0.12 0.11 0.07 0.21 0.09 0.12 0.01 0.23 0.11
a2 0.28 0.33 0.35 0.36 0.09 0.29 0.04 0.36 0.09 0.22 0.12 0.34 0.07 0.28 0.02 0.36 0.10 0.27 0.09 0.32 0.06 0.27 0.01 0.32 0.07

10 

a3 0.30 

10 

0.33 0.23 0.30 0.02 

9 

0.31 0.03 0.30 0.01

23

0.32 0.10 0.30 0.02

21

0.30 0.01 0.30 0.01

41

0.30 0.07 0.31 0.03

43

0.30 0.01 0.31 0.01
A 5.00 41.35 38.64 3.33 1.67 5.95 1.33 3.17 1.83 7.95 5.53 3.52 1.68 5.01 0.35 3.21 1.79 5.35 2.78 3.35 1.65 4.95 0.18 3.21 1.79
a1 0.19 0.22 0.22 0.24 0.05 0.18 0.02 0.25 0.06 0.18 0.12 0.24 0.05 0.19 0.01 0.25 0.06 0.20 0.06 0.23 0.04 0.19 0.00 0.24 0.04
a2 0.28 0.22 0.23 0.35 0.08 0.25 0.05 0.37 0.10 0.28 0.17 0.34 0.07 0.28 0.02 0.35 0.10 0.28 0.08 0.34 0.07 0.27 0.01 0.34 0.08

11 

a3 0.30 

14 

0.26 0.17 0.32 0.02 

13 

0.29 0.02 0.32 0.02

28

0.31 0.07 0.31 0.02

26

0.30 0.01 0.32 0.02

51

0.32 0.07 0.33 0.03

52

0.30 0.01 0.34 0.04
A 5.00 43.02 44.09 3.71 2.24 2.72 2.28 3.87 2.17 9.21 9.83 3.53 1.47 5.11 1.80 3.52 1.48 8.53 6.62 3.46 1.54 5.01 0.55 3.52 1.48
a1 0.26 0.23 0.24 0.29 0.08 0.24 0.07 0.30 0.09 0.32 0.35 0.29 0.04 0.15 0.16 0.29 0.33 0.28 0.13 0.29 0.03 0.27 0.01 0.28 0.03
a2 0.28 0.76 0.69 0.40 0.18 0.43 0.16 0.41 0.19 0.53 0.52 0.39 0.12 0.57 0.37 0.39 0.12 0.33 0.24 0.37 0.10 0.27 0.03 0.39 0.12

12 

a3 0.30 

6 

0.37 0.38 0.35 0.11 

3 

0.34 0.04 0.36 0.11

8 

0.34 0.31 0.34 0.04

6 

0.39 0.13 0.34 0.04

12

0.33 0.20 0.35 0.05

12

0.31 0.01 0.35 0.05
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5. Discussion 
At this stage it has only been possible to make 25 simulation runs. Thus for each number of ex-

periments, each number of plots, and each estimation method, 25 estimation of the four parameters for 
each state has been made. 

When comparing the results of one and two plots estimation, it is interesting to notice the ex-
treme improvement in estimation efficiency that is achieved when going from one to two plots per ex-
periment. In many cases the error of the estimated parameters is reduced by a factor 10 or more. An 
example of the increased efficiency is shown by comparing the standard deviation of the OLS and the 
ITSUR parameter estimates for state 6 and 200 experiments in the following Table 4. 
 
 
Table 4. Estimation Error (ER) for 
 one and two plots in state 6 

 35 experiments 
   One plot Two plots 
A 7.30 0.22 
a1 0.07 0.01 
a2 0.12 0.02 
a3 0.12 0.01 

 
This result is not in itself surprising. But it underlines the fact that when estimating state-

contingent production functions, it is of much higher importance to have a number of observations that 
are known to be from the same real state of nature (i.e. observations within experiments), instead of 
having observations from the same registered states (i.e. observations over experiments). 

An example of the result of increasing the number of experiments (years), keeping the number of 
plots pr. experiment (year) unchanged, is shown in Table 5. As one can see, there is hardly any im-
provement in efficiency by increasing the number of experiments from 18 to 35 (years) with 2 plots. 

 
 

Table 5. Estimation Error (ER) for 18  
and 36 experiments in state 6 (2 plots) 

 Two plots 
   18 expe-

riments. 
35 expe-
riments. 

A 0.41 0.22 
a1 0.01 0.01 
a2 0.02 0.02 
a3 0.01 0.01 

 
 

When analysing the results in Table 3 there are three other significant observations: 
First, even with a very high number of observations (experiments), some of the states only occur 

in the sample with very few observations. Thus, even with 400 experiments, four of the twelve regis-
tered states only have an average of 12 or less observations. These rare states are at the same time of-
ten the states with the most drastic consequences regarding production conditions, and therefore the 
states for which it may be important to have good information. 

With few observations (100 experiments or less – which in the classical approach is not even 
few!), the number of observations per state is often so small that OLS/ITSUR cannot be used. And 
even if it can, the estimation error is very large. In this case GME may be applied (GME yield esti-
mates even with just one observation). 

However, when it is possible to use both approaches (GME and OLS/ITSUR), which of the two 
approaches are then the best – i.e. the most efficient? With very few observations GME is probably the 
most efficient. 
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The results in Table 3 show that with just one plot GME has a higher precision than OLS in al-
most all cases (i.e. independently of the number of observations). And especially with very few obser-
vations, GME is much more efficient than OLS. 

With two plots the picture changes. Even with a relatively low number of observations, ITSUR 
seems to perform better than GME. The break even point is around 7-8 observations, which is a very 
low number of observations on which to base estimation of 4 parameters. 

Further analyses based on more simulation runs are needed to answer this question of the relative 
efficiency of GME versus OLS/ITSUR. Golan et al., (1996) have shown, that as the number of obser-
vations increases, GME and maximum likelihood estimates converge asymptotically. 

 
6. Conclusions 

The major problem of empirical application of the state-contingent approach to production 
analysis is that the number of observations for each state is low – if available at all. At the same time 
one typically faces the problem that only few of the possible states of nature are in fact registered. 
Therefore, even the state contingent production functions that one may estimate are stochastic func-
tions. 

We have designed a computer simulated Monte Carlo experiment where several levels of three 
inputs were applied on a number of different plots under various states of nature.  Output was “pro-
duced” with state-contingent production functions.  Only some of the states of natures were “observ-
able”.  The objective then was to recover the parameters of the production functions for each one of 
the observable states. 

The Monte Carlo simulation experiment has shown that even with relatively few registered states 
and a long time series of data, the number of observations soon becomes critically low to use the tradi-
tional estimation methods. It is shown that using Generalised Maximum Entropy it is possible to esti-
mate the parameters of state-contingent production functions. However, to compare the efficiency of 
alternative methods of estimation, further analysis is needed. 

The main contribution of this paper is that it has shown that the state-contingent approach to de-
cision making, is not only a theoretical model but it is an empirical possibility. We have laid out the 
methodology and have estimated state-contingent production functions. Certainly, more work is re-
quired. In a normative context, the ultimate test of the appropriateness of each method is the efficiency 
in relation to decision making. 
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