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ｇｒａｄｅｄｉｎｔｏＶＦＡｓｏｒｏｒｇａｎｉｃａｃｉｄｓｄｕｒｉｎｇｓｉｌａｇｅ，ｓｏＣＡ４ｃｏｎｔｅｎｔ
ｏｆａｌｆａｌｆａｇｒｅｅｎｃｈｏｐｄｅｃｒｅａｓｅｄｂｙ６９．５３％ ａｆｔｅｒｓｉｌａｇｅ（１０１．１ｇ
ｋｇ－１ｖｓ３０．８ｇｋｇ－１，ＤＭｂａｓｉｓ）．

Ｔａｂｌｅ２　Ｃｏｍｐａｒｉｓｏｎｏｆｔｈｅｐｒｏｔｅｉｎｆｒａｃｔｉｏｎｓｉｎｄｉｆｆｅｒｅｎｔｖｅｒｓｉｏｎｓｏｆ
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ＮＰＮ（ａｍｍｏｎｉａ，ｐｅｐ
ｔｉｄｅｓａｎｄＡＡｓ）

ＰＡ１ Ａｍｍｏｎｉａ

ＰＡ２ Ｓｏｌｕｂｌｅｔｒｕｅｐｒｏｔｅｉｎ

ＰＢ１ Ｓｏｌｕｂｌｅｔｒｕｅｐｒｏｔｅｉｎ

Ｒａｐｉｄｌｙｄｅｇｒａｄｅｄｐｒｏ
ｔｅｉｎ
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Ｍｏｄｅｒａｔｅｌｙｄｅｇｒａｄａｂｌｅ
ｐｒｏｔｅｉｎ

ＰＢ２
Ｉｎｔｅｒｍｅｄｉａｔｅｌｙｄｅｇｒａｄ
ｅｄｐｒｏｔｅｉｎ

ＰＢ２
Ｓｌｏｗｌｙｄｅｇｒａｄａｂｌｅｐｒｏ
ｔｅｉｎ，ｂｏｕｎｄｉｎＮＤＦ

ＰＢ３
Ｓｌｏｗｌｙｄｅｇｒａｄａｂｌｅｔｒｕｅ
ｐｒｏｔｅｉｎ

ＰＣ ＡＤＩＰ ＰＣ ＵｎａｖａｉｌａｂｌｅＣＰ
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Ｆｏｒｒｕｍｉｎａｎｔｓ，ｃａｒｂｏｈｙｄｒａｔｅａｎｄｐｒｏｔｅｉｎｆｒａｃｔｉｏｎｓａｒｅｆｉｒｓｔｌｙｄｅ
ｇｒａｄｅｄｂｙｒｕｍｅｎｍｉｃｒｏｆｌｏｒａｆｏｒｍｉｃｒｏｂｉａｌｐｒｏｔｅｉｎｓｙｎｔｈｅｓｉｓ，ａｎｄ
ｔｈｅｒｅｓｉｄｕｅｏｆｆｅｅｄｓｔｕｆｆｎｏｔｄｉｇｅｓｔｅｄｉｎｔｈｅｒｕｍｅｎｗｉｌｌｐａｓｓｔｏｔｈｅ
ｉｎｔｅｓｔｉｎｅｆｏｒｆｕｒｔｈｅｒｄｉｇｅｓｔｉｏｎｏｒｎｏｔ．Ｈｏｗｅｖｅｒ，ａｓｔｈｅｄｉｆｆｅｒｅｎｃｅｉｎ
ｃｈｅｍｉｃａｌｃｏｍｐｏｓｉｔｉｏｎａｎｄｓｔｒｕｃｔｕｒｅ，ＣＨＯａｎｄｐｒｏｔｅｉｎｆｒａｃｔｉｏｎｓ
ｄｉｆｆｅｒｉｎＫｄａｎｄＫｐ，ａｎｄｔｈｅｄｅｇｒａｄｅｄｑｕａｎｔｉｔｙｏｆｆｒａｃｔｉｏｎｓｗｅｒｅ
ｄｅｔｅｒｍｉｎｅｄｂｙｔｈｅｓｉｍｐｌｅｒｅｌａｔｉｏｎｓｈｉｐＫｄ／（Ｋｄ＋Ｋｐ）．Ｓｏｉｔｓｉｍ
ｐｏｒｔａｎｔｔｏｓｔｕｄｙｔｈｅｄｅｇｒａｄａｔｉｏｎａｎｄｐａｓｓａｇｅｐｒｏｐｅｒｔｉｅｓｏｆｄｉｆｆｅｒｅｎｔ
ｆｒａｃｔｉｏｎｓｆｏｒｔｈｅａｃｃｕｒａｔｅｐｒｅｄｉｃｔｉｏｎｏｆｆｅｅｄｓｔｕｆｆｅｆｆｅｃｔｉｖｅｎｕｔｒｉ
ｔｉｏｎ．
３．１　Ｄｅｇｒａｄａｔｉｏｎｒａｔｅ　Ｔａｂｌｅ４ｄｅｍｏｎｓｔｒａｔｅｄｔｈｅｃｈａｎｇｅｓｉｎ
ｄｅｇｒａｄａｔｉｏｎｒａｔｅｓｏｆｔｈｅｖａｒｉｏｕｓｆｒａｃｔｉｏｎｓ．ＣＡｉｓｓｕｂｄｉｖｉｄｅｄｉｎｔｏ
ｆｏｕｒｆｒａｃｔｉｏｎｓａｎｄｅａｃｈｈａｓｉｔｓｏｗｎｄｅｇｒａｄａｔｉｏｎｒａｔｅｓ．Ｄｅｇｒａｄａｔｉｏｎ
ｒａｔｅｖａｌｕｅｆｏｒＣＡ４ｗａｓｄｏｗｎｗａｒｄｆｒｏｍ２００－３００％ｈ－１ｔｏ４０－６０
％ ｈ－１（ｒｕｍｅｎｒｅｔｅｎｔｉｏｎｔｉｍｅｏｆ１００ｔｏ１５０ｍｉｎ）ｂａｓｅｄｏｎｉｎｖｉｔｒｏ

９７ＸｉａｏｈｕａＰＡＮｅｔａｌ．ＲｅｃｅｎｔＡｄｖａｎｃｅｉｎＤｉｖｉｓｉｏｎｏｆＣａｒｂｏｈｙｄｒａｔｅａｎｄＰｒｏｔｅｉｎＦｒａｃｔｉｏｎｓｏｆＲｕｍｉｎａｎｔＦｅｅｄａｎｄＴｈｅｉｒＭｅｔａｂｏｌｉｓｍｉｎＤｉｇｅｓｔｉｖｅＴｒａｃｔ



ｆｅｒｍｅｎｔａｔｉｏｎｓｔｕｄｉｅｓｏｆＭｏｌｉｎａ（２００２）［２６］，ｗｈｏｕｓｅｄａｍｉｘｅｄｓｕｇ
ａｒｆｅｒｍｅｎｔａｔｉｏｎｗｉｔｈｍｉｘｅｄｒｕｍｅｎｂａｃｔｅｒｉａｂｙｇａｓｐｒｏｄｕｃｔｉｏｎ．Ｆｕｒ
ｔｈｅｒ，ＫｄｏｆＰＡｒｅｄｕｃｅｄｆｒｏｍ１００００％ｈ－１（ｒｅｔｅｎｔｉｏｎｔｉｍｅｏｆ０．６
ｍｉｎ）ｔｏ２００％ｈ－１，ｆｏｒｔｈｅ１００００％ｈ－１ｗａｓｇｅｎｅｒａｔｅｄｔｏｒｅｐｒｅ
ｓｅｎｔｔｈｅｒａｔｅｏｆｓｏｌｕｂｉｌｉｚａｔｉｏｎａｎｄｎｏｔｎｅｃｅｓｓａｒｉｌｙｍｉｃｒｏｂｉａｌｕｐｔａｋｅ．
Ｂｅｓｉｄｅｓ，ｔｈｅｄｅｇｒａｄａｔｉｏｎｒａｔｅｖａｒｉａｔｉｏｎｉｎｓｏｍｅｒａｎｇｅｓｍａｉｎｌｙｂｅ
ｃａｕｓｅｔｈｅｃｏｍｐｏｓｉｔｉｏｎｏｆｔｈｅｓｕｇａｒｆｒａｃｔｉｏｎｉｎｆｅｅｄｓａｎｄｔｈｅｉｒａｂｉｌｉ
ｔｙｔｏｓｕｐｐｏｒｔｍｉｃｒｏｂｉａｌｇｒｏｗｔｈａｒｅｄｉｆｆｅｒｅｎｔ．ＴａｋｅＣＡ４ｆｏｒｅｘａｍ
ｐｌｅ，ｔｈｅｆｅｒｍｅｎｔａｔｉｏｎｒａｔｅｓｏｆ４０％ｈ－１ｆｏｒｇｌｕｃｏｓｅａｎｄ１６％ｈ－１

ｆｏｒａｒａｂｉｎｏｓｅｗｈｅｎｆｅｒｍｅｎｔｅｄｗｉｔｈａｆｉｂｅｒｓｏｕｒｃｅ．Ａｓｆｉｖｅｃａｒｂｏｎ

ｓｕｇａｒｓｓｕｐｐｏｒｔｌｅｓｓｍｉｃｒｏｂｉａｌｇｒｏｗｔｈｔｈａｎｈｅｘｏｓｅｓ［４１］，ｄｅｇｒａｄａｔｉｏｎ
ｒａｔｅｓｆｏｒｆｅｅｄｓｃｏｎｔａｉｎｉｎｇｍａｉｎｌｙｓｕｃｒｏｓｅｗｅｒｅｓｅｔａｔ４０％ ｈ－１ｆｏｒ
ｔｈｅｓｕｇａｒｆｒａｃｔｉｏｎ［２６］，ｂｕｔｆｏｒｍｉｌｋｄｅｒｉｖｅｄｐｒｏｄｕｃｔｓｔｈｅａｓｓｉｇｎｅｄ
ｄｅｇｒａｄａｔｉｏｎｒａｔｅｆｏｒｓｕｇａｒｓｉｓ３０％ｈ－１ａｓｌａｃｔｏｓｅｓｕｐｐｏｒｔｓｌｅｓｓｍｉ
ｃｒｏｂｉａｌｇｒｏｗｔｈｔｈａｎｓｕｃｒｏｓｅ［２４］．Ｆｏｒｓｉｌａｇｅｓ，ｗｉｔｈｔｈｅｅｘｃｅｐｔｉｏｎｏｆ
ｉｍｍａｔｕｒｅｃｏｒｎｓｉｌａｇｅｓ，ｔｈｅｓｕｇａｒｆｒａｃｔｉｏｎｍａｉｎｌｙａｒｅａｒａｂｉｎｏｓｅａｎｄ
ｏｔｈｅｒｓｉｍｐｌｅｓｕｇａｒｓｄｅｒｉｖｅｄｆｒｏｍｔｈｅｈｙｄｒｏｌｙｓｉｓｏｆｔｈｅｓｉｄｅｃｈａｉｎｓ
ｏｆｐｅｃｔｉｎａｎｄｈｅｍｉｃｅｌｌｕｌｏｓｅｓ［２０］，ｔｈｕｓａｒａｔｅｏｆ２０％ ｈ－１，ｃｌｏｓｅｒ
ｔｏｔｈｅａｒａｂｉｎｏｓｅｆｅｒｍｅｎｔａｔｉｏｎｒａｔｅｗａｓａｓｓｉｇｎｅｄｔｏｔｈｅｓｕｇａｒｆｒａｃ
ｔｉｏｎｏｆｓｉｌａｇｅｓ．

Ｔａｂｌｅ１　Ｃｏｎｔｅｎｔｏｆｃａｒｂｏｈｙｄｒａｔｅａｎｄｐｒｏｔｅｉｎｆｒａｃｔｉｏｎｓｉｎｃｏｍｍｏｎｆｅｅｄｓｔｕｆｆ

Ｆｅｅｄｓｔｕｆｆ ＣＨＯ ＣＡ１ ＣＡ２ ＣＡ３ ＣＡ４ ＣＢ１ ＣＢ２ ＣＢ３ ＣＣ ＣＰ ＰＡ ＰＢ１ ＰＢ２ ＰＢ３ ＰＣ

Ｅｎｅｒｇｙ Ｗｈｅａｔｂｒａｎ ７２７．０ ４７．４ ２１８．０ ５０．５ ３２６．６ ８４．５ １７０ ２０．９ ４８．８ ７１．４ ２２．１ ６．８
ｆｅｅｄｓｔｕｆｆ Ｗｈｅａｔｇｒｏｕｎｄ ８２５．０ ２１．２ ６５１．０ ３５．５ ９３．８ １７．５ １４２ １２．８ ２９．８ ９３．７ ２．８ ２．８

Ｃｏｒｎｇｒｏｕｎｄｓｔｅａｍｒｏｌｌｅｄ（３４ｌｂ） ８５７．３ １５．６ ７５５．６ ７．８ ７４．０ ４．３ ９０ ４．４ ６．９ ６７．１ ３．６ ８．１
Ｃｏｒｎｈｉｇｈｍｏｉｓｔｕｒｅ２２％ ｃｏａｒｓｅ ８５０．５ ３１．０ １０ １８．４ ７２１．９ １４．６ ７７．８ ４．８ ９８ １０．７ １６．７ ６３．１ ２．７ ４．７
Ｃｏｒｎｇｒａｉｎｗｈｏｌｅ ８５１．７ １０ ２１．３ ７３７．６ １．８ ７６．２ ４．８ ９０ ６．７ １０．４ ６３．９ ４．５ ４．５
Ｍｏｌａｓｓｅｓｂｅｅｔ ７９５．０ ４０ ４０ ７００．０ １５．０ ８５ ４２．５ ４２．５
Ｂｅｅｔｐｕｌｐ ７２１．０ ９９．８ ３０．０ ２３９．９ ２４５．５ １０５．８ １４７ ２１．６ ５０．４ １０．３ ５６．３ ８．４

Ｐｒｏｔｅｉｎ Ｃｏｒｎｄｉｓｔｌｉｇｈｔｓｐｉｒｉｔｓ ５０６．０ ２４．０ ８０．０ ９６．０ ２１０．０ ９６．０ ３０４ ２６．６ ４９．４ １３３．８ ５１．４４２．９
ｆｅｅｄｓｔｕｆｆ ＰｅａｎｕｔｍｅａｌｓｏｌｖｅｎｔＣＰ４８％ ３８６．０ １３４．０ １１０．４ ５３．６ ５４．４ ３３．６ ５２０ ２０．６ １５１．０ ２９６．４ ４６．８ ５．２

ＣｏｔｔｏｎｓｅｅｄｍｅａｌＣＰ４２％ ４４９．９ ８２．５ １７．４ １１７．３ ６４．１ １６８．６ ４２０ ３．２ ５９．９ ２９０．７ ２４．５４１．８
Ｃｏｔｔｏｎｓｅｅｄｄｅｌｉｎｔ ５２５．０ ６８．６ ４．９ ２４．５ ２３２．６ １９４．４ ２３０ ３．２ ６１．２ １４２．６ ９．２１３．８
Ｃｏｔｔｏｎｓｅｅｄｆｕｚｚｙ ５３０．０ ２２．９ ２．５ ２５．５ １７０．０ ３０９．０ ２３５ ３．１ ５８．５ １４９．４ ５．２１８．８
Ｓｏｙｂｅａｎｍｅａｌｅｘｔｒｕｄｅｄ ３５１．１ ８１．０ ２７．０ ８４．９ ８３．１ ７５．２ ４３７ ７．０ ５１．５ ３４４．４ ２２．４１１．６
ＳｏｙｂｅａｎＷｈｏｌｅＲａｗ ３２４．０ １２３．０ ３３．０ ６３．８ ９９．４ ４．８ ４２８ ２２．６ １６５．７ ２１３．９ １７．２ ８．６
ＳｏｙｂｅａｎＷｈｏｌｅＲｏａｓｔｅｄ ３２６．０ １３７．３ ３６．８ ７１．１ ７６．０ ４．８ ４２８ ３．１ ２２．６ ３５３．１ ３４．５１４．７

Ｒｏｕｇｈａｇｅ Ｇｒａｓｓｐａｓｔｕｒｅ ７２．５ ４０ ７７．４ ４．１ ８２．３ ４２８．８ ９２．４ １６０ １．５ ３０．５ ９９．２ ２３．７ ５．１
Ｌｅｇｕｍｅｐａｓｔｕｒｅ ６１７．８ ６０ １４７．０ ６．１ ９３．１ １８５．６ １２６．０ ２４０ １．６ ７０．４ １２９．６ ３３．６ ４．８
Ａｌｆａｌｆａｇｒｅｅｎｃｈｏｐ ７０５．０ ８０ １０１．１ １５．８ １１９．０ １８２．８ ２０６．４ １７０ ２０．４ ３０．６ ７８．２ ２７．２１３．６
Ｇｒａｓｓｈａｙ ７５０．０ ３０ ７２．０ ３６．０ １０２．０ ４３７．４ ７２．６ １６０ ４６．８ ２５．２ ４８．０ ３０．９ ９．１
Ａｌｆａｌｆａｈａｙ ７０５．０ ２０ ８７．５ １５．６ １８９．３ １８６．２ ２０６．４ １７０ ２３．８ ３５．７ ７３．１ ２３．８１３．６
Ｇｒａｓｓｓｉｌａｇｅ ７３７．０ １７．７ ５０ ４７．７ ２２．７ ８８．９ ４０４．４ １０５．６ １６０ ５２．０ ２８．０ ４０．０ ２７．２１２．８
Ａｌｆａｌｆａｓｉｌａｇｅ ６９７．０ １５．５ ５０ ３０．８ １５．４ １９６．１ １８２．８ ２０６．４ １７０ ５５．３ ２９．８ ４４．２ １３．６２７．２
ＣｏｒｎＳｉｌａｇｅ（２５％ＤＭ） ８４８．１ ２５．７ ５０ １３．５ ３４７．８ １４．６ ２９８．１ ９８．４ ８０ ２３．４ １２．６ ３０．５ ９．６ ３．９

Ｎｏｔｅ：Ｕｎｉｔｏｆｉｎｄｅｘａｂｏｖｅｉｓｇｋｇ－１ＤＭ；＂＂ｉｎｔｈｅａｂｏｖｅｔａｂｌｅｍｅａｎｓ０ｇｋｇ－１ＤＭ．

Ｔａｂｌｅ４　Ｆｅｅｄｄｅｇｒａｄａｔｉｏｎｒａｔｅｓ（Ｋｄ，％ ｈ－１）ｕｓｅｄｆｏｒＣＨＯａｎｄｐｒｏ
ｔｅｉｎｐｏｏｌｓｉｎＣＮＣＰＳｖ６．１ａｎｄｐｒｉｏｒｔｏｖｅｒｓｉｏｎ６．１１

Ｃｏｍｐｏｎｅｎｔ Ｐｒｉｏｒｔｏｖ６．１ ｖ６．１
ＣＡ１ Ｎｏｔｍｏｄｅｌｅｄ ０
ＣＡ２ Ｎｏｔｍｏｄｅｌｅｄ ７
ＣＡ３ Ｎｏｔｍｏｄｅｌｅｄ ５
ＣＡ４ ３００－５００ ４０－６０
ＣＢ１ ２０－４０ ２０－４０
ＣＢ２ ２０－４０ ２０－４０
ＣＢ３ ４－９ ４－９
ＣＣ ０ ０
ＰＡ２ １００００ ２００
ＰＢ１ １３０－３００ １０－４０
ＰＢ２ ３－２０ ３－２０
ＰＢ３ ０．０５－２．０ Ｆｏｒｆｏｒａｇｅｓ，４－９
ＰＣ ０ ０
Ｎｏｔｅ：１ＴｈｉｓｔａｂｌｅｒｅｆｅｒｓｔｏＶａｎＡｍｂｕｒｇｈｅｔａｌ．（２０１０）［３２］；２Ｆｏｒｔｈｅｎｅｗ
ｐｒｏｔｅｉｎｓｃｈｅｍｅ，ｔｈｅｄｅｇｒａｄａｔｉｏｎｒａｔｅｓｆｏｒＰＡ１，ＰＡ２，ＰＢ１，ＰＢ２ａｎｄＰＣａｒｅ
２００％ｈ－１，１０－４０％ｈ－１，３－２０％ｈ－１，４－９％ｈ－１，０％ｈ－１，ｒｅｓｐｅｃ
ｔｉｖｅｌｙ［１７］．

３．２　Ｐａｓｓａｇｅｒａｔｅ　Ｔａｂｌｅ５ｓｈｏｗｅｄｔｈｅｄｅｖｅｌｏｐｍｅｎｔｏｆｅｑｕａｔｉｏｎｓ
ｆｏｒｆｅｅｄｐａｓｓａｇｅｒａｔｅｓａｎｄｔｈｅｉｒｄｉｆｆｅｒｅｎｃｅｃｏｍｐａｒｅｄｗｉｔｈＮＲＣ

（２００１）．Ｐａｒｔｉｃｌｅｓｉｚｅ，ｆｏｒａｇｅｔｏｃｏｎｃｅｎｔｒａｔｅｒａｔｉｏ，ｈｙｄｒａｔｉｏｎｒａｔｅ
ａｎｄｉｎｔａｋｅｌｅｖｅｌｃａｎａｆｆｅｃｔｔｈｅｐａｓｓａｇｅｒａｔｅｓｏｆｆｅｅｄｓ［４，４３］．Ｓｎｉｆｆｅｎ
ｅｔａｌ．（１９９２）［３９］ｉｎｃｏｒｐｏｒａｔｅｄｔｈｅｓｅｅｆｆｅｃｔｓｉｎｔｏｔｈｅｅｑｕａｔｉｏｎｓｆｏｒ
ＫｐｆａｎｄＫｐｃ，ａｎｄＫｐｗａｓａｄｊｕｓｔｅｄｆｏｒｐａｒｔｉｃｌｅｓｉｚｅｕｓｉｎｇｅｆｆｅｃｔｉｖｅ
ＮＤＦ（ｅＮＤＦ），ｂｕｔｌａｃｋｉｎｇｅｑｕａｔｉｏｎｆｏｒＫｐｌ．ＡｓＫｐｌｃｏｕｌｄａｆｆｅｃｔ
ｔｈｅｓｏｌｕｂｌｅｎｕｔｒｉｅｎｔｄｉｇｅｓｔｉｏｎ［１９］，ｏｕｔｆｌｏｗ ｏｆｒｕｍｅｎｍｅｔａｂｏ
ｌｉｔｅｓ［２３］，ｒｕｍｅｎ ｕｎｄｅｇｒａｄｅｄ ｐｒｏｔｅｉｎ ｒａｔｉｏ［１２］ ａｎｄ ｍｉｃｒｏｂｉａｌ
ｇｒｏｗｔｈ［１１］，Ｆｏｘｅｔａｌ．（２００４）［１２］ ａｄｄｉｎｇｔｈｅＫｐｌｅｑｕａｔｉｏｎｔｏ
ＣＮＣＰＳｖ５．０，ａｎｄＫｐｒａｔｅｓｗｅｒｅａｄｊｕｓｔｅｄｂｙｐｅＮＤＦ．ＴｈｅＣＮＣＰＳ
ｖｅｒｓｉｏｎ６．１ａｂｓｏｒｂｅｄＳｅｏｓｒｅｓｅａｒｃｈｉｎｇｒｅｓｕｌｔｓ，ｉｎｔｅｇｒａｔｉｎｇＦｐＢＷ
（ＦｏｒａｇｅＤＭＩａｓａｐｒｏｐｏｒｔｉｏｎｏｆＢＷ），ＣｐＢＷ（ＣｏｎｃｅｎｔｒａｔｅＤＭＩ
ａｓａｐｒｏｐｏｒｔｉｏｎｏｆＢＷ）ａｎｄＦＤＭＩ（ＦｏｒａｇｅＤｒｙｍａｔｔｅｒｉｎｔａｋｅ）
ｆａｃｔｏｒｓｉｎｔｏｔｈｅＫｐｅｑｕａｔｉｏｎｓ，ａｌｓｏｔｈｅｐｅＮＤＦａｄｊｕｓｔｍｅｎｔｆａｃｔｏｒｉｓ
ａｂａｎｄｏｎｅｄ，ｆｏｒｔｈｅｄｏｕｂｌｅａｃｃｏｕｎｔｉｎｇｆｏｒｔｈｅｐａｒｔｉｃｌｅｓｉｚｅｓ．Ｆｏｒ
ｔｈｅｓｏｌｕｂｌｅｐｏｏｌｓ，ｔｈｅｙｗｅｒｅｐｒｅｄｉｃｔｅｄｔｏｆｌｏｗｏｕｔｏｆｔｈｅｒｕｍｅｎ
ｗｉｔｈｔｈｅｓｏｌｉｄｓｐａｓｓａｇｅｒａｔｅｉｎＣＮＣＰＳｐｒｉｏｒｔｏｖ６．１，ｔｈｕｓｗｉｔｈｔｈｅ
ｈｉｇｈｄｅｇｒａｄａｔｉｏｎｒａｔｅｓａｎｄｔｈｅｓｌｏｗｐａｓｓａｇｅｒａｔｅｓ，ａｌｌｔｈｅｓｏｌｕｂｌｅ
ｆｒａｃｔｉｏｎｓｗｅｒｅｃｏｎｓｉｄｅｒｅｄｔｏｂｅｄｅｇｒａｄｅｄｉｎｔｈｅｒｕｍｅｎ．Ｔｏｂｅｍｏｒｅ
ａｐｐｒｏｐｒｉａｔｅｌｙｒｅｆｌｅｃｔｔｈｅｂｉｏｌｏｇｙｏｆｔｈｅｃｏｗ，ｔｈｅＣＮＣＰＳＶ６．１ｒｅ

０８ ＡｓｉａｎＡｇｒｉｃｕｌｔｕｒａｌＲｅｓｅａｒｃｈ ２０１６



ａｓｓｉｇｎｅｄｔｈｅｓｏｌｕｂｌｅｐｏｏｌｓｔｏｔｈｅｌｉｑｕｉｄｐａｓｓａｇｅｒａｔｅｅｑｕａｔｉｏｎ，
ｗｈｉｃｈｉｎｃｒｅａｓｉｎｇｔｈｅｐｒｅｄｉｃｔｅｄｏｕｔｆｌｏｗｏｆｓｏｌｕｂｌｅｃｏｍｐｏｎｅｎｔｓ，ｔｈｕｓ

ｒｅｄｕｃｉｎｇｍｉｃｒｏｂｉａｌｙｉｅｌｄａｎｄｅｓｔｉｍａｔｅｄａｍｍｏｎｉａｐｒｏｄｕｃｔｉｏｎａｓｗｅｌｌ
ａｓｒｕｍｅｎＮｂａｌａｎｃｅ．

Ｔａｂｌｅ５　ＥｑｕａｔｉｏｎｓｆｏｒｆｅｅｄｐａｓｓａｇｅｒａｔｅｓｉｎｄｉｆｆｅｒｅｎｔＣＮＣＰＳｖｅｒｓｉｏｎｓａｎｄＮＲＣ（２００１）

Ｒｅｆｅｒｅｎｃｅ Ｅｑｕａｔｉｏｎ Ａｄｊｕｓｔｆａｃｔｏｒ，Ａｆ

Ｓｎｉｆｆｅｎ（１９９２） Ｋｐｆ＝０．３８８＋（０．００２×ＤＭＩ／ＢＷ０．７５）＋［０．０００２×ｆｏｒａｇｅ２（％ＤＭ）］ １００／（ｅＮＤＦ＋７０）
Ｋｐｃ＝ －０．４２４＋１．４５×Ｋｐｆ １００／（ｅＮＤＦ＋９０）

ＮＲＣ（２００１） Ｋｐｆ，ｗｅｔｆｏｒａｇｅ＝３．０５４＋０．６１４Ｘ１ Ｎｏ
Ｋｐｆ，ｄｒｙｆｏｒａｇｅ＝３．３６２＋０．４７９Ｘ１－０．００７Ｘ２－０．０１７Ｘ３ Ｎｏ
Ｋｐｃ＝２．９０４＋１．３７５Ｘ－０．０２０Ｘ２ Ｎｏ

ＣＮＣＰＳｖ５．０ Ｋｐｆ＝［０．３８＋（０．０２２×ＤＭＩ×１０００／ＢＷ０．７５）＋２．０×ｆｏｒａｇｅ２］／１００ １００／（ＮＤＦ×ｐｅＮＤＦ／１００＋７０）
Ｋｐｃ＝［－０．４２４＋（１．４５×Ｋｐｆ×１００）］／１００ １００／（ＮＤＦ×ｐｅＮＤＦ／１００＋９０）
Ｋｐｌ＝（４．４１３＋０．１９１×ＤＭＩ×１０００／ＦＢＷ）／１００ Ｎｏ

ＣＮＣＰＳｖ６．１ Ｋｐｆ＝２．３６５＋（０．２１４×ＦｐＢＷ）＋（０．７３４×ＣｐＢＷ）＋（０．０６９×ＦＤＭＩ） Ｎｏ
Ｋｐｃ＝１．１６９＋（１．３７５×ＦｐＢＷ）＋（１．７２１×ＣｐＢＷ） Ｎｏ
Ｋｐｌ＝４．５２４＋（０．２２３×ＦｐＢＷ）＋（２．０４６×ＣｐＢＷ）＋（０．３４４×ＦＤＭＩ） Ｎｏ

Ｎｏｔｅ：ＫｐｆＰａｓｓａｇｅｒａｔｅｏｆｆｏｒａｇｅｓ；ＫｐｃＰａｓｓａｇｅｒａｔｅｏｆｃｏｎｃｅｎｔｒａｔｅ；ＫｐｌＰａｓｓａｇｅｒａｔｅｏｆｌｉｑｕｉｄｓ；ＤＭＩＤｒｙｍａｔｔｅｒｉｎｔａｋｅ；ＢＷＢｏｄｙｗｅｉｇｈｔ；ｅＮＤＦＥｆｆｅｃｔｉｖｅＮＤＦ；
ｐｅＮＤＦＰｈｙｓｉｃａｌｅｆｆｅｃｔｉｖｅＮＤＦ；ＦＢＷＦｕｌｌｂｏｄｙｗｅｉｇｈｔ；ＦｐＢＷＦｏｒａｇｅＤＭＩａｓａｐｒｏｐｏｒｔｉｏｎｏｆＢＷ；ＣｐＢＷＣｏｎｃｅｎｔｒａｔｅＤＭＩａｓａｐｒｏｐｏｒｔｉｏｎｏｆＢＷ；ＦＤＭＩＦｏｒａｇｅ
Ｄｒｙｍａｔｔｅｒｉｎｔａｋｅ；Ｘ１ＤＭＩａｓａｐｒｏｐｏｒｔｉｏｎｏｆＢＷ；Ｘ２ＣｏｎｃｅｎｔｒａｔｅａｓａｐｒｏｐｏｒｔｉｏｎｏｆＤＭＩ；Ｘ３ＮＤＦａｓａｐｒｏｐｏｒｔｉｏｎｏｆＤＭＩ．

３．３　ＰｏｓｓｉｂｌｅｐｒｏｂｌｅｍｓｆｏｒＣＨＯａｎｄｐｒｏｔｅｉｎｆｒａｃｔｉｏｎｓＫｄ
ａｎｄＫｐｖａｌｕｅｓ　Ａｖｏｒｎｙｏ（２０１２）［３］ ｃｏｍｐａｒｅｔｈｒｅｅｍｅｔｈｏｄｓ
（ｇｒａｖｉｍｅｔｒｉｃ，Ｃｕｒｖｅｐｅｅｌｉｎｇｔｅｃｈｎｉｑｕｅ，ａｎｄＣｏｒｎｅｌｌｖａｌｕｅｓ）ｔｏｅｓ
ｔｉｍａｔｅｐｒｏｔｅｉｎＢ２ａｎｄＢ３ｄｅｇｒａｄａｔｉｏｎｒａｔｅｓｉｎｔｈｅｒｕｍｅｎ．Ｔｈｅｒｅ
ｓｕｌｔｓｓｈｏｗｅｄｔｈａｔｎｏｓｔａｔｉｓｔｉｃａｌｄｉｆｆｅｒｅｎｃｅｆｏｕｎｄｅｄａｍｏｎｇｔｈｒｅｅ
ｍｅｔｈｏｄｓｆｏｒｔｈｅｄｅｇｒａｄａｔｉｏｎｒａｔｅｓｏｆｐｒｏｔｅｉｎＢ２，ｗｈｅｒｅａｓｆｏｒｐｒｏ
ｔｅｉｎＢ３，ｔｈｅｄｅｇｒａｄａｔｉｏｎｒａｔｅｅｓｔｉｍａｔｅｄｗｉｔｈｔｈｅｇｒａｖｉｍｅｔｒｉｃｍｅｔｈ
ｏｄｗａｓｈｉｇｈｅｓｔｆｏｌｌｏｗｅｄｂｙｔｈｅｃｕｒｖｅｐｅｅｌｉｎｇｍｅｔｈｏｄａｎｄｔｈｅｎｔｈｅ
Ｃｏｒｎｅｌｌｖａｌｕｅｓ（Ｐ＜０．０１）．Ｓｏｔｈｅｄｅｇｒａｄａｔｉｏｎｒａｔｅｓａｓｓｉｇｎｅｄｔｏ
ｐｒｏｔｅｉｎＢ３ｉｎｔｈｅＣｏｒｎｅｌｌｄａｔａｂａｎｋｎｅｅｄｓｒｅｅｘａｍｉｎａｔｉｏｎ．Ｇｅｎｅｒａｌ
ｌｙ，ｐｒｅｄｉｃｔｉｏｎｅｑｕａｔｉｏｎｓｏｆＫｐｉｎＣＮＣＰＳｈａｖｅｂｅｅｎｄｅｖｅｌｏｐｅｄ
ｓｅｐａｒａｔｅｌｙｆｏｒｆｏｒａｇｅ，ｃｏｎｃｅｎｔｒａｔｅａｎｄｌｉｑｕｉｄｆｅｅｄ，ａｎｄａｌｌＫｐ
ｅｑｕａｔｉｏｎｓａｒｅｂａｓｅｄｏｎＤＭＩ．Ｈｏｗｅｖｅｒ，ｔｈｅｒｅｓｏｍｅｑｕｅｓｔｉｏｎｓ
ｆｏｕｎｄｆｏｒＣＮＣＰＳＫｐｐｒｅｄｉｃｔｉｏｎ：１）ｔｈｅｅｑｕａｔｉｏｎｓｉｎＣＮＣＰＳｈａｖｅ
ｂｅｅｎｄｅｖｅｌｏｐｅｄｂａｓｅｄｏｎｌａｒｇｅｓｅｔｓｏｆｅｍｐｉｒｉｃａｌｄａｔａｕｓｉｎｇｄａｔａｏｆ
Ｃｒ－ｍｏｒｄａｎｔｅｄｆｉｂｅｒａｓａＫｐｍａｒｋｅｒ（ＣＮＣＰＳ）．Ｈｏｗｅｖｅｒ，ｍａｒｋｅｒ
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