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THEORETICAL AND EMPIRICAL ADVANTAGES OF 11RAJNCA17EI)
COUNT DATA ESTIMATORS FOR ANALYSIS OF DEER HUNTING
IN CALIFORNIA
Michael D. Creel and John B. Loomis

Introduction
Surveys of users visiting a site are often employed to collect data on

recreational demand. Given such a sampling method, no data will be collected
for individuals taking zero trips to a site. The sample will therefore be truncated
at the zero trip level. A second feature of recreation studies is that the
dependent variable is often the count of the number of trips taken over the
season or year. As such, it will be a nonnegative integer. The observed
dependent variable is therefore the outcome of a data generating process (DGP)
based on some unknown probability distribution function defined on the
nonnegative integers, which may be termed a count data process. The
combination of a truncated sample from a count data process suggests that
estimators based on truncated count data distributions may be called for.

Figure 1 serves to illustrate the bias encountered in using an estimator
uncorrected for sample truncation as Art!ll as to shove %ILIA a count data process
might look like. Let 1( == f(X,P,€), and let 1( be distributed by some known
count data process such that 1( can take on the values i C {0,1,2}. Assume X
is a matrix of nonstochastic independent variables, p is a parameter vector, and
is a random disturbance. Let the heights the of curved lines above the lines 1(
== i represent P(Y=iiX,P). The heights of these lines sum to one in the vertical
dimension. Line A represents E(1(1X,40) and line B represents E(YIX,P,Y>0).
Let a sample be taken from the population such that 1( is observed only if 1( >
0. The parameter estimates from a maximum likelihood estimator based on the
known distribution of 1( that is uncorrected for the sample truncation will be
biased and inconsistent since the regression will be approximating line B rather
than line A. In the context of modeling demand, if 1( is quantity, and X is
price, the uncorrected estimator's parameter estimates will most likely overstate
Marshallian consumers' surplus since line B everywhere lies outside of line A. If
one wishes to estimate potential social benefits after changes in exogenous
variables occur rather than estimate the benefits already received by the persons
in the sample, line A should be the focus of interest. Shave (1988b) presents a
similar figure for the case of a normally distributed random variable. Truncation
bias is further discussed in general by Maddala, and in the recreational demand
literature by Snahla et aL; Smith; and McConnell and EMI&

Count data estimators may better fit data from a count data process
than Armdd a continuous distribution-based estimator since count data estimators
restrict positive probability assignment to possible events while continuous
distribution estimators give positive probability to fractional and possibly negative
values of the dependent variable. The importance of respecting the count data
nature of the dependent variable may depend on the problem at hand. As
Larson shows, the normal distibution is a good approximation of the Poisson
distribution if the Poisson parameter X, which is usually parameterized such that
Xi is the conditional mean of the dependent variable Y1, is large. Thus, if the
DGP is truly a Mason process, normal MLE may be a suitable procedure if the
conditional mean of the dependent variable is "large", but it may not give
acceptable results if the conditional ElWC= of Yi is small. One should be cautious
in using normal MLE to model a count data process for which small values of
the dependent variable are common. A given count data distribution mu be the
true distribution underlying the 1)GP, but any continuous distribution is known a
priori to be incorrect.
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Figure 1. Truncation bias for a
known count data process.



Poisson and negative binomial count data models have been used in
numerous recent studies, including Hausman, Hall and Griliches' work on patents
issued and Cameron and Trivedi's study of doctor visits. Smith employed a
Poisson travel cost model to estimate demand for water-based recreation trips.
Grogger and Carson (1987, 1988) introduced truncated Poisson and truncated
negative binomial count data estimators. In their papers they present results of
using standard untruncated count data estimators as well as their truncated
estimators to estimate demand for fishing trips in Alaska. Finally, Shaw (1988a)
presented a truncated Poisson estimator appropriate for endogenously stratified
samples, and conducted some Monte Carlo simulations.

In this paper we present results of employing Poisson (POIS), truncated
Poisson (TPOIS), negative binomial (NB), and truncated negative binomial (TNB)
maximum likelihood estimation, as well as ordinary least squares (OLS), nonlinear
normal (NLS), and truncated nonlinear normal (TNLS) MLE to estimate a travel
cost method demand curve for deer hunting in California. A large sample size
(N=2223) allowed us to randomly segment the sample into specification,
estimation, and prediction portions. In -the following sections we will: 0 present
versions of Grogger and Carson's estimators for the case of truncation at the zero
level and review their properties; ii) describe the specification-estimation-prediction
methodology and present the estimation results; iii) compare the out-of-sample
predictive performances of the models; and iv) give point estimates of consumers'
surplus per trip for the various statistical models.
The Estimators

The Poisson probability law is:

exp (—X) Xw[1] f (W=w) — w

which is a discrete density function defined for w an element of the set of
nonnegative integers. The parameter X>0 is both the mean and variance of W.
If we assume elements of an Nx1 (where N is the sample size) dependent variable
vector Y are distributed independent Poisson(X) and we allow X to vary by
observation as a function of an NxK matrix of explanatory variables X and a
Kxl parameter vector p, as in:
[2] _ Xi = exp(XIP)
or for the whole sample, in matrix notation:
[2.1] X = exp(Xp)
we may obtain the standard Poisson likelihood function:
[3] lnL = —9' X + Y 'XP — ' ln [Y!

where s is an Nxl sum vector and the logarithmic and factorial functions are
element-by-element.
If we note that F(W=0) = f(W=0) = exp(-X), where F(•) indicates the
cumulative density function (CDF) and f(s) indicates the probability density
function (PDF) we may express the conditional Poisson density function as:

[4] f (W=w I W)0) • = exp (—X)Xw [ 
w

Maintaining the the above notation and allowing X to vary as in [2], the zero-
level truncated Poisson likelihood function may thus be written as:
[5] lnL = -s'X Y'XP - s'lnEs-exp(-X)1 - s'In[Yi]

A characteristic of the standard Poisson model is that the conditional
mean of the dependent variable X, is equal to the conditional variance, i.e. the
variance-mean ratio is unity. If the population exhibits ”overdispersion" i.e., the
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conditional variance is greater than the conditional mean giving a variance-mean
ratio greater than unity, and the conditional mean is correctly specified as the
true mean of the the DGP, possibly as in [2], the untruncated Poisson model will
give consistent estimates of the parameters, but downwardly biased estimates of
their standard errors (Gourierowc, Monfort and Trognon, 1984b, pg. 707; Grogger
and Carson, 1987, pg. 4). The truncated Poisson estimator is biased and
inconsistent in the presence of overdispersion, since it is based on the higher
moments of the Poisson distribution through the CDF term in [4], which are
incorrect given that the DGP embodies overdispersion (Grogger and Carson, 1988,
pg. 7). Analogously, the standard Poisson estimator is biased and inconsistent
when applied to a truncated sample since the conditional mean is misspecified as
was illustrated in Figure 1. The fact that both estimators are inconsistent if the
sample is truncated and overdispersed makes the truncated negative binomial
estimator an attractive generalization if these conditions are present.

The negative binomial probability law may be written as

[8] 
f (z.y) r 

(z+1)F (1/a) 
(z+1/a)(aX) 2 (1+aX)- -

where N.) indicates the gamma function. This is a discrete pdf defined for z an
element of the set of nonnegative integersi with parameters a>0 and X>0. The
mean of Z is X and its variance is X +aX , which is everywhere greater than the
mean. The variance-mean ratio is 1+aX , so the degree of overdispersion is an
increasing function of both a and X. This is the same distribution as found in
Lee's equation 4.9 (Lee, pg. 698) where our a is equivalent to Lee's 5/(1-5). It
may be derived by letting the Poisson parameter be distributed as a gamma
random variable with mean X and variance aX2. As a40 the gamma distribution
becomes degenerate and the negative binomial distribution reduces to a Poisson
distribution. If we assume that the elements of the Nx1 dependent variable
vector Y are distributed independent negative binomial(X,a) and we let again let
X vary by observation as in [2] and estimate a as a constant for the population
controlling the level of overdispersion we obtain one of the possible negative
binomial statistical models with likelihood function given by:

[7] lnL = s ' ln [r (Y+s/a)] - e ' ln [r (Y+s)] Nln [r (1/a)] + ln (a) 'Y

+ y,xp - (Y+s/a) ' ln [e+aX]

Note that for this density function:

[8] F (Y=0) = f (Y=0) = (1+aX)- (7+1/a)

We may use Bayes' theorem to write the conditional negative binomial density
function:

r(z+1(a)-(z+1/a)
1-(1+a)-1/a I[9] f(Z=yIZ>0) = r(z+1)F 1/a) 

(0015(1+0.)

Using the same notation as above and again allowing X to vary as in [2] , the
zero-level truncated negative binomial likelihood function may be written as:

[10] lnL = e ' ln [r (Y+e/a)] - ' ln [r (Y+s)] - NI:n [I' (1/a)] + la (a) 'Y

+ y,xp - (Y+e/a) 'ln [ts+aX] - ' ln [8- (e+aX)-1/a

where all operations other than matrix products are element-by-element.
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Under a set of regularity conditions (Gourieroux, Monfort, and Trogn.on,
1984a, appendix), the truncated Poisson and truncated negative binomial
estimators will be consistent provided their conditional means are specified as
underlies the true DGP. (see Grogger and Carson, 1987, appendix). If the
dependent variable exhibits overdispersion the truncated Poisson estimator will
therefore be inconsistent, since its mean depends on the incorrect higher moments
of the Poisson distribution, while the truncated negative binomial estimator will
be consistent if the DGP is truly the above truncated negative binomial process
and [2] is a correct specification of the population mean. Larson (p. 171, 188)
provides some diagrams which aid in forming an intuitive understanding of the
differences between the count data models. Next, we turn to an application of
these estimators as well as estimators based on the normal distribution to data of
deer hunting in California.
Specification and Estimation

The data for this study were collected by a mail survey of California
deer hunters that purchased a deer hunting license in 1987. It being a mail
survey, there is no endogenous stratification (i.e., frequent visitors are no more
likely to be sampled than infrequent visitors), so Grogger and Carson's estimators
are appropriate rather than Shaw's truncated Poisson estimator. Our focus here
is on hunters that took trips to one of 17 X zones, one of the four types of
hunting zones in California. X zones are located in northeastern California, for
the most part. Due to regulations, there is little scope for hunting in more than
one zone during a season

' 
and no such possibility if a hunter wishes to visit an

X zone. We view the decision-making process as having two stages; first a
potential hunter (all potential hunters defining the population) decides which
hunting zone is preferred; then decides how many trips to take to this zone.
The unobserved zeros are potential hunters which preferred to hunt in an X zone,
but decided not to purchase a license, or having purchased a license, failed to
take any trips. In this paper, we are considering only the second stage of the
process. Our treating the 17 X zones as one destination may be thought of as
imposing untested (but testable) coefficient restrictions across 17 separate models.
This was done to facilitate comparing the statistical models

' 
and admittedly may

not result in the best estimates for a particular X zone. One may note that a
multi-destination model would be inappropriate for this _problem, where there is
no possibility of visiting other zones.

The general specification of the travel cost model was:

[ii] = f(PRICESI, SITE QUALILITYI,
INDIVIDUAL CHARACTERLSTICS , #,

or in general matrix notation:
[12] Y = 0, e),
where X is the matrix of independent variables, # is a vector of parameters, and
C is a vector of independent random disturbances.
The dependent variable, Y, the number of trips taken to an X zone, is truncated
at the zero level, since individual data records were complete only if at least one
trip was taken. A candidate set of twenty explanatory variables was identified
based on the above general specification; 2223 observations were complete for this
set. The candidate set did not include travel costs to other sites since
individuals are restricted to hunt in the zone for which they purchased a license
prior to the beginning of the season. These observations were randomly divided
into three portions: a specification portion; an estimation portion; and a prediction
portion, of 707, 764, and 752 observations respectively. The sample mean of the
dependent variable, Y, was 2.76 for the estimation portion of the data. This low
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mean suggests that the normally distributed specifications may provide a poor
approximation to the true DGP.

The statistical models fitted were:
OLS: Y N(X/3, cr21)
NLS: Y N(ji = exp(XP), cr2I)
TNLS: Y rig N(js = exp(XP), 0 2I), Y observed only if Y > 0.5
POIS: Y Pois(X = exp(X/3))
TPOIS: Y Pois(X = exp(X/3)), Y observed only if Y> 0
NB: Y NI3(X = exp(XP),a)

= exP ,a , Y observedonly if Y > 0
The nonlinear truncated normal model is a standard lower truncated normal
model as discussed in Maddala, with the exception of the nonlinear specification
of the mean. The 0.5 lower truncation limit for the TNLS model was chosen as
a continuity correction between the limits of 0 or 1, which, as Larson (pgs. 296
and 299) discusses, should allow the normal distribution to better approximate the
unknown true count data DGP. An attempt was made to fit a linear OA = XP)
truncated normal model, but we were not able to achieve convergence. The
count data models were as discussed above. Estimation programs written in the
Gauss language are available from the authors.

Using the specification data, various combinations of explanatory variables
and data transformations were used to fit all the statistical models. A semilog
form (for the continuous distribution estimators, OLS, NLS and TNLS) gave a
worse fit in all cases. Logarithms of continuous RHS variables gave a slightly
better fit in some cases, but were not used due to the arbitrariness of the
resulting social benefit estimates. Quadratic forms of some variables (e.g., AGE,
and INCOME) did not improve the results.

Ten independent variables including a constant were selected, based on
theory and overall performance for each of the seven different statistical models.
Some variables which were not significant for all of the statistical models were
left in the final variable set to avoid omitted variable bias, as in the case, of
travel time. It would be possible to improve the fit of any of the models
somewhat by selecting a model-specific set of variables, but in the interest of
comparability a uniform set was chosen.
These variables were:

-TC, round trip travel coat at $0.22/mile, the sample average.
-TIME, round trip travel time in hours. Experimentation (using the

specification data) with wage-weighting of travel time did not fit as well as time
• alone.

-DAYS, the individual's season average length of trip.
-YEARS, the number of years the individual had previously hunted at the

zone.
-BAG, a zero one dummy, equal to 1 if a deer was taken in the 1987 season.
-PASNO, the number of times the individual passed up an opportunity to

take a deer. -
-DEERSN, the number of deer seen on the last trip of the season.
-INCOME, household income in thousands of dollars.
-SEASON, zone season length in days.

Next, the above set of variables arrived at using the first .portion
(N=707) of the data was used to estimate -all the statistical models, using the
estimation portion (N=764) of the data. This was a one-time, first-try estimation
for this data, therefore the results are free from any form of pre-test bias. As
such, the reported t-statistics and goodness of fit measures are unbiased by the
specification search and are a fair means of comparing the statistical models'
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performance,insofar as the selection of included variables was fair. Estimation
results are found in Table 1.

All of the coefficient estimates are of the expected sign for all of the
statistical models (a negative sign on the income coefficient is often encountered
with travel cost models, see Duffield; Mendelsohn; or Grogger and Carson (1987)
for instance). The truncated models are generally more elistic in all variables,
which is expected, as in Figure 1. In general, POIS is in closer agreement to
NB than it is to TPOLS, and TPOIS is closer to TNB than it is to POLS. This
suggests that the effect of truncation is more important than the effect of
overdispersion. Given that the t-statistics for alpha, which reflects the level of
overdispersion (see above), from NB and TNB are so large, we may reject the
hypothesis of no overdispersion, which implies that the t-statistics of both POIS
and TPOIS are biased away from zero, which may account for why they are
almost always larger in magnitude than the corresponding t-statistics of the
negative binomial models. Since the sample exhibits truncation and
overdispersion the only potentially unbiased count data model is the TNB. Based
on this fact and a good fit and t-statistics, the TNB statistical model seems
'superior to the alternative count data models. The OLS model is clearly inferior
to the alternatives, while NLS and TNLS give results comparable to the count
data models.
Prediction

The third step of the study was to use the coefficients estimated for the
various statistical models using the estimation portion of the data to predict the
number of trips taken in the prediction portion of the data (N=752), conditional
on the prediction portion's independent variables. This allows us to assess the
robustness of the estimators and their relative usefulness in estimating consumers'
benefits. Predictive ability is measured by R2, by the difference between total
predicted and total actual trips, and by percentage error. The prediction results
are found in Table 2.

Based on out-of-sample R2, the count data models predict substantially
better than do OLS and TNLS. TNLS performs strikingly poorly out-of-sample,
achieving an ñ of only, 0.023 and overpredicting trips by 40.9%. NLS predicts
about as well as do the count data models. For all the statistical models, the
difference between in-sample and out-of-sample. R2 is. somewhat greater for the
truncated models than for the corresponding untruncated models. In terms of
predicting total trips taken, the POIS model is clearly superior, and TNLS is
clearly inferior.
Benefit Estimates

Point *estimates of consumers' qurs•lus per predicted trip_ (C/11) are found
in Table 3. For OLS the formula is cpy =. -M2)11.c), where Y is the predicted
value of Y calculated at the Diekns of the independent variables, • and for all the
other models the formula_ is C/Y = -11137c. The truncated models for which
Y=E(YIX) rather than Y=E(YIX,Y>0) is appropriate, as was argued in the
introduction, give a lower estimate than do the corresponding untruncated models,
as is expected from Figure 1. The truncated models attempt to fit a line
analogous to Line A of Figure 1, while the untruncated models attempt to fit a
line analogous to line B. This effect is most apparent in the NLS-TNLS pair.
For the count data models, allowing for overdispersion has little effect on the
estimate, as is seen by comparing the pairs POIS-NB and TPOIS-TNB.
Conclusions

Several results are indicated by this study. First, accounting for
truncation of the dependent variable makes -a substantial .difference in the
coefficient estimates, and subsequently, in benefit estimates, regardless of the
choice of statistical model.
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ONE

TC

TIME

DAYS

YEARS

BAG

PASNO

DEERSN

INCOME

SEASON

ALPHA

SIGMA
R- SQUARED
Log-L

. TABLE 1
ESTIMATION RESULTS

(t-statistics below estimated coefficient)

OLS NLS
4.674 1.827
6.38 7.92

-0.0118 -0.00578
-3.43 -2.19

-0.0517 -0.0977
-1.45 -3.56
-0.154 -0.0547
-4.47 -3.95

0.0374 0.0122
3.58 5.46

-0.252 -0.104
-1.05 -1.67
0.226 0.0267
3.77 4.11

0.0012 0.000962
1.81 4.05

-0.0187 -0.00777
-3.79 -4.43

0.0299 0.0237
0.71 1.74
N/A N/A

2.9
0.242

-1892.9

2.59
0.389

-1810.4

TNLS POIS TPOIS NB TNB
2.190 1.560 1.603 1.514 1.332
5.67 9.75 8.11 7.28 3.68

-0.0272 -0.0065 -0.0134 -0.0061 -0.0143
-3.96 -6.40 -8.37 -5.66 -8.10
-0.175 -0.0245 -0.0326 -0.0174 -0.0169
-2.79 -2.38 -2.11 -1.61 -1.05
-0.057 -0.0442 -0.0481 -0.0385 -0.0495
-3.12 -6.00 -5.70 -4.31 -3.56

0.0186 0.00991 0.00902 0.0106
6.32 5.19 i.26 3.50 2.56

.-0.189 -0.0783 -0.104 -0.0747 -0.147
-2.2 -1.59 -1.84 -1.15 -1.36

0.0326 0.0335 0.03 0.0397 0.0622
3.81 4.56 3.96 2.97 2.36

0.001 0.000644 0.000776 0.000511 0.000655
3.38 2.96 3.11 1.74 1.31

-0.0144 -0.00626 -0.00814 -0.00614 -0.0108
-4.67 -5.37 -5.54 -4.17 -4.11

0.0258 0.0214 0.0332 0.0183 0.0364
1.10 2.28 2.84 1.50 1.72
N/A N/A N/A 0.216 0.754

8.51 5.19
2.83 N/A N/A N/A• N/A

0.341 0.354 0.403 0.332 0.326
-1523.5 -1539.1 -1295.8 -1443.2 -1145.6

•
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TABLE 2 OUT-OF-SAMPLE PREDICTION RESULTS
(total actual trips = 1845)

OLS NLS TNLS POTS TPOIS NB TNB
R-SQUARED 0.233 0.297 0.027 0.346 0.334 0.328 0.301
ACT-PRED TRIPS -121.9 50.5 -775.0 16.0 -132.8 -99.1 -74.1
(ACT-PRED)/ACT -6.6% 2.7% -40.9% 0.9% -7.2% -5.4% -4.0%

TABLE 3 ESTIMATED CONSUMERS' SURPLUS PER PREDICTED TRIP
(estimation data)

OLS NLS TNLS POIS TPOIS NB TNB
CS/PRED TRIPS $117.25 $172.82 $36.72 $153.62 $74.71 $163.05 $70.07
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Second, the TNLS model is not robust in the sense that it does not
perform well out-of-sample and it would be a poor choice to predict visitation.
The conditional mean of this model is
[9] E[YIX,Y>0] = exp(X13) + crORX/3-.5)/crjORX/3-.5)/ar
where 0[0] and ON are the density and distribution functions of a standard
normal random variable, respectively. If the assumption of homoscedasticity is
not justified the parameter estimates of this model would be biased through the
misspecified distribution function term in the likelihood function. If the DGP is
characterized by the conditional variance increasing with the conditional mean, as
is embodied in the count data models, the TNLS model will overcompensate for
truncation at low levels of the dependent variable, since a will be too large and
OH will be too small. This overcompensation would serve to make the term
exp(Xp) in [9] small, which would tend to bias the price coefficient downward.
This is reflected in the low consumers' surplus per trip estimate from this model.
This bias may be sensitive to the number of outlying (large) observations of the
dependent variable, which strongly affect the estimate of a, which would explain
the lack of robustness exhibited by this model's spectacular overprediction of trips
for the out-of-sample data.

A third result is that the data do appear to exhibit overdispersion. We
are able to reject the hypothesis of no overdispersion (HO: a = 0) with a high
degree of confidence using either the NB or TNB models. This leads us to
regard the relatively large t-statistics of the POIS and TPOIS models with
suspicion, (recalling that these models' standard errors are biased downward if
there is overdispersion) as well as to suspect bias in the TPOIS model due to the
incorrect higher moments. We suspect significant bias in the coefficient estimates
of all the untruncated models due to the truncation. Given these results, and
given the poor performance of the TNLS model out-of-sample, we believe the
TNB model is the best suited of the models studied to estimating demand and
social benefits for this data.

We hope that this paper has left the reader with two impressions. First,
that truncated count data models present a useful and perhaps better way to
analyze a broad class of problems not limited to recreational demand. Second,
we believe that the specification-estimation-prediction methodology should be more
widespread. Elimination of specification bias and "clean" goodness-of-fit and t-
statistics are necessary to evaluate a model, and are results of the procedure.
For smaller samples, the prediction step might be skipped (perhaps at the cost of
failing to identify poor models such as our TNLS model). The use of an entire
large sample to both specify, and estimate a model is an inefficient use of data in
that bias is introduced to what are likely satisfactorily efficient estimates.

The above comparison of statistical models has been fairly heuristic. In
the future we plan to conduct non-nested testing of the models against each
other. Also, there is possibly simultaneity between the Q and some of the
regressors. The residuals of the NB and TNB models should be examined to test
for the assumed form of overdispersion, and possibly other forms of NB (and
implied TNB) models as discussed by Hausman et. at. and Lee should be
explored. Compensating and equivalent variations should be calculated, as well as
should confidence intervals for benefit estimates. While these research areas
remain to be addressed, we believe this paper gives sufficient evidence to warrant
further work with truncated count data models.
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