

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Overview of Ecological Toxicity of Potassium Chlorate Pollution

Jiuli QIAN^{1,2}, Huashou LI^{2*}

1. Guangdong Engineering Polytechnic, Guangzhou 510520, China; 2. Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture/Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou, 510642, China.

Abstract Potassium chlorate (KClO_3), as regulation medicament for longan production period, has been widely used in industrial application and enters the global ecological and environmental system. Its strong oxidation leads to certain pollution to ecological environment. In recent years, researches about ecological toxicity of KClO_3 have realized considerable progress, so it is necessary to make proper summarization. This paper makes an overview of researches about ecological toxicity of KClO_3 to land plants, longan, aquatic organism, animals, and human beings. Finally, it comes up with recommendations and prospects including further studying precise detection and degradation technologies for strong oxidation ClO_3^- and its residue, strengthening biological monitoring and recovery technology of KClO_3 , and implementing wide science popularization.

Key words KClO_3 , Pollution, Ecological toxicity, Research prospects

1 Introduction

In 1998, Taiwan horticulture scholars occasionally derived inspiration from promoting burning firecrackers nearby longan trees to bloom and successfully took KClO_3 as plant growth regulator for longan. Later, in longan production areas, such as Fujian, Guangxi, Guangdong, and Hainan in China and Thailand, similar researches and technical extension have been carried out, and chemical regulation of KClO_3 to longan production period gets constantly mature and widely applied^[1–2]. Researches of Manochai *et al.*^[3] indicate that KClO_3 can promote longan to realize year-round production and multiple planting of three crops two years. Besides, Subhadrabandhu *et al.*^[4] found that KClO_3 also promotes flowering and fruit bearing for tropical fruit trees such as litchi and mango apart from exerting regulation effect on the longan production period. With extension of technology of KClO_3 in regulating longan flowering period, secondary pollution of ClO_3^- toxicity and its residue exerts adverse impact on agricultural ecological environment. This receives wide and wide concern. Combining current domestic and foreign researches about pollution of KClO_3 to ecological environment, we make overview of progress in researches about KClO_3 toxicity, to make clear environmental risk of KClO_3 , and provide reference for KClO_3 application.

2 Overview of ecological toxicity of KClO_3 pollution

2.1 Effects of KClO_3 on land plants Strong oxidation of KClO_3 exerts significant toxic effect on plant growth. According to researches, except the moss, ClO_3^- is toxic to growth of green plants for 3 to 6 months. Its toxicity exerts excellent control effect

on herbs such as *Pharbitis nil* (Linn.) Choisy, Canada thistle, and Sorghum halepense; it can remove leaves of cotton, maize, flax, and soybean; therefore, KClO_3 has been used as non-selective herbicide, defoliant, or even soil fungicide in the 1930s and 1940s^[5]. It is reported that KClO_3 has obvious concentration gradient toxic effect on rice, wheat seedlings, tomato at normal temperature because after ClO_3^- enters into soil and gets absorbed by root system of plants to organs, its strong oxidization exerts direct toxic effect on plants^[6]. Besides, accumulation of ClO_3^- and ClO_2^- within plant body will increase the content of catalase within plant body, leading to falling of leaves ahead of time and early aging of plants^[7]. In addition, root system of plants does not have selection for absorption of ClO_3^- and NO_3^- , therefore, absorption of ClO_3^- will inhibit absorption and delivery of plant cells to NO_3^- , leading to lack of nitrogen and consequently influencing nutrition within plant and growth of plant^[8–9].

2.2 Effects of KClO_3 on longan Taiwan scholar Yan Changrui^[10] successfully promoting longan flowering using KClO_3 . Later, the production period regulation technology realized breakthrough and rapid development, and Thailand, Malaysia, Guangdong, Fujian, and Guangxi carried out similar experiments, researches and extension^[11–13]. At present, Thailand has realized annual batch production and export of off-season longan^[14]. Chen Qingxi *et al.*^[15] studied off-season longan and found that after application of KClO_3 , parent branches of longan trees have lower starch content, while total sugar, chlorophyll, endogenous ethylene, abscisic acid, trans-Zeatin-riboside, and catalase gradually increase in physiological differentiation period. However, residue of ClO_3^- , ClO_2^- , and ClO^- in longan leaves and fruit is lower than the detection limit obtained from ordinary ion chromatography, and there is no significant difference in corresponding quality indicators such as fruit color, size, and soluble solids between ordinary longan^[13–14].

Received: June 20, 2016 Accepted: July 15, 2016

Supported by Science and Technology Planning Project of Guangdong Province (2015A020224006).

* Corresponding author. E-mail: lihuashou@scau.edu.cn

2.3 Effects of KClO_3 on aquatic organisms DolfJWVW *et al.*^[16-17] found that the toxicity of KClO_3 on aquatic organisms is closely related with living species. The effects of KClO_3 on diversity of fishes and large invertebrate aquatic organisms are not high, the acute toxicity concentration is 2442 mg/L and 3815 mg/L respectively, but the effects on algae are greater, especially on brown alga. Generally, acute toxicity concentration of KClO_3 in sea water to brown alga is lower than 0.1 mg/L, EC₅₀ is lower than 0.105 mg/L, and chronic toxicity concentration is lower than 0.005 mg/L. Also, experiment has proved that the toxic effect of KClO_3 on alga is restricted by NO_3^- in water, higher concentration NO_3^- will weaken the toxicity of KClO_3 to algae. Researches of Stauber. J. L^[18] indicate that when KNO_3 concentration is lower than 0.005 mg/L, 72h EC₅₀ of KClO_3 to *Nitzschia* and *Dunaliella* algae is 1.9 mg/L and 11 mg/L; in water with high concentration of NO_3^- , 72h EC₅₀ of KClO_3 to *Nitzschia* and *Dunaliella* algae exceeds 500 mg/L and 1000 mg/L respectively; in the range of concentration of ClO_3^- inhibiting division of *Nitzschia* cell, it exerts no influence on photosynthesis and ATP content.

2.4 Effects of KClO_3 on animals and human beings Since KClO_3 has the taste of salt, animals may take it as salt and get poisoned^[18]; once polluted by KClO_3 , green plants will be stained with salt taste, herbivore may eat and get poisoned^[20-21]. Germgard U^[22] found that after animal absorbs KClO_3 , strong oxidization of ClO_3^- may lead to methemoglobinemia, hemolytic anemia, and kidney poisoning; if birds eat KClO_3 by mistake, it will reduce ability and quantity of egg production, but there is still no obvious toxic effect on bees; Wang Li *et al.*^[23] found that 800 mg/L ClO_3^- water solution is negative on mouse bone-marrow micronucleus test, indicating that ClO_3^- does not have induction effect on mouse bone-marrow micronucleus in this range of concentration. The mechanism of KClO_3 toxicity to animals is that ClO_3^- damages their metabolism, leading to abnormal life activities. The lethal concentration (LC) of KClO_3 for dog is 1200 mg/L, for mouse, it is 1870 mg/L, and for rabbit, it is 2000 mg/L^[24].

Phongtape *et al.*^[25] surveyed 40 fruit growers producing off-season longan in Lumphun Province of Thailand (57.5% are male and the average age is 47 years old), and found that in the process of applying KClO_3 , 80.0% fruit growers do not wear gloves, 82.5% fruit growers do not wear mouth mask, and only 60.0% fruit growers wear long sleeve clothes, and daily average working hours are 2.3 hours. Before exposing to KClO_3 , the average denatured hemoglobin of fruit growers is 1.16%; after exposing to KClO_3 , the average denatured hemoglobin of fruit growers rises to 1.36%, and 20.0% fruit growers get methemoglobin, indicating KClO_3 will induce denature of hemoglobin. Therefore, without labor protection measures, fruit growers exposing to KClO_3 for a long time will have risk of getting methemoglobin. They also surveyed health condition of local workers engaged in off-season longan production and exposing to KClO_3 for a long time, and found that 64% workers process off-season longan in three steps, peeling, rinsing, and classification, the average daily working

hours are up to 10.6 hours; 68% workers do not wear gloves during working, leading to 66% workers getting allergic skin, 35.2% workers getting methemoglobin, 31.2% getting anemia, 6.5% workers getting leukaemia. Also, they found 22.0% workers have hematuria, 20.5% workers have pyuria, and 7.5% workers have both hematuria and pyuria. No doubt, backward safety and protection measures pose great threat to longan production workers.

Therefore, to avoid poisoning and explosion of KClO_3 , it is required to prevent animals and human beings from eating KClO_3 by mistake, strictly prohibit grazing in grassland with spraying of KClO_3 , strictly separate foods and feeds, promptly clean vessels containing KClO_3 , and strictly forbid pouring KClO_3 residue, and strictly prohibit storage of phosphorus, sulphur, carbon, organic matters, ammonium compound, cyanide, metal powders together with KClO_3 . Government organs and legal institutions should formulate and improve relevant laws and regulations, to standardize production, storage, and use of KClO_3 , implement excellent health and sanitation planning, and take effective labor protection measures, to protect health of relevant people exposing to or applying KClO_3 in actual work. At present, foreign scholars have carried out extensive researches on migration and conversion and ecological toxicity of ClO_2^- and ClO^- in water environment focusing on ClO_2 disinfection and bleaching agent. Animal toxicity experiment indicates that there is close relation between ClO_3^- and ClO_2^- in high level of in drinking water and anemia of animals, thus these two ions are suspected as factors inducing anemia. Both foreign and domestic scholars pay close attention to disinfection by-products (DBPs) ClO_2^- and ClO^- . In Sanitary Standard for Drinking Water Quality for Drinking Water issued by Ministry of Public Health of China in 2001, it specifies that the maximum mass concentration of ClO_2^- is 200 $\mu\text{g/L}$; in the latest *Guidelines for Drinking Water Quality* issued by the World Health Organization (WHO), it stipulates that the ClO_3^- concentration should be as low as possible. Research data of American and Canadian environmental protection departments indicate that too high ClO_3^- concentration in drinking water or foods will damage thyroid gland and consequently influence normal secretion of hormone. Both ClO_3^- and ClO_2^- are included into list of preferred disinfectant and disinfection by-products of drinking water in Code of Federal Regulations, USEPA(2002), and the recommended total residue concentration of ClO_2 , ClO_3^- and ClO_2^- should not exceed 10 mg/L. In the United States, due to emission of chlorate in military industry like fuel for rocket propulsion, pollution of ClO_3^- to underground water has greatly threatened health of surrounding residents. Government of California State reduces the standard of ClO_3^- in drinking water from 18 ppb to 4 ppb, but the Environmental Protection Agency detected local foods and found that the average content of ClO_3^- in milk and lettuce is up to 5.76 ppb, exceeding the specified 4 ppb; Food and Drug Administration (FDA) detected long-leaf lettuce and ice cream of California, Arizona, Florida, Texas and New Jersey states and found that the average content of ClO_3^- in these foods is as high as 10.49 ppb;

NAS reported that in 35 states of America, 93% lettuce and milk and 97% breast milk contain excessive ClO_3^- ; according to estimation of EPA, drinking water of about 15 million people is influenced by ClO_3^- in the United States^[26].

3 Research prospects

Each molecule of KClO_3 contains 3 oxygen atoms, and structure of ClO_3^- is SP3 hybrid type, so KClO_3 has strong oxidation. With wide application of KClO_3 in industrial and agricultural production, secondary pollution resulted from its strong oxidation and residue will inevitably bring adverse effect on water and soil environment which are essential factor for human beings. Therefore, how to precisely detect and accelerate degradation of ClO_3^- and its residue will become a leading direction of the research in this field. In the past, ecological toxicity researches of chlorate are restricted by detection technique and means^[27]. Now, with improvement and application of Ion Chromatography (IC) and High Performance Liquid Chromatography (HPLC) and other techniques, detection means and methods of toxic substances gradually become mature. For example, the upper limit of detection for ClO_3^- and ClO_2^- in water by Ion Chromatography has reached 1.6 mg/L and 3.5 $\mu\text{g}/\text{L}$ respectively^[28]; Capillary Electrophoresis (CE) is also widely applied in detection of many types of anions including ClO_3^- ^[29]. All of these provide assistance for in-depth study of ecological toxicity of chlorate. Besides, with the development of ecological toxicology, broad bean and mouse micronucleus detection methods have been widely applied in chlorate detection^[1, 2, 15]. Strengthening the impact evaluation of environmental indication like earthworm and monitoring of soil pollution due to chlorate will be favorable for lifting chlorate monitoring and soil remediation to a new level. In sum, considering that the public are still not aware the ecological toxicity of chlorate, it is required to strengthen science popularization of chlorate, actively carry out pollution detection, and strengthen researches on control over pollution of chlorate to water and soil, so as to completely eliminate and solve the ecological and environmental problem resulted from KClO_3 and its residue.

References

- CHANG Q, SU MH, WU SH, et al. Effects of KClO_3 on hormones within leaves and apical buds during floral induction phase in longan [J]. *Acta Horticulturae Sinica*, 2015(2):332–340. (in Chinese).
- WANG W, SU MH, WU SH, et al. Investigation of endogenous changes in off season longan (Dimocarpus) growth substances level flower induction of longan lour. trees[J]. *Chinese Journal of Tropical Crops*, 2015(2):252–257. (in Chinese).
- MANOCHAI P, SRUAMSIRI P, WIRIYA A. Year around off season flower induction in longan (Dimocarpus longan L.) trees by KClO_3 applications: Potentials and problems [J]. *Scientia Horticulturae*, 2005, 104 (4):379–390.
- SUBHADRABANDHU S, YAPWATTANAPHUN C. Regulation off season flowering of longan in Thailand [J]. *Acta Horticulturae Sinica*, 2001, 558: 193–198.
- AGAEV R, DANILOV V, KHACHATUTOV V. The toxicity to warm-blooded animals and fish of new defoliants based on sodium and magnesium chlorates[J]. *Uzb. BiolZh*, 1986, 1:40–43.
- CHEN Q, TAO GS, XIE YF, et al. Effects of KClO_4 stress on photosynthes- sis and activities of protective enzymes of rice seedling [J]. *Jiangsu Journal of Agricultural Sciences*, 2013(4): 715–721. (in Chinese).
- BROWN KM. Ethylene and abscission [J]. *Plant Physiology*, 1997, 100 : 567–576.
- SOLOMONSSON LP, VENNESLAND B. Nitrate reductase and chlorate toxicity in Chlorella vulgaris Beijerinck [J]. *Plant Physiology*, 1972, 50(4) : 421–424.
- BALCH WM. Studies of nitrate transport by marine phytoplankton using $36\text{Cl}_2\text{ClO}_3$ as a transport analogue [J]. *Deep Sea Research Part B. Oceanographic Literature Review*, 1987, 34(9) : 773.
- YAN CR, ZHAO ZN, ZHANG ZW. Effect of chemical agent on flower forcing of longan [J]. *Chinese Gardening (Taiwan)*, 1998, 44(4):517–518. (in Chinese).
- YAN CR. The method of flower forcing of longan and its annual production [J]. *Gaoxiong Agriculture*, 1999, 28:14–15. (in Chinese).
- LI HS, ZHANG XY. Cytogenetic toxicity of potassium chlorate on *Vicia faba* root tip cells [J]. *Journal of Agro-Environment Science*, 2005, 24 (5) : 1013–1017. (in Chinese).
- ZENG XY, LI HSM ZENG YY. Effects of KClO_3 chemical regulators used in different seasons on flowering and fruit quality of longan (Dimocarpus Longan) [J]. *Ecologic Science*, 2002, 21 (3) : 220–222. (in Chinese).
- SUBHADRABANDHU S, YAPWATTANAPHUN C. Regulation of flowering time for off – season production of Longan Thailand [J]. *Acta Horticulturae*, 2001, 558: 193–198. [15] CHEN XQ, LI SG. Relationship between flower bud formation induced by application of KClO_3 and the changes of protein and nucleic acid in the leaves [J]. *Journal of Fruit Science*, 2004, 21 (3) :278–280. (in Chinese).
- DOLF JVW, THOMAS H. The ecotoxicity of chlorate to aquatic organisms: A critical review [J]. *Ecotoxicology and Environmental Safety*, 1995, 32 (3) :244–253.
- DOLF JVW, SANDER GM, GARTTNER CM. Toxicity of chlorate and chlorite to selected species of algae, bacteria, and fungi [J]. *Ecotoxicology and Environmental Safety*, 1998, 40(3) : 206–211.
- STAUBER JL. Toxicity of chlorate to marine microalgae [J]. *Aquatic Toxicology*, 1998, 41(3) :213–227.
- Lewis RJ. *Sax's dangerous properties of industrial materials* [M]. New York:John Wiley & Sons, 1992.
- CLARKE ML, HARVEY DG, HUMPHREYS DJ. *Veterinary Toxicology* [M]. London : BailliereTindall, 1981.
- HUMPHREYS DJ. *Veterinary Toxicology* [M]. London : Bail – liereTindall, 1988.
- GERMGARD U. Chlorate discharges from bleach plants-how to handle a potential environmental problem [J]. *Paperi Ja Puu – paper and Timber*, 1989, 71:255–260.
- WANG L, HUANG JL, LI BX. Micro-nucleus test of chlorine dioxide and by-products chlorite and chlorate in water [J]. *Journal of Harbin University of Civil Engineering and Architecture*, 2000, 35 (1) :58–60. (in Chinese).
- Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington Office. Perchlorate environmental contamination: Toxicological review and risk characterization [M]. Washington, DC: NCEA – 1 – 0503. 2002.
- PHONGTAPE W, RANGSAN V, THARNTIP M. Health effects in potassium chloride – exposed longan growers [J]. *International Medicine Journal of Thai*, 2001, 17 (2) :94–97.
- LOGAN BE. Assessing the outlook for perchlorate remediation [J]. *Environmental Science and Technology*, 2001, 35(23):482–487.
- American Public Health Association. American water works association and water environment federation standard methods for the examination of water and wastewater [M]. Washington DC:American Public Health Association. 1998.
- SCHMINKE G, SEUBERT A. Simultaneous determination of in organic disinfection by-products and the seven standard anions by ion chromatography [J]. *Journal of Chromatography A*, 2000, 890(2) : 295–301.
- TAKASHI Y, MIROSLAV M, PAUL RH. Determination of association constants of inorganic ions with C12 – and C14 – alkyltrimethylammonium-propane sulfonate zwitterionic surfactants using capillary electrochromatography [J]. *Analytica Chimica Acta*, 2001, 442(2):221–230.
- SONG YF, ZHOU QX, SONG XY, et al. Pollutants residue in soil and the eco – toxicity after irrigation with petroleum wastewater [J]. *Chinese Journal of Ecology*, 2004, 23(5):61–66. (in Chinese).